Latest Tweets

Projects

<% single.title %>

<% single.prime %>

<% single.domain %>

<% single.description %>

ProjectAbstractPrime CompanyDomainTagsFull text
3D-Earth The goal of this project is establish a global 3D reference model model of the crust and upper mantle based on the analysis of satellite gravity and (electro-)magnetic missions in combination with seismological models and analyse the feedback [...]UNIVERSITY OF KIEL (DE)Sciencescience, solid earthThe goal of this project is establish a global 3D reference model model of the crust and upper mantle based on the analysis of satellite gravity and (electro-)magnetic missions in combination with seismological models and analyse the feedback between processes in Earth’s deep mantle and the lithosphere. Selected case examples will provide the possibility to test these approaches on a global and regional scale. This will result in a framework for consistent models that will be used to link the crust and upper mantle to the dynamic mantle. The prime objective is to integrate, for the first time, seismological models and satellite observation towards a consistent image of the crust and upper mantle in 3D. Satellite gravity and (electro-) magnetic data help to transfer velocity images towards composition and temperature that reflect the tectonic state and evolution of the Earth and offer a novel understanding of the processes that shape our planet. The limitations and sensitivity of the different geophysical methods in context of their imaging capability are analysed and combined with forward and inverse modelling to be able to evaluate the possibilities of these approaches to reveal the Earth’s structure. For the inverse modelling, we will explore the sensitivity of joint inversion to the individual data sets and compare these to inversions relying on only a single or a few data sets. To analyse the structure of the deep mantle, we will try to combine knowledge about mantle conductivity and mineral physics with the geophysical observations. We will assess the role of Earth’s internal layering and mantle convection on the evolution of the Earth’s surface (dynamic topography). The data and methods we propose to use in this study will significantly supersede previous attempts and will be a first step towards an understanding of the Earth in space and time, a necessary step towards the development of a 4D Earth model.We will analyse the limitations and sensitivities of the different geophysical methods in the context of their imaging capability and plan to combine forward and inverse modelling to be able to evaluate the possibilities of these approaches to reveal the Earth’s structure. For the inverse modelling, we will explore the sensitivity of joint inversion to the individual data sets and compare these to inversions relying on only a single or a few data sets. Selected case examples will provide the possibility to test these approaches on a global and regional scale. This will result in a framework for consistent models that will be used to link the crust and upper mantle to the dynamic mantle. To analyse the structure of the deep mantle, we will attempt to combine knowledge about mantle conductivity and mineral physics with the geophysical observations. We will assess the role of Earth’s internal layering and mantle convection on the evolution of the Earth’s surface (dynamic topography). The data and methods we propose to use in this study will significantly supersede previous attempts and will be a first step towards an understanding of the Earth in space and time, a necessary step towards the development of a 4D Earth model.
4DANTARCTICA Ice sheets are a key component of the Earth system, impacting on global sea level, ocean circulation and bio-geochemical processes. Significant quantities of liquid water are being produced and transported at the ice sheet surface, base, and [...]UNIVERSITY OF EDINBURGH (GB)ScienceCryoSat, cryosphere, polar science cluster, science, Sentinel-1, Sentinel-2, SMOSIce sheets are a key component of the Earth system, impacting on global sea level, ocean circulation and bio-geochemical processes. Significant quantities of liquid water are being produced and transported at the ice sheet surface, base, and beneath its floating sections, and this water is in turn interacting with the ice sheet itself. Surface meltwater drives ice sheet mass imbalance; for example enhanced melt accounts for 60% of ice loss from Greenland, and while in Antarctica the impacts of meltwater are proportionally much lower, its volume is largely unknown and projected to rise. The presence of surface melt water is also a trigger for ice shelf calving and collapse, for example at the Antarctic Peninsula where rising air and ocean temperatures have preceded numerous major collapse events in recent decades. Meltwater is generated at the ice sheet base primarily by geothermal heating and friction associated with ice flow, and this feeds a vast network of lakes and rivers creating a unique bio-chemical environment. The presence of melt water between the ice sheet and bedrock also impacts on the flow of ice into the sea leading to regions of fast-flowing ice. Meltwater draining out of the subglacial system at the grounding line generates buoyant plumes that bring warm ocean bottom water into contact with the underside of floating ice shelves, causing them to melt.  Meltwater plumes also lead to high nutrient concentrations within the oceans, contributing to vast areas of enhance primary productivity along the Antarctic coast. Despite the key role that hydrology plays on the ice sheet environment, there is still no global hydrological budget for Antarctica. There is currently a lack of global data on supra- and sub-glacial hydrology, and no systems are in place for continuous monitoring of it or its impact on ice dynamics. The overall aim of 4DAntarctica is to advance our understanding of the Antarctic Ice Sheet’s supra and sub-glacial hydrology, its evolution, and its role within the broader ice sheet and ocean systems. We designed our programme of work to address the following specific objectives: Creating and consolidating an unprecedented dataset composed of ice-sheet wide hydrology and lithospheric products, Earth Observation datasets, and state of the art ice-sheet and hydrology models Improving our understanding of the physical interaction between electromagnetic radiation, the ice sheet, and liquid water Developing techniques and algorithms to detect surface and basal melting from satellite observations in conjunction with numerical modelling Applying these new techniques at local sites and across the continental ice sheet to monitor water dynamics and derive new hydrology datasets Performing a scientific assessment of Antarctic Ice Sheet hydrology and of its role in the current changes the continent is experiencing Proposing a future roadmap for enhanced observation of Antarctica’s hydrological cycle To do so, the project will use a large range of Earth Observation missions (e.g. Sentinel-1, Sentinel-2, SMOS, CryoSat-2, GOCE, TanDEM-X, AMSR2, Landsat, Icesat-2) coupled with ice-sheet and hydrological models. By the end of this project, the programme of work presented here will lead to a dramatically improved quantification of meltwater in Antarctica, an improved understanding of fluxes across the continent and to the ocean, and an improved understanding of the impact of the hydrological cycle on ice sheet’s mass balance, its basal environment, and its vulnerability to climate change.
4DATLANTIC EBUS PRIMUS Primary productivity in upwelling systems (PRIMUS) aims to provide the best possible characterisation of net primary productivity (NPP) and its relationship to upwelling in Atlantic Eastern Boundary Upwelling Systems (EBUS). Funded through ESA’s [...]Plymouth Marine Laboratory (GB)ScienceAtlantic, climate, MERIS, ocean, OLCI, regional initiativesPrimary productivity in upwelling systems (PRIMUS) aims to provide the best possible characterisation of net primary productivity (NPP) and its relationship to upwelling in Atlantic Eastern Boundary Upwelling Systems (EBUS). Funded through ESA’s Regional Initiative, PRIMUS will produce a 25-year time series of 1-km NPP in all Atlantic EBUS, and experimentally, at higher-resolution (300m) using the unique capabilities of the MERIS and OLCI sensors. These data, together with upwelling indices from different data sources, existing in-situ data, and ocean circulation modelling, will enable investigation of EBUS impacts on Earth system processes and socio-economically important activities such as: aquaculture in Galicia; fiand eutrophication in the Portuguese upwelling region; impacts on ocean carbon pools; Lagrangian estimates of NPP; and air-sea interaction and acidification impacts. Science cases will make use of EO data, in situ data as well as numerical model outputs to investigate the 4D character of EBUS, for example linking Lagrangian NPP with sediment traps samples at depth. Finally, based on the project results and wider consultations, PRIMUS will develop a scientific roadmap in the form of a peer-reviewed paper, posing scientific challenges and observations gaps that need to be addressed over the 2023 to 2027 timeframe. Project Description Primary productivity in upwelling systems (PRIMUS) will provide the best possible characterisation of net primary productivity (NPP) and its relationship to upwelling in Atlantic Eastern Boundary Upwelling Systems. We will produce a 25-year time series of 1-km NPP in all Atlantic EBUS, and experimentally, at higher-resolution (300m) using the unique capabilities of the MERIS and OLCI sensors. These data, together with upwelling indices from different data sources, existing in-situ data, and ocean circulation modelling, will address the objectives stated in the 4DAtlantic theme 1 requirements. PRIMUS will design and implement a novel research plan that aims to describe how we plan consolidate and advance the current understanding of Atlantic EBUS, specifically addressing net primary productivity, its relation to wind-induced upwelling, its impact on Earth system processes, and effects on socio-economically important activities. This plan will include a wide-ranging consultation with relevant stakeholders and early-adopters. PRIMUS will create or add to databases of relevant EO and in situ data that will be used in the project, notably as input for computation of NPP (as well as other elements of the carbon cycle impacted by EBUS). We will make use of a new 1-km version of the long-term climate quality ESA OC CCI dataset and leverage the unique resolution and spectral band capabilities of ESA MERIS and OLCI instruments. In-situ data will be mined from the scientific literature, existing databases, and be provided by our collaborators, notably in the regularly sampled Galician Sea component of the Iberian upwelling system, as well as other regions of interest (Portuguese coast, Canary current system and Benguela upwelling system. PRIMUS will investigate prototype products and perform a thorough validation of the products from two existing NPP models for Atlantic EBUS. These will be evaluated using a number of criteria including accuracy (with respect to in situ data) computational efficiency (and success in simplification though an AI/ML investigation to be conducted, and appropriateness for specific regions or science applications. Evolution of the models will be based on developments from the ESA BICEP project. We will focus attention on specific developments to input variables to the models: i.e. chl-a, considering optical water type classification and sunglint-impacted data PRIMUS will generate and validate a “4DAtlantic Experimental Dataset” of EO-based Atlantic EBUS data. These products will span over 25 years during the project, , and will make use of recently available data from Sentinel 3 for an experimental high resolution NPP product.  PRIMUS will use these data to advance Earth System science analyses covering Atlantic EBUS temporal and spatial variability in NPP and its statistical relationship to upwelling and climate indices (such as the NAO). PRIMUS will also operate eight further science cases in specific science areas / regional settings, such as aquaculture in Galicia, or fisheries and eutrophication in the Portuguese upwelling region. In addition we will investigate: potential EBUS impacts on ocean carbon pools; Lagrangian estimates of NPP; and air-sea interaction and acidification impacts. Science cases will make use of EO data, in situ data as well as numerical model outputs (freely available through Copernicus and elsewhere) to investigate the 4D character of EBUS, for example linking Lagrangian NPP with sediment traps samples at depth. These will provide exemplars for science that can be conducted with 4D reconstructions In order to demonstrate wider socio-economic relevance and impact, PRIMUS will conduct demonstrations that transfers science into solutions for society, working together with scientific, agency, policy and commercial early-adopters, building on three of the science case studies (concerning EBUS and aquaculture, fisheries and eutrophication monitoring); affiliating with the Future Earth Coasts initiative; evaluating transition of data production to operational initiatives such as Copernicus and GMES and Africa; and the potential for exploitation by the European and international ecosystem modelling community. Based on the project results and wider consultations PRIMUS will develop a scientific roadmap in the form of a peer-reviewed paper, posing scientific challenges and observations gaps that need to be addressed over the 2023 to 2027 timeframe. The roadmap will focus on Atlantic EBUS, but also consider global applications of the PRIMUS results. A further aim is to collaborate on ways forward with other ESA activities (e.g. BICEP, Ocean-SODA and notably ESA Digital Twin Precursors), and other international efforts. Finally, PRIMUS will coordinate and promote international collaboration and communicate results to scientists and citizens to maximise impact of the project through cross-cutting promotion, communication, and education activities, and through peer-reviewed publications. In conclusion, PRIMUS aims to make a major contribution to the ESA 4DAtlantic research programme, 4D reconstructions and understanding of Atlantic EBUS net primary production in relation to upwelling and its socio-economic impacts. The ESA Regional Initiative 4DATLANTIC-EBUS-PRIMUS Project has been kicked-off in September 2020, for a duration of 2 years.
4DATLANTIC – OCEAN HEAT CONTENT – (OHC) This project aims at developing, testing and implementing innovative methods able to use space geodetic data from altimetry and gravimetry to generate the regional ocean heat content (OHC) change over the Atlantic Ocean. The ESA MOHeaCAN [...]MAGELLIUM (FR)Sciencealtimeter, Atlantic, climate, gravity and gravitational fields, ocean, regional initiatives, scienceThis project aims at developing, testing and implementing innovative methods able to use space geodetic data from altimetry and gravimetry to generate the regional ocean heat content (OHC) change over the Atlantic Ocean. The ESA MOHeaCAN project strategy will be pursued and refined at regional scales both for the data generation and the uncertainty estimate. In practice, we propose to develop a purely space-based product paying a careful attention to the error propagation along the processing scheme. This will enable to keep the product independent from in situ data which are the unique source of data for validation. By keeping the space-based product independent from in-situ data we ensure that we can validate properly and precisely both the space product and its uncertainty.  In addition, the product will be only based on observations. With this approach there is no premature mixing with model solutions. The data and their uncertainty are driven by observations only. Thus, the space-based product fits the needs for any model validation. This is absolutely essential to ensure an efficient dissemination of the product among the climate modelling community.  These products will be used and analysed to address the major science questions helping us to better understand the complexity of the Earth and climate system. The study will be focused on the Meridional Heat Transport (MHT) in the North Atlantic with a regional heat budget. In parallel, our early adopters will assess the OHC products strengths and limitations for the implementation of new solutions for society. The ESA Regional Initiative 4DATLANTIC OHC Project has been kicked-off on 7 July 2020, for a duration of 2 years.
4DGreenland In 4DGreenland the overall aim is to advance the current state of knowledge on the hydrology of the Greenland Ice Sheet, by capitalising on the latest advances in Earth Observation data.

The high latitudes of the Northern Hemisphere have [...]
Technical University of Denmark (DK)ScienceGlaciers and Ice Sheets, polar science cluster, scienceIn 4DGreenland the overall aim is to advance the current state of knowledge on the hydrology of the Greenland Ice Sheet, by capitalising on the latest advances in Earth Observation data. The high latitudes of the Northern Hemisphere have experienced the largest warming over the last decades. The Greenland ice sheet is currently undergoing rapid changes in response to the increased temperatures. Understanding the Greenland ice sheet hydrologyis essential to understand these changes – and how the Greenland ice sheet will contribute to global sea level rise in a future warming climate. In 4DGreenland we will map and quantify both meltwater- , subglacial- and supra-glacial processes, as well as performing an integrated assessment of Greenland’s hydrology based on the results. We will focus our integrated assessment analysis on the time span 2010-present, and generate a Product Portfolio of novel datasets over the whole Greenland ice sheet to characterise the different components of the hydrological system. Thorough validation ofall derived products and scientific results will be carried out. Another outcome of the project will be a scientific roadmap providing recommendations to ESA to further advance the use of EO technology to address the main knowledge gaps and scientific challenges associated with the Greenland hydrology.
4DIONOSPHERE The project is also called Swarm Space Weather Variability of Ionospheric Plasma (Swarm-VIP). The Swarm-VIP project aims at advancing our understanding and characterisation of ionosphere processes in order to better model and potentially predict [...]UNIVERSITY OF OSLO (NO)Scienceionosphere and magnetosphere, scienceThe project is also called Swarm Space Weather Variability of Ionospheric Plasma (Swarm-VIP). The Swarm-VIP project aims at advancing our understanding and characterisation of ionosphere processes in order to better model and potentially predict the behaviour of the ionosphere. In particular, the project members work on the development of a semi-empiric model and improving the forecasting capabilities for extreme space weather events. Swarm-VIP project performs extensive and complex statistical analysis on Swarm electron density, electric and magnetic field data focusing on: 1) the ionospheric climate/weather during quiet geomagnetic conditions; 2) the extreme events such as geomagnetic storms / superstorms and 3) the physics of ionospheric perturbations and small-scale variability.
A Swarm, SuperDARN, and ICEBEAR Collaboration – Turbulent E-region Aurora Measurements (SSIC-TEAM) Living Planet Fellowship research project carried out by Devin Huyghebaert.

The Swarm SuperDARN ICEBEAR Collaboration – Turbulent E-region Aurora Measurements (SSIC-TEAM) project will focus on the Farley-Buneman Instability (FBI) and its [...]
UNIVERSITY OF SASKATCHEWAN (CA)Scienceionosphere and magnetosphere, living planet fellows, scienceLiving Planet Fellowship research project carried out by Devin Huyghebaert. The Swarm SuperDARN ICEBEAR Collaboration – Turbulent E-region Aurora Measurements (SSIC-TEAM) project will focus on the Farley-Buneman Instability (FBI) and its effects on plasma density irregularity and turbulence generation in the E-region ionosphere.  A better understanding of the FBI is required due to its potential for turbulent heating of the ionospheric E-region plasma during active ionospheric events driven by magnetospheric and solar effects. Heating of the ionosphere affects plasma circulation patterns and neutral atmospheric dynamics.  Understanding the sources of ionospheric heating is essential to better model and predict space weather impacts on the terrestrial atmosphere. The FBI is a plasma density instability that has a positive growth rate when electrons in a plasma have a velocity that is greater than the ion velocity by at least the ion-acoustic speed. This instability is able to occur in the E-region of the ionosphere, primarily at altitudes of 90-120 km. The instability generates plasma density irregularities at a multitude of characteristic wavelengths, where the growth rate and phase speed of the irregularities are related to the electron motion direction.  Plasma density irregularities are a signature of plasma turbulence occurring in the ionosphere and can be measured using ground based ionospheric radars. Through the use of measurements from the Swarm satellite constellation and coherent scatter radars the physical phenomena associated with the FBI will be investigated.  The magnetometer and Electric Field Instrument (EFI) will be used from the Swarm Alpha, Bravo, and Charlie satellites to provide essential context for the coherent scatter radar measurements.  The Fast Auroral Imager (FAI) from the recently added Swarm Echo satellite will also be utilized to provide optical details of the region when available.  For coherent scatter radars both the Ionospheric Continuous-wave E-region Bistatic Experimental Auroral Radar (ICEBEAR) and Saskatoon Super Dual Auroral Radar Network (SuperDARN) radars will be used in the studies.  These radars are based out of the University of Saskatchewan in Canada and have a field of view located in the terrestrial auroral zone.  Due to the recent advances in radio hardware and techniques it is now possible to obtain measurements from these different instruments on similar spatial and temporal resolution scales.
AALM4INFRAM: ARCTIC ACTIVE LAYER MONITORING FOR INFRASTRUCTURE MANAGEMENT This project will use various InSAR based approaches to characterize changes in land subsidence rates due to permafrost melting in  Greenland and assess the impact such changes are having on critical infrastructure in the region.GAMMA REMOTE SENSING AG (CH)Digital Platform Servicesclimate, land, permanently open call, SAR, snow and iceThis project will use various InSAR based approaches to characterize changes in land subsidence rates due to permafrost melting in  Greenland and assess the impact such changes are having on critical infrastructure in the region.
ADVANCED AI4EO FOR WILDFIRE MONITORING


The Artificial Intelligence for Earth Observation (AI4EO) Wildfires project began in December 2020 and run for 8 months, focussing on developing and demonstrating a burned area (BA) mapping service that combines EO data, specifically [...]
CGI IT UK LIMITED (GB)EnterpriseAI4EO, burned areas, mapping/cartography, Sentinel-2, wildfires The Artificial Intelligence for Earth Observation (AI4EO) Wildfires project began in December 2020 and run for 8 months, focussing on developing and demonstrating a burned area (BA) mapping service that combines EO data, specifically Sentinel-2 optical data, with an AI-enabled algorithm. The project consortium is led by CGI UK, utilising their legacy of developing cloud-based EO-data processing portals, with project partner University of Leicester (UK) who has been involved in a number of projects focused on wildfire mapping including the European Space Agency (ESA) CCI Fire project. The AI4EO project and demonstration service has shown the potential of combining increasingly frequent and high-resolution satellite observations with AI/ML to provide improved BA mapping products to support wildfire management organisations. ML enables the service to be easily trained using real wildfire events over a range of differing biomes and scenarios to create a collection of mapping solutions. When executed, the demonstration service automatically selects the most relevant mapping solution to the scene, allowing the creation of a simple, easy to interpret, map of Burned Areas. The service is deployed on a cloud-based online processing platform, the EO4SD Lab (https://eo4sd-lab.net). It provides useRs with a robust scalable service that creates Burned Area maps, which can be easily analysed and ingested into the user’s established systems.
Advanced Sentinel-1 analysis ready data for Africa Historically for land application, synthetic aperture radar (SAR) satellite imagery has often been seen only as as complement to optical remote sensing in cloud covered areas.

There are several reasons for this:

1) the threshold of [...]
NORTHERN RESEARCH INSTITUTE (NORUT) (NO)Sustainable Developmentpermanently open call, SARHistorically for land application, synthetic aperture radar (SAR) satellite imagery has often been seen only as as complement to optical remote sensing in cloud covered areas. There are several reasons for this: 1) the threshold of interpretation and understanding of SAR imagery is often perceived as very high to an untrained user, 2) the human capacity and technical capability in pre-processing SAR data has been out of reach without adequate, often expensive software, and technically-trained staff and 3) the availability of data has been too sparse and expensive for being used operationally for applications other than in (sub)-polar regions. This has especially been the case in developing countries. The Copernicus program, specifically the Sentinel-1A/B (S1) satellites, and recent international efforts opened for a new era of operational SAR application, data access and processing and overcome the challenges 2 and 3 above. Satellite open data cubes (ODC) are currently developed in several countries, including in Africa, with the aim to provide analysis ready data (ARD) from both optical and SAR sensors. The combination of both optical and SAR generally improves the application results. However, for SAR data these ARD efforts generally aim to provide only pre-processed, i.e. radiometric, terrain and slope corrected and georeferenced, single SAR scenes or, at the best, yearly mosaics with questionable consistency and reduce little the subjective reluctance of using SAR data operationally. The purely vast amount of single scenes therefore needs further processing in order to reduce the amount of data as well as to make the data more attractive and easier to interpret for untrained users. This project is intended to overcome user reluctance to integrate SAR data into their EO monitoring and assessment activities by making advanced SAR products available as Analysis Ready Data and demonstrate the possibilities of processing and integrating these data with conventional EO data in a cloud environment. The primary focus will be users in developing countries so the demonstration activities will explicitly take into account issues such as bandwidth constraints.
AEOLUS+ INNOVATION – IMPROVING DUST MONITORING AND FORECASTING THROUGH AEOLUS WIND DATA ASSIMILATION (NEWTON) Windblown dust plays a key role in the Earth system, affecting climate, marine and terrestrial ecosystems, anthropogenic activities as well as humans’ health. Winds, acting as the main driving force of dust emission determine also the [...]NATIONAL OBSERVATORY OF ATHENS (GR)ScienceAeolus, Aeolus+ Innovation, Aerosols, atmosphere, atmosphere science cluster, scienceWindblown dust plays a key role in the Earth system, affecting climate, marine and terrestrial ecosystems, anthropogenic activities as well as humans’ health. Winds, acting as the main driving force of dust emission determine also the spatiotemporal evolution of dust plumes during transport. The proposed study, entitled NEWTON, aims to demonstrate the potential improvement of short-term dust forecasts when the numerical simulations are initialized from meteorological fields in which Aeolus observations have been assimilated. To realize the overarching objective of NEWTON, regional dust simulations initialized with ECMWF numerical outputs, will be performed for specific regions of the planet, i.e. West Sahara-Tropical Atlantic Ocean and Eastern Mediterranean. The regional modelling approach will rely on the WRF model, in which critical developments have been implemented. These upgrades have been driven by recent studies, relying on advanced observations revealing that mineral particles are not appropriately treated in the current state-of-the-art atmospheric-dust models. In a nutshell, the NEWTON project aims to: Assess the potential improvements on short-term regional dust forecasts attributed to the assimilation of Aeolus wind profiles; Investigate the modifications of dust emission and transport mechanisms by contrasting numerical simulations initialized with and without Aeolus observations; Highlight the benefits and the necessity of Aeolus data on dust research, paving the way for future operational satellite missions.”
AEOLUS+ INNOVATION – OCEAN SUB-SURFACE PRODUCTS AND APPLICATIONS The Aeolus Ocean Color (AOC) project aims at assessing the potential of the Aeolus mission to monitor ocean sub-surface optical and biogeochemical properties based on the measurements from the wind lidar ALADIN (Atmospheric Laser Doppler [...]NOVELTIS SAS (FR)ScienceAeolus, Aeolus+ Innovation, Aerosols, Altitude, atmosphere, atmosphere science cluster, Ocean Indicators, ocean optics, ocean science cluster, scienceThe Aeolus Ocean Color (AOC) project aims at assessing the potential of the Aeolus mission to monitor ocean sub-surface optical and biogeochemical properties based on the measurements from the wind lidar ALADIN (Atmospheric Laser Doppler Instrument) at 355 nm. AOC is funded by ESA within the framework of the Aeolus + Innovation project. The retrieval scheme for the AOC products relies upon parametric relationships between the lidar signal and the parameters of interest in a stepwise approach: “lidar-derived optical” parameters that can be inferred from the two lidar profiles in the Mie and Rayleigh channels: the particulate attenuated backscatter βP and the attenuation coefficient KL; “ocean optical” parameters related to ocean optical properties: the diffuse attenuation coefficient (Kd(355)) and the particulate back-scattering parameter (bbp(355)) that can be derived from the lidar-derived parameters; “biogeochemical”parameters: the particulate organic carbon (POC), the phytoplankton carbon (Cphyto) and the coloured dissolved organic matter (CDOM) that can be derived from the optical parameters. The prototype AOC product will be generated over a set of regions of interest (English Channel, tropical gyres, Polar Ocean), and evaluated against available ground truth as well as other comparable remotely sensed products and biogeochemical model simulations.
AEOLUS+ INNOVATION – STUDIES ON WIND AND AEROSOL INFORMATION FROM LIDAR SURFACE RETURNS (SWAILS+) In the SWAILS+ project the Aeolus lidar surface returns are used in combination with collocated wind speed observations to retrieve the aerosol optical depth. The retrieval algorithm under development, LARISSA (Lidar Aerosol Retrieval based on [...]KNMI (NL)ScienceAeolus, Aeolus+ Innovation, Aerosols, Altitude, atmosphere, atmosphere science cluster, scienceIn the SWAILS+ project the Aeolus lidar surface returns are used in combination with collocated wind speed observations to retrieve the aerosol optical depth. The retrieval algorithm under development, LARISSA (Lidar Aerosol Retrieval based on Information from Surface Signal of Aeolus), will complement the standard Aeolus (L2) aerosol profile products. Not only as LARISSA provides an opportunity to evaluate the standard Aeolus aerosol products but also since the L2a profile approach lacks sensitivity in low aerosol loading regions where an integrated column approach may be more successful. In addition, for low aerosol optical depth conditions, it is investigated whether it is feasible to retrieve the: Near-surface winds Bidirectional reflectance distribution function over land, based on which aerosol optical depth over land can be also retrieved using LARISSA The LARISSA products are developed at the Royal Institute of Meteorological Sciences (KNMI) in the SWAILS (NSO) and SWAILS+ (ESA) projects. The resulting aerosol product from LARISSA will be beneficial for various scientific applications including Better understanding of the wind speed dependence in off-nadir ocean surface scattering in the ultraviolet. Evaluation of aerosol models, where the LARISSA-based (integrated) aerosol optical depth can be used as input for data assimilation. Studies of global aerosol optical properties as LARISSA will retrieve the average column lidar ratios. Support of future lidar missions with nadir and non-nadir viewing angles in the UV, i.e., the EarthCARE mission lidar ATLID.
AEOLUS+ INNOVATION – CDOM-PROXY RETRIEVAL FROM AEOLUS OBSERVATIONS (COLOR) The objective of the COLOR (CDOM-proxy retrieval from aeOLus ObseRvations) project is to assess the feasibility of deriving an in-water AEOLUS product from the analysis of the ocean sub-surface backscattered component of the 355 nm signal [...]CNR – INSTITUTE FOR ELECTROMAGNETIC SENSING OF THE ENVIRONMENT (IREA) (IT)ScienceAeolus, Aeolus+ Innovation, atmosphere, atmosphere science cluster, Ocean Indicators, ocean optics, ocean science cluster, scienceThe objective of the COLOR (CDOM-proxy retrieval from aeOLus ObseRvations) project is to assess the feasibility of deriving an in-water AEOLUS product from the analysis of the ocean sub-surface backscattered component of the 355 nm signal acquired by the ALADIN (Atmospheric LAser Doppler INstrument). The project will focus on the potential retrieval of the ocean particle optical properties at 355 nm: diffuse attenuation coefficient for downwelling irradiance, Kd [m-1], and sub-surface hemispheric particulate backscatter coefficient, bbp [m-1]. COLOR activities are organized in three different but interacting phases: 1) Consolidation of the scientific requirements; 2) Implementation and assessment of AEOLUS COLOR prototype product; 3) Scientific roadmap. Furthermore, data collection activity will feed phase 1 and 2, encompassing both AEOLUS dataset and the ancillary reference/validation datasets. The overall proposed approach is based on the transfer of the lidar consolidated know-how from atmospheric to oceanic applications through AEOLUS observation data analysis and ocean radiative transfer numerical modelling.  
AEOLUS+ INNOVATION – LIDAR MEASUREMENTS TO IDENTIFY STREAMERS AND ANALYZE ATMOSPHERIC WAVES (LISA) For a better comprehension of climate change it is fundamentally important how well we understand the general condition (dynamics and chemistry) in the atmosphere. Aeolus wind measurements enable for the first time the derivation of atmospheric [...]DLR – GERMAN AEROSPACE CENTER (DE)ScienceAeolus, Aeolus+ Innovation, atmosphere, atmosphere science cluster, atmospheric winds, gravity and gravitational fields, scienceFor a better comprehension of climate change it is fundamentally important how well we understand the general condition (dynamics and chemistry) in the atmosphere. Aeolus wind measurements enable for the first time the derivation of atmospheric wave structures on different temporal and spatial scales and wind gradients in particular above the oceans, where wind measurements from ground-based instruments are sparse. These measurements will help us to better understand the atmospheric dynamics. Planetary waves (PWs) are global scale waves, which are well-known as main drivers of the large-scale weather patterns in mid-latitudes on time scales from several days up to weeks in the troposphere. When PWs break, they often cut pressure cells off the jet stream. A specific example are so-called streamer events, which occur predominantly in the mid- and high-latitudes of the lower stratosphere. During a streamer event the wind field changes rather strong over a comparatively small horizontal distance. It is found that streamer mainly occur at the transition zone from the Northern Atlantic to Europe. Strong wind gradients can excite gravity waves (GWs). GWs have typical vertical wavelengths from a few 100 m to some kilometers. GWs are the main drivers of the mean meridional circulation of the mesosphere and lower thermosphere. Their propagation is strongly dependent on the zonal wind in the stratosphere. The question of how much energy from the field of planetary waves is finally transferred into the generation of gravity waves is still an open question. Objectives Three data products will be derived by Aeolus measurements: global maps of horizontal wind shear, PW activity and GW activity. Supplementary measurements are used to further study acoustic GW activity at the ground and at large heights (Doppler sounding or microbarograph measurements). This allows a cross-check of the temporal evolution of the kinetic wave energy density and also provides additional information about the dynamic conditions in the stratosphere. The data products will be demonstrated within a case study of a selected streamer event. The Aeolus data will be compared with ERA-5 reanalysis data. The data products will be made available on a project web-site. The findings and recommendations of this project will be delivered through a scientific roadmap in order to further develop the methods and their application.
AEOLUS+ INNOVATION – OCEAN SURFACE WIND FROM AEOLUS SEA SURFACE RETURNS (SEA-FLECT) Welcome to the SEA-FLECT project page. The winds from Aeolus lidar SEA surface reFLECTance (SEA-FLECT) aims to demonstrate the potential of the Aeolus observations for monitoring of sea surface winds. This project is funded [...]Verisk Analytics GmbH (DE)ScienceAeolus, Aeolus+ Innovation, atmosphere, atmosphere science cluster, Ocean Indicators, scienceWelcome to the SEA-FLECT project page. The winds from Aeolus lidar SEA surface reFLECTance (SEA-FLECT) aims to demonstrate the potential of the Aeolus observations for monitoring of sea surface winds. This project is funded by ESA under the Aeolus + Innovation project. Objective The objectives of the Aeolus Ocean Surface Wind project are to Demonstrate if the Aeolus observations can be used to derive ocean surface winds, and Understand which meteorological and oceanic conditions are favourable to derive this product from the observations Method To meet the objectives, we will perform a detailed analysis of the Aeolus surface returns over selected regions, under different surface wind conditions. The surface wind information will be derived from scatterometer data, while the surface conditions will be determined from traditional imagery data as provided by e.g. Modis or Sentinel2. In addition detailed radiative transfer calculations will be performed to support the analysis.
AI and EO as Innovative Methods for Monitoring West Nile Virus Spread (AIDEO) AI and EO as Innovative Methods for Monitoring West Nile Virus Spread (AIDEO) is being developed by the Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, a veterinary public health institution that has an established [...]Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale” (IT)Digital Platform Servicesartificial intelligence, enterprise, health, permanently open callAI and EO as Innovative Methods for Monitoring West Nile Virus Spread (AIDEO) is being developed by the Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, a veterinary public health institution that has an established international track record in the surveillance, diagnosis, epidemiology, modelling, molecular epidemiology of Vector Borne Diseases (VBDs), AImageLab, that is a research laboratory of the Dipartimento di Ingegneria “Enzo Ferrari” at the University of Modena and Reggio Emilia with extensive experience in Computer Vision, Pattern Recognition, Machine Learning and Artificial Intelligence, Progressive Systems, that delivers solutions to simplify Earth Observation data exploitation and brings significant expertise and experience to the consortium based on years of collaboration with ESA and on-site presence at ESRIN, and REMEDIA Italia, that has relevant experience in designing and realising printed, web, multimedia and technology enhanced scientific communication projects, systems and tools developed inside the Earth Observation Department of ESA (ESRIN). Aim of the project is to develop an innovative, scalable and accurate process to produce West Nile Disease (WND) risk maps, using EO data and specific AI algorithms. Vector-borne diseases (VBDs) are an important threat with an increasing impact on public health due to wider geographic range of occurrence and higher incidences. West Nile virus (WNV) is one of the most spread zoonotic VBD in Italy and Europe. Identifying suitable environmental conditions across large areas containing multiple species of potential hosts and vectors can be difficult. The recent and massive availability of Earth Observation (EO) data and the continuous development of innovative Artificial Intelligence (AI) methods can be of great help to automatically identify patterns in big datasets and to make highly accurate predictions. Our project aims to develop an innovative, scalable and accurate process to produce West Nile Disease (WND) risk maps, using EO data and specific AI algorithms. Using historical ground truth data of WND cases and EO data derived from different sources (e.g. Sentinel-2, Sentinel-3, PROBA-V, etc.), a learning architecture, based on Convolutional Neural Network (CNN) and Graph Theory, will be applied on ground truth WND cases and satellite images and tested. This process will produce AI based risk maps that will be then compared with classical statistical methods to evaluate the degree of improvement in forecasting the disease occurrence and spread. Knowledge acquired with this project can be potentially used to define intervention priorities within national diseases surveillance plans. Moreover, the definition and development of algorithms working on available and frequent satellite images could be applied in early warning systems not developed so far, and could be integrated into the Information Systems of the Italian Ministry of Health and made available to other interested stakeholders. This work will therefore lay the basis for a future early warning system that could alert public authorities when climatic and environmental conditions become favourable to the onset and spread of the disease. This will be achieved in three key phases: Phase 1: Definition of requirements Information regarding EO data to be used, criteria to select ground truth data, temporal interval to be analysed and different Deep Neural Network models will be evaluated and defined. Selection criteria and preparation of remotely sensed products will then be investigated, considering data from multiple sources, various sensors, spectral bands, spatial resolutions and revisit times. WND and EO data will be selected to guarantee a correct spatial and temporal representation of the last ten-years epidemics. Phase 2: Data retrieval and processing WND cases will be extracted from the official repository of the Italian Ministry of Health (National Information System of Animal Disease Notification – SIMAN), integrated with laboratory data coming from the national veterinary laboratories, validated and selected, in space and time, according to the requirements defined in phase 1. WND ground truth outbreaks will be split in different datasets that will be used to train and test the DNN model, then fine-tune the model and hence make predictions and evaluate the overall accuracy. Selected EO data will be collected from different sources and stored in a centralised system where they will be organised and pre-processed according to the requirements defined in phase 1. Classical statistical models for WND spread (suitability analysis, logistic regression, etc.) will be developed to be compared with AI model performance. Phase 3: Train, fine-tuning and validation of the AI model AI models/algorithms for the analysis and prediction of WND “behaviour” will be developed and parameters estimated. Graph-based DNN models will be explored for merging geo-referenced local sites information with satellite images, the latter being processed through Convolutional Neural Networks (pre-trained or trained from scratch). Temporal deep models (e.g. RNN – Recurrent Neural Networks, LSTM – Long-short term memory) will then be employed for an effective forecasting of the behaviour based on EO data. The accuracy of the chosen model will then be evaluated together with the need to include additional data or to change the train model hyper-parameters. We will hence produce the final model that will be compared with the classical statistical models developed in phase 2. Dissemination of information and project results will last for the entire duration of the project and will be made available to stakeholders, relevant institutions, organisations and individuals through workshop and congress presentations, publications in peer reviewed journals, websites.
AI4ARCTIC The AI for the Arctic (AI4ARCTIC) project applies deep learning, in particular deep convolutional neural networks, for Earth observation applications within the cryosphere, focusing on sea ice and snow. The project trains deep-learning systems [...]NORWEGIAN COMPUTING CENTER NORSK REGNESENTRAL (NO)ScienceAI4Science, Arctic, polar science cluster, snow and iceThe AI for the Arctic (AI4ARCTIC) project applies deep learning, in particular deep convolutional neural networks, for Earth observation applications within the cryosphere, focusing on sea ice and snow. The project trains deep-learning systems from relevant training data, and tests and demonstrates the capability of deep learning by applying it to large-scale inference of cryosphere-related variables.The project focuses on two use cases, one on snow mapping in Scandinavia and the other on sea ice charting in the waters around Greenland.
AIREO – AI ready EO training datasets Artificial Intelligence (AI) and Machine Learning (ML) algorithms have great potential to advance processing & analysis of Earth Observation (EO) data. Training datasets (TDS) are crucial for ML and AI applications but they are becoming a [...]NATIONAL UNIVERSITY OF IRELAND (NIU GALWAY) (IE)Enterpriseapplications, artificial intelligence, enterpriseArtificial Intelligence (AI) and Machine Learning (ML) algorithms have great potential to advance processing & analysis of Earth Observation (EO) data. Training datasets (TDS) are crucial for ML and AI applications but they are becoming a major bottleneck in more widespread and systematic application of AI/ML in EO. The issues include: General lack and inaccessibility of high-quality TDS Absence of standards resulting in inconsistent and heterogeneous TDS (data structures, file formats, quality control, meta data, repositories, licenses, etc.) Limited discoverability and interoperability of TDS Lack of best-practices & guidelines for generating, structuring, describing and curating TDS Another obstacle to the use of AI/ML in EO applications for non-EO experts is a lack of domain specific knowledge such as map projections, file formats, calibration and quality assurance. As such, AI-Ready EO Training Datasets (AIREO) should be self-explanatory, follow FAIR principles and be directly ingestible for AI/ML applications. AIREO approach: Review current initiatives, activities, techniques,tools, practices and requirements for preparing, using and sharing AI-Ready EO Training Datasets Setup AIREO network of stakeholders and practitioners in the AI/ML, EO, data science in communities and from other relevant science disciplines. Capture community requirements and develop: Specifications for AIREO datasets by leveraging existing formats and standards; Best-practices guidelines for preparing, using and sharing AIREO TDS; Pilot and benchmark AIREO datasets for selected use-case applications ; A Python library, compatible with OGC web; interface standards and RESTful APIs, for ingesting AIREO TDS into workflows; Jupyter notebooks showing the use of AIREO pilot datasets & Python library. AIREO specifications, best practices and datasets will: Meet FAIR (Findable, Accessible, Interoperable, Reusable) data principles; Involve and build on top of relevant community initiatives
AKROSS: Altimetric Ku-Band Radar Observations Simulated with SMRT Accurate estimates of sea ice thickness are essential for numerical weather prediction, ice extent forecasts for navigability and to demonstrate the impacts of climate change on sea ice. The main source of uncertainty in sea ice thickness [...]CORES SCIENCE AND ENGINEERING LIMIT (GB)Sciencealtimeter, CryoSat, permanently open call, polar science cluster, science, snow and iceAccurate estimates of sea ice thickness are essential for numerical weather prediction, ice extent forecasts for navigability and to demonstrate the impacts of climate change on sea ice. The main source of uncertainty in sea ice thickness measurements from radar altimetry is due to snow. Scattering of the radar signal as it travels through snow changes the return received by the altimeter. AKROSS will determine how snow properties affect the radar return and therefore the accuracy of sea ice thickness estimates. AKROSS has three main objectives: Collection of a suite of field observations of the properties of snow on sea ice suitable for evaluation of electromagnetic models across a range of different satellites, with a focus on radar altimetry. Evaluation and consolidation of the Snow Microwave Radiative Transfer Model in altimeter mode. Investigate origin of signal returns through analysis of the dependence of the altimeter waveform to snowpack structure. The field campaign will take place in Eureka, Canada, timed to coincide with CryoSat2 and ICESat2 satellite overpasses. Snow measurements will include specific surface area, density, layer boundary roughness and casted samples for x-ray tomography imaging. AKROSS will complement and co-ordinate with other activities including studies for the Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) candidate mission.
ALBATROSS – ALtimetry for BAthymetry and TideRetrievals for the Southern Ocean, Sea ice and ice Shelves The ALBATROSS Project (ALtimetry for BAthymetry and Tide Retrievals for the Southern Ocean, Sea ice and ice Shelves) , led by NOVELTIS in collaboration with DTU, NPI and UCL, is one of the activities funded by ESA in the frame of the Polar [...]NOVELTIS SAS (FR)Sciencealtimeter, Antarctica, bathymetry and seafloor topography, CryoSat, cryosphere, Glaciers and Ice Sheets, ocean, oceans, polar science cluster, science, tidesThe ALBATROSS Project (ALtimetry for BAthymetry and Tide Retrievals for the Southern Ocean, Sea ice and ice Shelves) , led by NOVELTIS in collaboration with DTU, NPI and UCL, is one of the activities funded by ESA in the frame of the Polar Science Cluster, with the objective to foster collaborative research and interdisciplinary networking actions. In this framework, the ALBATROSS ESA Project aims to improve knowledge about bathymetry and ocean tides in the Southern Ocean.The knowledge about ocean tides is at the crossroads of many scientific fields, especially in the Polar regions, as it has significant impact on ocean circulation modelling and the understanding of the coupled dynamical response of the ocean, sea ice and ice shelves system, the quality and accuracy of sea surface height and sea ice parameter estimates from satellite altimetry, or the understanding of ice-shelf dynamics, for example.Today, this knowledge is still limited by several aspects, such as the quality of bathymetry information, hydrodynamic model resolution and in situ and satellite observations availability for data assimilation and model validation. The objectives of the project are the following: Improve the knowledge on bathymetry around Antarctica, considering decade-long most recently reprocessed CryoSat datasets, innovative information on bathymetry gradient location through the analysis of sea ice surface roughness characteristics, and the compilation of the best available datasets in ice-shelf regions. Improve the knowledge on ocean tides in the Southern Ocean through the implementation of a high-resolution hydrodynamic model based on the most advanced developments in terms of ocean tide modelling, and data assimilation of observations, including satellite-altimetry derived tidal retrievals from the most recent and relevant satellite altimetry products. Improve satellite altimetry retrievals of sea surface heights and sea ice information thanks to the new tidal model solution. Improve the retrievals of ice shelves parameters thanks to the new tidal model solution. Share information and knowledge with other Polar science initiatives and projects. The ALBATROSS Project was launched in May 2021 and will span over two years.
ALBIOM (ALtimetry for BIOMass) The ALBIOM project (ALtimetry for BIOMass) proposes to derive forest biomass using SAR Altimetry Data from the Copernicus Sentinel-3 (S3) Mission.

Biomass is at present monitored globally using optical satellites, SAR and LiDAR technology, [...]
DEIMOS SPACE UK LTD (GB)Sciencealtimeter, biosphere, carbon cycle, carbon science cluster, forestry, land, Sentinel-3The ALBIOM project (ALtimetry for BIOMass) proposes to derive forest biomass using SAR Altimetry Data from the Copernicus Sentinel-3 (S3) Mission. Biomass is at present monitored globally using optical satellites, SAR and LiDAR technology, but it is still poorly quantified in most parts of the world, and the satellite data currently exploited for this purpose are not enough to achieve the goal of global biomass mapping and monitoring with sufficient accuracy. In this context, data from existing satellites but unexploited so far, capable of providing additional independent biomass information, have the potential for a very important role in global observation of biomass, advancing our understanding of the carbon cycle and management of forests, biodiversity and ecosystems. The ALBIOM project combines: A modelling component, through the development of a Sentinel-3 altimeter backscattering simulator over vegetated areas, based on the existing state of the art modelling of the backscattering of Ku and C-band signals from vegetation, to establish the physical relationships between the backscattered signal from S3 altimeter and the different levels of biomass; An algorithm component, through the development of a suitable inversion algorithm for biomass estimation from S3 altimeter data, investigating both a simple method based on error minimization (i.e. derivation of analytical or empirical model function) and a more empirical Artificial Neural-Network (ANN) approach trained on the model outputs, or on a combination of model outputs and data; A prototype biomass product is generated as final project output over specific sites of boreal and tropical forests and shared with a number of users to assess its validity. ALBIOM is an innovative project, since both the use of Sentinel-3 SAR altimeter data to retrieve biomass and the generation of a Sentinel-3 SAR altimeter backscatter simulator over vegetated areas have not been accomplished before. The outcome of such project will have an important scientific impact, as it can provide a new global biomass dataset derived from S3 altimetry, which could be integrated into existing high-resolution biomass products derived from data fusion methods. The project would also open up new perspectives on the use of all the historical data from the past altimetry missions for biomass mapping. Users potentially interested in the results of ALBIOM include environmental agencies, space agencies, private companies, and all the entities interested in bioenergy, deforestation and forest degradation, biodiversity conservation, and sustainable management of biomass resources. This 12 month activity is led by Deimos Space UK with the participation of University of La Sapienza (IT) and Tor Vergata University (IT).
AlpGlacier The Glacier Science in the Alps project is part of the Alps Regional Initiative and is aimed at maximising the scientific return of European investments in EO specifically from Sentinel-1 and Sentinel-2 specifically to provide first enhanced [...]UNIVERSITY OF ZURICH (CH)Regional InitiativesAlps, cryosphere, Glaciers and Ice Sheets, polar science cluster, science, Sentinel-1, Sentinel-2, snow and ice, water resourcesThe Glacier Science in the Alps project is part of the Alps Regional Initiative and is aimed at maximising the scientific return of European investments in EO specifically from Sentinel-1 and Sentinel-2 specifically to provide first enhanced observation capacity for glaciers in the Alps beyond area to glacier velocity and end of season snow cover on a weekly-annual basis and second to provide a scientifically sound assessment of hazard state as a direct function of glacier change, specifically, lake size and slope movement around glaciers. This project attempts to provide a wall-to-wall coverage of glaciers in the Alps for the full Sentinel era and will analyse changes taking place in this time period and in contrast with earlier data from the EO archives.   Discover more projects, activities and resources on the Alps regional initiative (EO4ALPS) page.  
Alpsnow The AlpSnow project will develop improved products for a number of snow parameters (area extent, albedo, grain size, depth, snow water equivalent, snow melt area and wetness). A dataset covering the entire Alps for 4 years will be produced, and [...]ENVEO – ENVIRONMENTAL EARTH OBSERVATION GMBH (AT)Regional InitiativesAlps, polar science cluster, science, snow and ice, water cycle and hydrologyThe AlpSnow project will develop improved products for a number of snow parameters (area extent, albedo, grain size, depth, snow water equivalent, snow melt area and wetness). A dataset covering the entire Alps for 4 years will be produced, and its usefulness will be demonstrated through three science cases and three demonstration cases related to land surface modelling, hydrology, numerical weather forecasting and water management.   Discover more projects, activities and resources on the Alps regional initiative (EO4ALPS) page.  
AnREO: Retrieval of Total Ozone using OLCI-S-3 over Antarctica The main part of the project is to develop a total ozone product for Ocean and Land Colour Instrument (OLCI) on board Sentinel 3 A,B. The product will be derived using the Sentinel-3A, B OLCI Level 1 Full Resolution data. The cloud mask, snow [...]VITROCISET BELGIUM SPRL (BE)Scienceatmosphere science cluster, atmospheric chemistry, OLCI, permanently open call, science, Sentinel-3The main part of the project is to develop a total ozone product for Ocean and Land Colour Instrument (OLCI) on board Sentinel 3 A,B. The product will be derived using the Sentinel-3A, B OLCI Level 1 Full Resolution data. The cloud mask, snow mask, and atmospheric correction procedures will be also developed. OLCI measurements make it possible to understand the intra-pixel variability of the total ozone and observe rapid changes on the total ozone with a high spatial detail. The accuracy of the retrievals will be assessed using ground and collocated satellite (e.g., OMI) measurements of total ozone.
Arctic + Salinity Sea Surface Salinity (SSS) is a key indicator of the freshwater fluxes and an important variable to understand the changes the Arctic is facing. However, salinity in-situ measurements are very sparse in the Arctic region. For this reason, remote [...]ARGANS LIMITED (GB)Scienceocean science cluster, oceans, polar science cluster, scienceSea Surface Salinity (SSS) is a key indicator of the freshwater fluxes and an important variable to understand the changes the Arctic is facing. However, salinity in-situ measurements are very sparse in the Arctic region. For this reason, remote sensing salinity measurements (currently provided by L-band radiometry satellites, SMOS and SMAP) are of special relevance for this region. The retrieval of SSS in the Arctic represents a challenge, because brightness temperatures measured by L-band satellites are less sensitive to salinity in cold waters. An additional drawback consists in the presence of sea ice, that contaminates the brightness temperature and must be adequately processed. The ESA Arctic+ Salinity project (Dec 2018 – June 2020) will contribute to reduce the knowledge gap in the characterization of the freshwater flux changes in the Arctic region. The objectives of this project are the following: 1. Develop a new algorithm and novel approaches with the aim of producing the best quality validated SMOS SSS product in the Arctic region with its corresponding accuracy. Additionally, SMOS and SMAP data will be combined with the aim to improve the radiometric accuracy and the characterization of the product biases and stability. 2. Generate a long-term salinity dataset from 2011 up to date to be publicly offered to the scientific community. The products will be daily distributed with a temporal resolution of 9 days and a spatial resolution of 25Km (EASE Grid 2.0). 3. Assess the relation between the dynamics of SMOS salinity with respect to land freshwater fluxes (Greenland and glacier flows) and ocean freshwater fluxes (rivers and E-P balance) using model outputs. This has the objective to quantify the freshwater fluxes through SSS products. 4. Assess the impact of the new SSS satellite data in a data assimilation system (the TOPAZ4 system, both in forecast and reanalysis mode) with the idea that, if an improvement is demonstrated, the assimilation of SMOS & SMAP products in TOPAZ will be part of the new Arctic reanalysis and forecast products on the CMEMS portal. 5. Define a roadmap describing the future work to better characterize the freshwater fluxes for the Arctic regions. The output of this project will be of great benefit for the on-going ESA Sea Surface Salinity Climate Change Initiative (CCI) project, which started in February 2018. The outputs of the project will be: 1. The distribution to the scientific community of the best-up-to-date sea surface salinity maps from SMOS and from the combination of SMOS and SMAP with their corresponding uncertainties. 2. Explore the feasibility and utility of assimilating the surface salinity maps product in the TOPAZ4 model. The potential problem the project face is the sparse in-situ data availability in the area which is needed for a complete validation assessment. Other potential problems are the sea ice edge that has a direct effect in the brightness temperature and the RFI contamination. But several solutions have already been identified.
Arctic Crowdsourcing The Arctic Crowdsourcing project has been successfully completed. The objective was to create an enhanced Earth Observations (EO) services for Arctic applications planned for C-CORE’s Coresight Platform to include community/crowd sourced very [...]C-CORE CENTRE FOR COLD OCEAN RESOURCES ENGINEERING (CA)Digital Platform Servicespermanently open call, platformsThe Arctic Crowdsourcing project has been successfully completed. The objective was to create an enhanced Earth Observations (EO) services for Arctic applications planned for C-CORE’s Coresight Platform to include community/crowd sourced very high-resolution drone data, ESA Sentinel mission data and other forms of field data that support Arctic stakeholder needs.   The Arctic Crowdsourcing project included: 1)  Engagement of Arctic communities to develop skills around drone operations, as well as GIS, and EO satellite knowledge. The community engagement also investigated remote sensing based services for that could directly benefit communities. 2) The development Arctic Crowdsourcing Service for collecting community-sourced knowledge, targeting community sourced Drone Data, and geotagged video and image data. 3) The prototype development of enhanced EO based services and incorporate other community sourced data or new products created via the Polar TEP. The developed products were on display and ready for live demos at ESA’s Living Planet Symposium May 2019 in the C-CORE booth, and available publically to all, after the symposium. The project involved direct engagement with community members via several face-to-face meetings with communities, supporting the establishment of training programs and the hiring of local commercial drone operators to collect test scenario data.  Initial community engagement highlighted two obstacles to support crowdsourcing of drone imagery which were the lack of in region drone operation skills, and lack of high bandwidth connectivity to transfer the high number of large bandwidth files created by drones and their higher resolution sensors.  While this project has completed, the opportunity of developing Arctic crowdsourced drone data will continue to be developed as numbers of drone operators in the Arctic increase, and further engagement and feedback are received from Arctic communities.
ARCTIC+ SEA ICE MASS The Arctic is a complex region encompassing different physical and biogeochemical processes and interactions among several components of the Earth system (e.g., sea ice, ocean, glaciers, ice caps, the Greenland Ice Sheet, snow, lakes and river [...]ISARDSAT SP. Z O.O. (PL)Sciencescience, snow and iceThe Arctic is a complex region encompassing different physical and biogeochemical processes and interactions among several components of the Earth system (e.g., sea ice, ocean, glaciers, ice caps, the Greenland Ice Sheet, snow, lakes and river ice, permafrost, vegetation, complex interactions with the atmosphere, people, etc.). Changes in the Arctic have a strong impact on the Earth’s climatesystem , the global energy budget, the ocean circulation, the water cycle, gas exchanges, sea level, and biodiversity. Considering that all of Earth’s inter-connected components respond to changes in temperature, the Arctic is a sensitive indicator of climate variability and change.Despite considerable research progress in understanding the Arctic region over the last decade, many gaps remainin observational capabilities and scientific knowledge. These gaps limit present ability to understand and interpret on-going processes, prediction capabilities and forecasting in the Arctic region, thereby hampering evidence-based decision making. Addressing these gaps represents a key priority in order to establish a solid scientific basis for the development of future information servicesfor the Arctic.In this context, the 20th January 2015, ESA and the Cryosphere project of the World Climate Research programme (CliC-WCRP) organised a scientific consultation meeting in Tromso with the main objective of gathering recommendations from the scientificcommunity on the most pressing priorities for Arctic research, where EO may contribute in the coming decade. The workshop resulted ina report listing a number of different priority areas that will contribute to establish an strong focus on Arctic research in thenext components of ESA EO programmes for the period 2017-2021.In order to put words in actions, this ITT aims at addressing someofthepriorities identified in Tromso as an starting point for future activities. In particular, with this ITT, a number of priority areas will be addressed at feasibility and demonstration level with the ultimate target of establishing a solid scientific basis to initiate larger research actions from 2017.To this end, with this ITT ESA plans to place 4 parallel contracts adressing different priority areas as identified by the scientific community.In this context, Arctic+ aims at advancing towards the achievement ofsome of the most pressing priorities in Arctic science, where EO may contribute. In particular, the main overarching project objectiveis threefold: 1) Supporting the development of novel products and enhanced data sets responding to the needs of the Arctic science community;2) Fostering new scientific results addressing the main priority areas of Arctic research;3) Preparing a solid scientific basis for larger activities addressing the priorities of the Arctic science community; This shall involve the collaborationamong the different scientific communities involved in Arctic process studies, modellers and EO experts;In the medium and long-term the objectives of the project include:• To foster the scientific exploitation of EO-based geo-information products (maximising the use of ESA data) to respond directly to the needs of the Arctic scientific community in the context of selected thematic areas;• To support existing international efforts to improve the observation, understanding and prediction of ocean-sea-ice-atmosphere processes at different spatial and time scales demonstrating the capability of EO and ESA data to respond to the needs of the Arctic research community;• To foster the integration of EO data, in-situ observations and models in support of Arctic science;• To develop aScientific Roadmap as a basis for further ESA activities in support of the Arctic research.
ARCTIC+ SNOW ON SEA ICE The Arctic is a complex region encompassing different physical and biogeochemical processes and interactions among several components of the Earth system (e.g., sea ice, ocean, glaciers, ice caps, the Greenland Ice Sheet, snow, lakes and river [...]ISARDSAT SP. Z O.O. (PL)Sciencescience, snow and iceThe Arctic is a complex region encompassing different physical and biogeochemical processes and interactions among several components of the Earth system (e.g., sea ice, ocean, glaciers, ice caps, the Greenland Ice Sheet, snow, lakes and river ice, permafrost, vegetation, complex interactions with the atmosphere, people, etc.). Changes in the Arctic have a strong impact on the Earth’s climatesystem , the global energy budget, the ocean circulation, the water cycle, gas exchanges, sea level, and biodiversity. Considering that all of Earth’s inter-connected components respond to changes in temperature, the Arctic is a sensitive indicator of climate variability and change.Despite considerable research progress in understanding the Arctic region over the last decade, many gaps remainin observational capabilities and scientific knowledge. These gaps limit present ability to understand and interpret on-going processes, prediction capabilities and forecasting in the Arctic region, thereby hampering evidence-based decision making. Addressing these gaps represents a key priority in order to establish a solid scientific basis for the development of future information servicesfor the Arctic.In this context, the 20th January 2015, ESA and the Cryosphere project of the World Climate Research programme (CliC-WCRP) organised a scientific consultation meeting in Tromso with the main objective of gathering recommendations from the scientificcommunity on the most pressing priorities for Arctic research, where EO may contribute in the coming decade. The workshop resulted ina report listing a number of different priority areas that will contribute to establish an strong focus on Arctic research in thenext components of ESA EO programmes for the period 2017-2021.In order to put words in actions, this ITT aims at addressing someofthepriorities identified in Tromso as an starting point for future activities. In particular, with this ITT, a number of priority areas will be addressed at feasibility and demonstration level with the ultimate target of establishing a solid scientific basis to initiate larger research actions from 2017.To this end, with this ITT ESA plans to place 4 parallel contracts adressing different priority areas as identified by the scientific community.In this context, Arctic+ aims at advancing towards the achievement ofsome of the most pressing priorities in Arctic science, where EO may contribute. In particular, the main overarching project objectiveis threefold: 1) Supporting the development of novel products and enhanced data sets responding to the needs of the Arctic science community;2) Fostering new scientific results addressing the main priority areas of Arctic research;3) Preparing a solid scientific basis for larger activities addressing the priorities of the Arctic science community; This shall involve the collaborationamong the different scientific communities involved in Arctic process studies, modellers and EO experts;In the medium and long-term the objectives of the project include:• To foster the scientific exploitation of EO-based geo-information products (maximising the use of ESA data) to respond directly to the needs of the Arctic scientific community in the context of selected thematic areas;• To support existing international efforts to improve the observation, understanding and prediction of ocean-sea-ice-atmosphere processes at different spatial and time scales demonstrating the capability of EO and ESA data to respond to the needs of the Arctic research community;• To foster the integration of EO data, in-situ observations and models in support of Arctic science;• To develop aScientific Roadmap as a basis for further ESA activities in support of the Arctic research.
ARCTIC+ THEME 3 – FRESH WATER FLUXES (ArcFlux) The Arctic is a complex region encompassing different physical and biogeochemical processes and interactions among several components of the Earth system (e.g., sea ice, ocean, glaciers, ice caps, the Greenland Ice Sheet, snow, lakes and river [...]Technical University of Denmark (DK)Sciencescience, water cycle and hydrology, water resourcesThe Arctic is a complex region encompassing different physical and biogeochemical processes and interactions among several components of the Earth system (e.g., sea ice, ocean, glaciers, ice caps, the Greenland Ice Sheet, snow, lakes and river ice, permafrost, vegetation, complex interactions with the atmosphere, people, etc.). Changes in the Arctic have a strong impact on the Earth’s climatesystem , the global energy budget, the ocean circulation, the water cycle, gas exchanges, sea level, and biodiversity. Considering that all of Earth’s inter-connected components respond to changes in temperature, the Arctic is a sensitive indicator of climate variability and change.Despite considerable research progress in understanding the Arctic region over the last decade, many gaps remainin observational capabilities and scientific knowledge. These gaps limit present ability to understand and interpret on-going processes, prediction capabilities and forecasting in the Arctic region, thereby hampering evidence-based decision making. Addressing these gaps represents a key priority in order to establish a solid scientific basis for the development of future information servicesfor the Arctic.In this context, the 20th January 2015, ESA and the Cryosphere project of the World Climate Research programme (CliC-WCRP) organised a scientific consultation meeting in Tromso with the main objective of gathering recommendations from the scientificcommunity on the most pressing priorities for Arctic research, where EO may contribute in the coming decade. The workshop resulted ina report listing a number of different priority areas that will contribute to establish an strong focus on Arctic research in thenext components of ESA EO programmes for the period 2017-2021.In order to put words in actions, this ITT aims at addressing someofthepriorities identified in Tromso as an starting point for future activities. In particular, with this ITT, a number of priority areas will be addressed at feasibility and demonstration level with the ultimate target of establishing a solid scientific basis to initiate larger research actions from 2017.To this end, with this ITT ESA plans to place 4 parallel contracts adressing different priority areas as identified by the scientific community.In this context, Arctic+ aims at advancing towards the achievement ofsome of the most pressing priorities in Arctic science, where EO may contribute. In particular, the main overarching project objectiveis threefold: 1) Supporting the development of novel products and enhanced data sets responding to the needs of the Arctic science community;2) Fostering new scientific results addressing the main priority areas of Arctic research;3) Preparing a solid scientific basis for larger activities addressing the priorities of the Arctic science community; This shall involve the collaborationamong the different scientific communities involved in Arctic process studies, modellers and EO experts;In the medium and long-term the objectives of the project include:• To foster the scientific exploitation of EO-based geo-information products (maximising the use of ESA data) to respond directly to the needs of the Arctic scientific community in the context of selected thematic areas;• To support existing international efforts to improve the observation, understanding and prediction of ocean-sea-ice-atmosphere processes at different spatial and time scales demonstrating the capability of EO and ESA data to respond to the needs of the Arctic research community;• To foster the integration of EO data, in-situ observations and models in support of Arctic science;• To develop aScientific Roadmap as a basis for further ESA activities in support of the Arctic research.
ArcticSummIT: Arctic Summer Ice Thickness Living Planet Fellowship research project carried out by Jack Landy.

Arctic-SummIT will deliver, for the first time, a sea ice thickness product during summer months from the ESA Cryosat-2 satellite. As the extent of Arctic sea ice has [...]
UNIVERSITY OF BRISTOL (GB)ScienceCryoSat, cryosphere, living planet fellows, polar science cluster, scienceLiving Planet Fellowship research project carried out by Jack Landy. Arctic-SummIT will deliver, for the first time, a sea ice thickness product during summer months from the ESA Cryosat-2 satellite. As the extent of Arctic sea ice has declined at unprecedented speed over the past few decades, we have been able to view only limited snapshots of the ice cover’s thickness. Pan-Arctic observations of sea ice thickness have been obtained in recent years by satellite altimeters such as ICESat and Cryosat-2, but conventionally these data are only available during winter months. Our current understanding of basin-scale sea ice melting patterns during summer are limited to poorly-constrained ice-ocean model simulations, at a time when the ice cover is most dynamic, not to mention biological productivity and ice-ocean geochemical fluxes are most active. Moreover, advanced knowledge of ice conditions – thickness in particular – are critical for managing sustainable commercial enterprises, such as shipping and oil & gas extraction, in the northern polar seas. This project will develop a novel algorithm for obtaining sea ice thickness from satellite altimetry, even as the ice is melting. The conventional technique for separating sea ice from water (i.e. leads within the ice pack) relies on classifying altimeter waveforms through the shape of echoes, but breaks down when meltwater ponds forming at the ice surface appear the same as leads. However, pilot research alongside partners from the Canadian Ice Service (CIS) has demonstrated that other characteristics of the Cryosat-2 echoes, particularly the calibrated backscatter coefficient of the radar, can separate ice from ocean regardless of the surface melting state. Arctic-SummIT will develop this exciting discovery into a rigorous method for measuring sea ice thickness during summer months. By the end of the project, a unique, pan-Arctic sea ice thickness product will be produced for July-September over the full Cryosat-2 data record: 2011-2018+, filling the summer ‘gap’ we have presently. Exchange of sea ice between the central Arctic Ocean and, for instance, the Canadian Arctic Archipelago (CAA) or Fram Strait will then be determined from the product of ice volume from Cryosat-2, and high-resolution ice drift speed obtained from Synthetic Aperture Radar (SAR) imagery including the ESA Sentinel-1 constellation and the Canadian Space Agency’s (CSA) RADARSAT-2. Seasonal ice volume fluxes will be made available to the academic community, alongside the new summer sea ice thickness product, through an online portal hosted via ESA at the University of Bristol.
ARKTALAS HOAVVA PROJECT The multi-disciplinary, long-term, satellite-based Earth Observations (EO) form a tremendous synergy of data and information products that should to be more systematically and consistently explored, from the short synoptic time scales to the [...]NANSEN ENVIRONMENTAL AND REMOTE SENSING CENTER (NO)Sciencecryosphere, ocean science cluster, oceans, polar science cluster, scienceThe multi-disciplinary, long-term, satellite-based Earth Observations (EO) form a tremendous synergy of data and information products that should to be more systematically and consistently explored, from the short synoptic time scales to the longer decadal time scales. This lays the rationale for the ESA funded Arktalas Hoavva study project. A stepwise multi-modal analyses framework approach benefitting from native resolution satellite observations together with complementary in-situ data, model fields, analyses and visualization system and data assimilation tools will be applied.  Following this approach, the overall goal is to remove knowledge gaps and advance the insight and quantitative understanding of sea ice, ocean and atmosphere interactive processes and their mutual feedback across a broad range of temporal and spatial scales. In turn, four major existing interlinked Arctic Scientific research Challenges (ASC) will be investigated, including: ASC-1: Characterize Arctic Amplification and its impact (ASC-1) Central elements (not exclusive) are: – reduction in sea ice extent and concentration; – changes in albedo; – changes in the radiation balance; – increased air temperature; – delayed onset of sea ice freezing; – early onset of sea ice melting; – increasing area of melt ponds and polynias; – increased lead fraction; – changes in snow cover and SWE; – changes in ocean-atmosphere momentum, heat exchange and gas exchanges; – reduction in fast ice area; – thinning of sea ice thickness; – changes in optical conditions in the upper ocean with influence on the biology and marine ecosystem; – more favourable conditions for sea ice drift; – more meltwater; – larger fetch; – enhanced wave-sea ice interaction; – more wave induced sea ice break-up; – modifications to atmospheric boundary layer and changes in weather pattern; – influence on Arctic vortex and hence teleconnection to mid-latitudes. ASC-2: Characterize the impact of more persistent and larger area open water on sea ice dynamics  Building on ASC-1,  this is associated with: – increasing momentum transfer to the upper ocean leading to more turbulent mixing and possibly entrainment of warm Atlantic Water below the halocline; – increasing Ekman effects; – changes in sea ice growth, salt rejection and halocline formation; – larger fetch and lower frequency waves penetrating further into the ice covered regions leading to more floe-break-up; – increasing lead fraction and more sea ice melting; – reduction in sea ice flow size, age,  thicknesses and extent and subsequent change in sea ice mechanical behaviour; – possibly more abundance of internal waves and mesoscale and sub-mesoscale eddies generated in the open ocean with subsequent abilities to propagate into the ice covered regions leading to changes in sea ice deformation and dynamics. ASC-3: Understand, characterize and predict the impact of extreme event storms in sea-ice formation Growing areas of open water within the Arctic Ocean and the neighbouring seas will be more effectively exposed to extreme events. Cold air outbreak and polar lows, for instance, are known to have strong impact in the Marginal Ice Zone (MIZ), including; – enhanced momentum transfer and vertical mixing; – enhanced sea ice formation; – enhanced formation of unstable stratification in the atmospheric boundary layer; – more low cloud formations changing the radiation balance; – set up abnormal wave field to strengthen wave induced sea ice break-up; – abnormal impact on the pycnocline and subsequent entrainment of heat into the upper mixed. A central question is eventually whether the Arctic amplification will trigger increasing frequency of occurrences and strength of extremes. ASC-4: Understand, characterize and predict the Arctic ocean spin-up The ongoing Arctic amplification and subsequent changes, mutual interactions and feedback mechanisms are also expected to influence the basin scale atmospheric and ocean circulation within the Arctic Ocean.  In particular, this will address: – freshwater distribution and transport; – importance of Ekman pumping; – changes in water mass properties; – changes in upper ocean stratification and mixing; – changes in sub-surface heat exchange; – possibly more abundance of mesoscale and sub-mesoscale eddies and internal waves generated in the open ocean with subsequent abilities to propagate into the sea ice covered regions. The Arktalas Hoavva project kicked-off 9 July 2019 and will be executed over a 24 months period through the following seven interconnected tasks with mutual input-output feeds as schematically illustrated in the figure below. One of the major outcomes of the project is six dedicated research papers emerging from Task 3 that are specifically addressing the Arctic Scientific Challenges. These papers will be published in peer review journals. Moreover, the project will develop a visualization portal in polar-stereographic configuration that will be connected to the Arktalas data archive and allow users to access and make use of the Arktalas satellite-based, in-situ and model-based dataset during the project.
Asian Development Bank Resident Support Through this activity ESA is deploying an EO information expert (Technical Secondment) to the headquarters of the Asian Development Bank (ADB) in Manila, Philippines, during 2017–2021. This activity is implemented in conjunction with ESA's EO4SD [...]Collaborative Space (IE)Sustainable Developmentsustainable developmentThrough this activity ESA is deploying an EO information expert (Technical Secondment) to the headquarters of the Asian Development Bank (ADB) in Manila, Philippines, during 2017–2021. This activity is implemented in conjunction with ESA’s EO4SD initiative, and to further strengthen the collaboration with ADB (in particular, as an integral part of the ESA–ADB Memorandum of Intent). The primary objective of the secondment is to promote increased awareness use of EO information products and services within ADB operational activities. Europe has a world-leading EO capability, therefore priority is given to promoting European EO assets and skills. The longer-term objective is to achieve widespread acceptance and sustainability of EO-based products and services within international development operations.
Assesscarbon The Assesscarbon project (Feb 2020 – Feb 2021) developed and demonstrated at a pre-operational level an approach for large area forest biomass and carbon modelling, combining ground reference data, Sentinel-2 imagery and primary production [...]VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD (FI)Applicationsapplications, Biomass, carbon cycle, forestry, permanently open call, Sentinel-2The Assesscarbon project (Feb 2020 – Feb 2021) developed and demonstrated at a pre-operational level an approach for large area forest biomass and carbon modelling, combining ground reference data, Sentinel-2 imagery and primary production modelling. The overall goal of the project was to develop a foundation for a novel approach to derive large area biomass and carbon pool and flux estimates and forecasting in a scalable fashion on an online platform. The project was coordinated by VTT Technical Research Centre of Finland and funded by ESA under the EO Science for Society Permanently Open Call funding mechanism. The main input data for the project were Copernicus Sentinel-2 satellite data, forest plot measurements and climatic datasets. The Sentinel-2 mosaics was created by Terramonitor (Satellio Oy) using their novel image mosaicking approach. This image composite was used together with field sample plots provided by the Finnish Forest Centre to create forest variable estimation models. Finally, dynamic forest primary production variables were modelled using the forest structure variables and climatic data. The forest structural variable models were based on the Probability software package developed by VTT. It contains three different parts, which together form a comprehensive package of classification/estimation tools combining field data with satellite imagery. The primary production modelling is based on the PREBAS models developed by the University of Helsinki. The models were further developed utilizing multi-temporal observations. The practical processing of the primary production estimates for the area of interest was carried out by Simosol Oy. The demonstration was conducted on the Forestry TEP. Forest structural variable and primary production information were produced for a test area covering the entire Finland and the Russian boreal forests until the Ural mountains. All components of the project were implemented in a manner that enables scalable execution of the models in Forestry TEP environment. The chosen approach utilized the Sentinel-2 tiling structure as the building blocks. All software components were redeveloped to enable processing of a given number of Sentinel-2 tiles in a coordinated manner, in order to produce consistent results over large interest areas.
ASSESSING CRYOSPHERE-BIOSPHERE LINKAGES WITH EARTH OBSERVATIONS IN NORTHERN HIGH LATITUDES (CRYOBIOLINKS) Climate warming in the northern high latitudes is twice as strong as the global average. Increasing surface temperatures drive significant changes in the cryosphere, reducing the snow mass and extent, seasonal frost and permafrost. Changes in [...]FINNISH ENVIRONMENT INSTITUTE (SYKE) (FI)Sciencebiosphere, climate, cryosphere, living planet fellows, Sentinel-3, SMOS, snow and ice, sustainable development Climate warming in the northern high latitudes is twice as strong as the global average. Increasing surface temperatures drive significant changes in the cryosphere, reducing the snow mass and extent, seasonal frost and permafrost. Changes in the cryosphere are interconnected with changes in the biosphere, e.g. carbon uptake and release by vegetation and soil. These cryosphere-biosphere linkages and feedbacks may have important implications for the warming processes in the northern high latitudes and failure to account for them in Earth system models may cause significant uncertainties in climate projections. CryoBioLinks will investigate linkages between cryosphere variables and the carbon uptake of vegetation and their changes by using satellite observations on snow cover, soil freeze, land surface temperature, vegetation indices and solar-induced chlorophyll fluorescence (SIF), together with in situ CO2 flux measurements. For that, the ESA Climate Change Initiative (CCI) snow cover fraction, SMOS soil freeze and thaw time series and Sentinel-3 land surface temperature will be exploited and combined. SMOS soil freeze and thaw state will be fused with a novel Sentinel-1 soil freeze and thaw product to improve spatial resolution and reduce scaling errors when compared to CO2 flux sites. The correspondence of advanced vegetation indices from Sentinel-3 (chlorophyll/ carotenoid index and the plant phenological index) and GOSAT SIF and their relationship to gross primary production will be analysed. Satellite proxies describing seasonal dynamics of vegetation photosynthesis and gross primary production will be developed and their spatial distribution will be mapped in the northern high latitudes. The processing of vegetation indices and derived metrics from Sentinel-3 will be implemented to a cloud processing platform. The project will produce and publish multi-annual maps of proxy indicators covering the northern high latitudes (>60°N). Interconnections between the cryosphere variables and carbon fluxes will be studied for different ecosystem types in Finland and underlying mechanisms will be explored with the new terrestrial ecosystem model QUINCY. CryoBioLinks will advance the knowledge and produce new data sets on cryosphere-biosphere interactions, thus contributing to a grand challenge in climate science. The expected indicators can be utilized for the evaluation of cryosphere and biosphere processes in Earth system models. Developed methods are expected to provide means for the monitoring of changes in the cryosphere and vegetation carbon uptake, thus raising awareness and providing information for the preparation of climate adaptation and mitigation plans and herewith contributing to the Sustainable Development Goal 13: Climate action.
Atlantic cities: smart, sustainable and secure ports and protecting the ocean The project aims at developing and delivering to the end user communities a number of customized EO-based information services to support decision making processes in the Atlantic Region:

Climate Resilience
Atlantic Cities and Ports
[...]
DEIMOS SPACE UK LTD (GB)Regional InitiativesAtlantic, oceans, ports, regional initiatives, sustainable development, urbanThe project aims at developing and delivering to the end user communities a number of customized EO-based information services to support decision making processes in the Atlantic Region: Climate Resilience Atlantic Cities and Ports Protecting the Ocean The Climate Resilience Service will be focused on providing information and know-how for assessing the risks and potential socio-economic impacts of coastal processes such as erosion and flooding, to: Critical infrastructures Business activities Coastal protection elements The main service users are: environmental agencies municipalities coastal business activities The Cities and Ports Service will focus on addressing the needs identified by coastal cities with ports, supporting the social cohesion and inclusiveness while ensuring the harmonious co-existence of many economic activities and the well-being of its inhabitants and tourists. This service therefore aims to support ports, cities and related entities in: Assessing the activities in and around ports Monitoring of maritime transport Detecting port-related pollution Identifying security/safety issues for assets. The Protecting the Ocean Service will focus on: detecting emerging pollutants such as marine litter monitoring the environmental status of ocean areas, including MPAs and other marine ecosystem relevant areas. This service addresses users from national and international authorities and other entities responsible for reporting marine status and indicators.
Atlantic Meridional Transect Ocean Flux from satellite campaign (AMT4OceanSatFlux) This project estimates of the air-sea flux of CO2 calculated from a suite of satellite products over a range of Atlantic Ocean provinces. It deploys state-of-the-art eddy co-variance methods to provide independent verification of satellite [...]Plymouth Marine Laboratory (GB)Scienceocean science cluster, oceans, scienceThis project estimates of the air-sea flux of CO2 calculated from a suite of satellite products over a range of Atlantic Ocean provinces. It deploys state-of-the-art eddy co-variance methods to provide independent verification of satellite estimates of CO2 gas exchange over the Atlantic Ocean. The project provides Fiducial Reference Measurements from the AMT28 (from 23rd September to 29th October 2018) and AMT 29 (from 13th October to 25th November 2019) field campaigns to enable independent verification and validation of the satellite CO2 air-sea flux estimates both at point scales and on scales that relate to satellite data over a range of oceanographic conditions. Global algorithms that are being used to study ocean acidification from using satellite data are also being evaluated and refined within the project, using high spatio-temporal resolution underway measurements made on AMT28 and AMT29 field campaigns.
Atlantic Regional Initiative – Applications: Offshore Wind Energy Services based on Earth Observation (EO) can provide valuable information during the design stage by providing a long time series of wind data that allows a better assessment and characterization of the wind resource energy production potential [...]Deimos Engenharia (PT)Regional InitiativesAtlantic, energy and natural resources, oceans, regional initiatives, renewable energyServices based on Earth Observation (EO) can provide valuable information during the design stage by providing a long time series of wind data that allows a better assessment and characterization of the wind resource energy production potential of different possible wind farm (WF) sites, helping to select the most advantageous ones. These typical site wind characteristics can also assist in the determination of the optimal location of each individual wind turbine (WT) inside the specified site boundaries, minimizing combined WT wake influence and therefore minimizing energy production losses. Once the WF is operational, the EO based services can help establish optimal site maintenance weather windows and help foresee or determine/monitor possible rain erosion effects on the WT blades. Long time series of wind and wave data will help determine possible overall weather windows for those operations, while short term weather forecast can provide valuable information to guide the planned maintenance activities (e.g. adjust time window for the activity based on weather forecast inputs). This 2-year project focuses on the development of an integrated application covering: A planning dashboard for wind farm design and operations, including weather windows for offshore operations planning. The dashboard aims to provide a single access point to the different EO services to be developed with advanced data visualisation and download capabilities so that the user is able to trigger service runs, access easily all service outputs, compare different site locations, configurations and maintenance scenarios, and get support from a team of specialised personnel for each one of the services. The EO-based services will cover different activity areas of wind farm design and operations from wind resource and wake effec