Latest Tweets

Projects

<% single.title %>

<% single.prime %>

<% single.domain %>

<% single.description %>

ProjectAbstractPrime CompanyDomainTagsFull text
CITYSATAIR More than half of the world’s population is living in cities. According to the WHO air quality database 80% of people living in urban areas that monitor air pollution are exposed to air quality levels that exceed WHO limits. Narrowing down to [...]The Royal Netherlands Meteorological Institute (KNMI) (NL)Scienceair quality, atmosphere science cluster, atmospheric chemistry, atmospheric indicators, permanently open call, public health, scienceMore than half of the world’s population is living in cities. According to the WHO air quality database 80% of people living in urban areas that monitor air pollution are exposed to air quality levels that exceed WHO limits. Narrowing down to cities in low and middle income countries with more than 100 000 inhabitants, this number increases to 98%. To resolve urban air pollution problems a clear understanding of the local situation is essential. Low-income cities, which are most impacted by unhealthy air, usually have less resources available for a good reference network. It is here where a combination of low-cost sensors and satellite data can make a difference. So far, only very few studies aim at joining heterogeneous data sources of urban air quality, and to our knowledge no previous work has provided practical solutions which can be implemented in cities everywhere. We therefore propose to develop and demonstrate a methodology that is capable of exploiting the various available data sources, to combine them in a mathematically objective and scientifically meaningful manner, and to provide value-added maps of urban air quality at high spatial resolution.
DACES – Detection of Anthropogenic CO2 Emissions Sources The project aims at developing a new methodology for detecting anthropogenic carbon dioxide emission sources. CO2 data from OCO-2 and NO2, SO2 and CO data from Sentinel-5P are collocated. The plan is to analyze these data in synergy to better [...]FINNISH METEOROLOGICAL INSTITUTE (FI)Scienceatmosphere, atmosphere science cluster, carbon cycle, carbon science cluster, permanently open call, science, Sentinel-5P, TROPOMIThe project aims at developing a new methodology for detecting anthropogenic carbon dioxide emission sources. CO2 data from OCO-2 and NO2, SO2 and CO data from Sentinel-5P are collocated. The plan is to analyze these data in synergy to better detect anthropogenic CO2 sources and plumes. In detail OCO-2 XCO2 data is deseasonalized and detrended, and further correlated/clustered to the spatial distribution of other species such as NO2, SO2, CO. Further a direct detection of emission plumes is done for anthropogenic sources using NO2, SO2 and CO datasets, and collocating the plumes with XCO2 data. The corresponding CO2 enhancements and ratios between different species at local level is then calculated. The project has been kicked-off the 5th October.
Impact study of COVID-19 lockdown measures on air quality and climate (ICOVAC) The global crisis due to the pandemic spread of the coronavirus COVID-19 that the humanity is facing since early 2020 led to unprecedented measures taken by different governments worldwide in order to limit as much as possible the number of [...]BELGIAN INSTITUTE OF SPACE AERONOMY (BIRA-IASB) (BE)Scienceair quality, atmosphere science cluster, atmospheric chemistry, environmental impacts, public healthThe global crisis due to the pandemic spread of the coronavirus COVID-19 that the humanity is facing since early 2020 led to unprecedented measures taken by different governments worldwide in order to limit as much as possible the number of impacted persons. Those measures include social distancing, banning of people gathering and travels, encouragement for teleworking, closings of schools, universities, restaurants, pubs and non-essential product shops, border closings,… All those measures have been implemented by the individual countries at different moments, depending mostly on the virus outbreak timing in each territory. Italy has been the first European country to be significantly impacted by the virus outbreak and to take lockdown measures in early March 2020. Most of the other European countries had to take similar decisions in the following weeks, almost all countries worldwide are impacted by the COVID-19. All those measures impact significantly the anthropogenic emissions in the atmosphere as they lead to a drastic drop in road and air traffic and a strong reduction of industrial activities in non-essential sectors. On the other hand, other sectors might face increased demands, like domestic heating for example. Satellite measurements of nitrogen dioxide (NO2) tropospheric columns are a direct proxy for anthropogenic emissions. A decrease of the TROPOMI NO2 tropospheric columns in different parts of the world (e.g. China, Po Valley, US) during the respective lockdown periods has been reported in many press articles lately. Besides NO2, other atmospheric species such as CO, glyoxal, CO2,… originate, at least partly, from anthropogenic activity and might be impacted by the taken COVID-19 measures. It will be investigated during this work whether a COVID-19 footprint can be detected in available satellite and ground-based data sets for a number of pollutants. We will attempt to assess the potential impact of the lockdown measures on air quality and climate by deriving updated NOx and CO emissions but also on climate with the analysis of satellite greenhouse gas data products, such as XCO2 columns and/or via the use of the NOx emissions as a proxy to derive fossil fuel CO2 emissions.
METHANE+ The ESA Methane+ project aims at exploiting the SWIR and TIR CH4 observations from different satellites in order to better differentiate between sources and sinks of CH4 on the regional and global scale. For this we will use the CH4 observations [...]Netherlands Institute for Space Research (NWO-I SRON) (NL)Scienceatmosphere, atmosphere science cluster, atmospheric chemistry, carbon science cluster, CrIS, IASI, Metop, permafrost challenge, science, Sentinel-5P, SUOMI-NPPThe ESA Methane+ project aims at exploiting the SWIR and TIR CH4 observations from different satellites in order to better differentiate between sources and sinks of CH4 on the regional and global scale. For this we will use the CH4 observations of TROPOMI on Copernicus Sentinel-5p, IASI on MetOp-B, and CrIS on Suomi NPP in combination with atmospheric inversion models. OBJECTIVES: Given the identified opportunities and challenges of the current generation of space borne methane sensors, and the scope of the current study, the specific study objectives are as follows: Providing support for the algorithm development for the CH4 SWIR retrieval from TROPOMI, TIR from IASI/CrIS, and joint SWIR-TIR retrieval from TROPOMI and IASI/CrIS. Assess the quality of the TROPOMI, IASI and CrIS CH4 retrievals by comparing data products generated with different algorithms and product validation using independent ”ground-based” measurements. Investigate the added value of combining CH4 SWIR and TIR in regional case studies. Infer global sources and sinks of CH4 from inverse modelling of 2 years of TROPOMI and IASI (and/or CrIS) data. Investigate the added value of the combined use of SWIR and TIR CH4 observations. Investigate the consistency of the SWIR and TIR CH4 satellite data, with model simulated transport and chemistry. Formulate a road map for future CH4 satellite remote sensing based on the outcomes of this study as well as parallel studies covering the use of CH4 from TROPOMI across the full range of scales. The Methane+ project started on 22-Jan-2020 with a duration of 2 years.
MethEO – Methane emissions in the Northern Hemisphere by applying both data from Earth Observing (EO) satellites and global atmospheric methane inversion model estimates The project will investigate Northern Hemisphere methane (CH4) sources and their connection to the soil freezing and thawing at high latitudes. We will innovatively combine methods for monitoring of CH4 (methane) emissions in the Northern [...]FINNISH METEOROLOGICAL INSTITUTE (FI)Scienceatmosphere, atmosphere science cluster, biosphere, carbon cycle, carbon science cluster, permafrost challenge, permanently open call, polar science cluster, science, Sentinel-5P, SMOSThe project will investigate Northern Hemisphere methane (CH4) sources and their connection to the soil freezing and thawing at high latitudes. We will innovatively combine methods for monitoring of CH4 (methane) emissions in the Northern Hemisphere by applying both data from Earth Observing (EO) satellites and global atmospheric methane inversion model estimates. The EO data consists of global soil F/T estimates obtained from the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission (from the SMOS+ Frozen soil project) as well as retrievals of atmospheric methane obtained from the Greenhouse Gases Observing Satellite (GOSAT) and the newly launched Sentinel 5 Precursor TROPOMI (S5P-TROPOMI) observations. The project has been kicked-off the 5th September. A first informal progress meeting has been on 20th December. First results have been shown and look promising.
MOOC ATMOSPHERE – EXPRO+ The aim of the activity is to develop an interactive MOOC on EO data from Space, fostering the use of EO data, for Atmosphere scientific studies, societal applications and services.Imperative Space (GovEd Ltd) (GB)Scienceatmosphere, atmosphere science cluster, scienceThe aim of the activity is to develop an interactive MOOC on EO data from Space, fostering the use of EO data, for Atmosphere scientific studies, societal applications and services.
OLCI Ozone: Retrieval of Total Ozone using OLCI-S-3 The main part of the project is to develop a total ozone product for Ocean and Land Colour Instrument (OLCI) on board Sentinel 3 A,B. The product will be derived using the Sentinel-3A, B OLCI Level 1 Full Resolution data. The cloud mask, snow [...]VITROCISET BELGIUM SPRL (BE)Scienceatmosphere science cluster, atmospheric chemistry, OLCI, permanently open call, science, Sentinel-3The main part of the project is to develop a total ozone product for Ocean and Land Colour Instrument (OLCI) on board Sentinel 3 A,B. The product will be derived using the Sentinel-3A, B OLCI Level 1 Full Resolution data. The cloud mask, snow mask, and atmospheric correction procedures will be also developed. OLCI measurements make it possible to understand the intra-pixel variability of the total ozone and observe rapid changes on the total ozone with a high spatial detail. The accuracy of the retrievals will be assessed using ground and collocated satellite (e.g., OMI) measurements of total ozone.
PRISMA + S5P demonstration for COVID-19 studies Recent climate remote study showed essential effect of COVID-19 on trace gases emissions, in particular, of NO2 and CO2. In Europe, Italy was one of the first countries to be infected by the COVID-19 virus, starting in the beginning of February [...]GRASP-SAS (FR)ScienceAerosols, air quality, atmosphere science cluster, atmospheric chemistry, environmental impacts, public healthRecent climate remote study showed essential effect of COVID-19 on trace gases emissions, in particular, of NO2 and CO2. In Europe, Italy was one of the first countries to be infected by the COVID-19 virus, starting in the beginning of February 2020, and numbers soaring up to over 100,000 infections and 20,000 deaths by mid-April. Severe limitations of people movements following the lockdown determined a significant reduction of pollutants concentration mainly due to vehicular traffic (PM10, PM2.5, BC, benzene, CO, and NOx), which is visual, for example, in S5P images of NO2 distributions. The lockdown also led to an appreciable drop in SO2. Despite the significant decrease in NO2, the O3 exhibited a significant increase, probably, due to the minor NO concentration. At the same time the effect on aerosol emission and loading has not been reported yet widely in the scientific literature, although news and social media stories report spectacular cleaner air due to various lock-downs (e.g. “Himalayas being visible from India for the first time in 30 years”). Furthermore, a possible influence of long-term exposure to small particulate matter on COVID-19 mortality has been reported. In general, aerosol distribution is strongly spatially and temporally inhomogeneous. Therefore, to investigate COVID-19 effect on aerosol the remote sensing measurements with frequent revisiting time and fine spatial resolution may be necessary. In this project we investigate the possibility to exploit PRISMA (PRecursore IperSpettrale della Missione Applicativa, an Italian Space Agency (ASI) hyperspectral mission) fine resolution measurements together with daily S5P/TROPOMI and AERONET measurements for motoring environmental dynamics associated with COVID-19 epidemic appearance and evolution in regional scale.
SENTINEL-5P+ INNOVATION The Sentinel-5p+ Innovation activity is motivated by potential novel scientific developments and applications that may emerge from the exploitation of the Copernicus Sentinel-5p mission data. This satellite mission is dedicated to the precise [...]ESA EOP-SDS initiative (IT)Scienceapplications, atmosphere, atmosphere science cluster, science, Sentinel-5PThe Sentinel-5p+ Innovation activity is motivated by potential novel scientific developments and applications that may emerge from the exploitation of the Copernicus Sentinel-5p mission data. This satellite mission is dedicated to the precise monitoring of the Earth’s atmosphere with a highlight on tropospheric composition. The Sentinel-5p spacecraft was launched in October 2017, where fills the gap from the past SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument on ESA’s Envisat satellite, via the yet active Ozone Monitoring Instrument (OMI) carried on NASA’s Aura mission to the future Sentinel-5 The overarching objectives of this Sentinel-5p+ Innovation project are: To develop a solid scientific basis for the application of Sentinel-5p data within the context of novel scientific and operational applications; To develop a number of novel products and retrieval methods that exploit the potential of the Sentinel-5p mission’s capabilities beyond its primary objectives; To define strategic actions for fostering a transition of the target methods and models developed in this project from research to operational activities; To maximise the scientific return and benefits from the Sentinel-5p mission. The Sentinel-5p+ Innovation project addresses seven themes related to atmospheric composition and ocean colour: Theme 1: Glyoxal (CHOCHO) Theme 2: Chlorine Dioxide (OClO) Theme 3: Water Vapour Isotopologues (H2O-ISO) Theme 4: Sulphur dioxide layer height (SO2-LH) Theme 5: Aerosol Optical Depth (AOD) and Bidirectional Reflectance Distribution Function (BRDF) Theme 6: Solar Induced Chlorophyll Fluorescence (SIF) Theme 7: Ocean colour (OC) The individual project themes have been kicked-off end June/beginning of July 2019 and will run for 24 months.  
SENTINEL-5P+ INNOVATION – AEROSOL OPTICAL DEPTH (AOD) AND BIDIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION (BRDF) The capability of Sentinel-5p for aerosol monitoring is currently not used to its full potential. However, satellite observations in the spectral range of approximately 340 - 400 nm are known to have unique sensitivity to elevation and [...]GRASP-SAS (FR)Scienceatmosphere, atmosphere science cluster, science, Sentinel-5P, TROPOMIThe capability of Sentinel-5p for aerosol monitoring is currently not used to its full potential. However, satellite observations in the spectral range of approximately 340 – 400 nm are known to have unique sensitivity to elevation and absorption of tropospheric aerosols. Traditionally, this sensitivity is used in many ozone monitoring instruments such as TOMS, GOME-1, SCIAMACHY, OMI and GOME-2 for deriving a UV Aerosol Index (UVAI) that provides valuable qualitative information on aerosol distribution. However, the UVAI does not have an explicit geophysical quantitative meaning and, therefore, it is not fully appropriate for utilization in the validation of aerosol transport models and other climate applications. The reflectivity of the Earth’s surface is an important input parameter for many satellite retrievals of atmospheric composition. Some examples are e.g the retrieval of trace gases such as O3, NO2, BrO, CH2O, H2O, CO2, CO, and CH4, and of cloud information and aerosol optical depth (AOD). Recent developments in atmospheric remote sensing have focused strongly on deriving and implementing angular-dependent surface BRDF information (as opposed to using traditional, non-directional Lambertian surface reflectivity information), and on obtaining this information on a much higher spatial resolution than before. The S5P+I AOD/BRDF project is focused on the aerosol and surface reflectance characterisation using capabilities of Sentinel-5p (TROPOMI) measurements. As such one objective of the project is to achieve quantitative characterization of aerosol properties from Sentinel-5p. Specifically, the aim is to develop the algorithm capable to provide Aerosol Optical Depth (AOD), i.e. aerosol load in the atmosphere as well as to provide information on absorption and the type of the aerosol. Next to this, another objective is the development of a spectral surface BRDF product.
SENTINEL-5P+ INNOVATION – GLYRETRO (GLYoxal Retrievals from TROPOMI) Glyoxal is the most abundant dicarbonyl present in our atmosphere and is directly emitted from biomass burning and also results from the oxidation of precursor non-methane volatile organic compounds (NMVOC). It is currently estimated that about [...]BELGIAN INSTITUTE OF SPACE AERONOMY (BIRA-IASB) (BE)Scienceapplications, atmosphere, atmosphere science cluster, science, Sentinel-5P, TROPOMIGlyoxal is the most abundant dicarbonyl present in our atmosphere and is directly emitted from biomass burning and also results from the oxidation of precursor non-methane volatile organic compounds (NMVOC). It is currently estimated that about 70% of its production originate from natural sources and fires, while the remaining 30% come from human activities. With a short lifetime (~3 hours), elevated glyoxal concentrations are observed near emission sources. Measurements of atmospheric glyoxal concentrations therefore provide quantitative information on VOC emission and can help to better assess the quality of current inventories. In addition, glyoxal is also known to contribute significantly to the total budget of secondary organic aerosols, which impact both air quality and climate forcing. The GLYRETRO (GLYoxal Retrievals from TROPOMI) activity is one of the seven themes from the ESA S5p innovation (S5p+I) project, which aims at further exploiting the capability of the S5p/TROPOMI instrument with the development of a number of new scientific products. The GLYRETRO project, proposed by both the Royal Belgian Institute for Space Aeronomy and the Institute of Environmental Physics at the University of Bremen, has been successfully kicked-off on July, 1st 2019 and will last two years. The objectives are manifold and can be listed as To develop a scientific glyoxal (CHOCHO) tropospheric column product To collect independent data sets in order to validate the satellite observations To pave the way towards an operationalization of the developed S5p glyoxal product To demonstrate the added-value of the S5p glyoxal product for the user community. For more information on the project, contact Christophe Lerot (christophe.lerot at aeronomie.be).
SENTINEL-5P+ INNOVATION – SO2 Layer Height Project The ESA Sentinel-5p+ Innovation project (S5p+I) has been initiated to develop novel scientific and operational applications, products and retrieval methods that exploit the potential of the Sentinel-5p mission’s capabilities beyond its primary [...]DLR – GERMAN AEROSPACE CENTER (DE)Scienceapplications, atmosphere, atmosphere science cluster, science, Sentinel-5P, TROPOMIThe ESA Sentinel-5p+ Innovation project (S5p+I) has been initiated to develop novel scientific and operational applications, products and retrieval methods that exploit the potential of the Sentinel-5p mission’s capabilities beyond its primary objective. Accurate determination of the location, height and loading of SO2 plumes emitted by volcanic eruptions is essential for aviation safety. The SO2 layer height is furthermore one of the most critical parameters that determine the impact on the climate. The height of volcanic ash columns are often estimated by local observers with mostly unknown accuracy. The plume height can also be determined using aircraft, ground-based radar or LIDAR but such observations are often not available and many volcanic eruptions in remote areas remain not observed. In addition, volcanic plumes containing SO2 but not ash cannot be seen directly. SO2 in the atmosphere has important impacts on chemistry and climate at both local and global levels. Natural sources account for ~30% of SO2 emissions. Next to contributions from volcanic activity, these include emissions from marine phytoplankton and a small contribution from soil and vegetation decay. However, by far the largest contributions in global SO2 production are from anthropogenic sources. These account for the remaining 70% of global emissions and primarily relate to fossil fuel burning, with smaller contributions from smelting and biomass burning. While satellite instruments, in principle, provide global products e.g. from SEVIRI (Second Generation Spin-stabilised Enhanced Visible and Infra-Red Imager) or AIRS (Atmospheric Infra-Red Sounder), they have no or little vertical resolution. SO2 height retrievals have been developed for IR sensors like the scanning IASI (Infrared Atmospheric Sounding Interferometer). This can provide information on the vertical distribution of SO2 in a volcanic plume but only at a horizontal resolution of 12 km. Although retrievals of SO2 plume height have been carried out using satellite UV backscatter measurements from e.g. OMI (Ozone Monitoring Instrument) or GOME-2, until now such algorithms are up to now very time-consuming, since the spectral information content and its characterization require computationally demanding radiative transfer modelling. Due to the high spatial resolution of TROPOMI (Tropospheric Ozone Measurement Instrument) aboard S5p(Sentinel-5p) and consequent large amount of data, an SO2 layer height algorithm has to be very fast. The SO2 Layer Height (SO2LH) theme is dedicated to the generation of an SO2 layer height product for Sentinel-5p taking into account data production timeliness requirements. The S5p+I: SO2LH project is funded by the European Space Agency ESA The coordination of the project is under the responsibility of the German Aerospace Center DLR. The objectives of the SO2 LH project are: • Development of an SO2 layer height product for Sentinel-5p; • Assessment of the performance of the new algorithm specifically with respect to timeliness requirements in operational processing frameworks; • Assessment of the applicability of various algorithms based on e.g. EISF or a LUT approach; • Assessment of the errors in the presence of absorbing and non-absorbing aerosols; • Assessment of retrieval results based on observation conditions, e.g. inhomogeneous scene; • Demonstration of the new retrieval on a number of cases of volcanic eruptions, including intercomparisons to SO2 height levels for volcanic eruptions with available OMI and GOME2 SO2 height level retrievals; • Discussion on how the effect of layer altitude change can be distinguished from a change of vertical column; • Assessment of the contribution of the new LH algorithm to the independent operational SO2 column retrieval • Discussion of mechanisms of adding the LH product to the SO2 operational column product (e.g. inclusion into the existing SO2 total column product), or justification for a standalone product. The S5P+I: SO2LH project had its official kick-off on 3 July 2019 The project duration is 24 month
SENTINEL-5P+ INNOVATION – WATER VAPOUR ISOTOPOLOGUES (H2O-ISO) Atmospheric moisture is a key factor for the redistribution of heat in the atmosphere and there is strong coupling between atmospheric circulation and moisture pathways which is responsible for most climate feedback mechanisms. Water [...]UNIVERSITY OF LEICESTER (GB)Scienceapplications, atmosphere, atmosphere science cluster, science, Sentinel-5PAtmospheric moisture is a key factor for the redistribution of heat in the atmosphere and there is strong coupling between atmospheric circulation and moisture pathways which is responsible for most climate feedback mechanisms. Water isotopologues can make a unique contribution for better understanding this coupling. In recent years, water vapour isotopologue observations from satellites have become available from thermal nadir infrared measurements (TES, AIRS, IASI) which are sensitive above the boundary layer and from shortwave-infrared (SWIR) sensors (GOSAT, SCIAMACHY) that provide column averaged concentrations including sensitivity to the boundary layer. Sentinel 5P (S5P) measures SWIR radiance spectra that allow retrieval of water isotopologue columns but with much improved spatial and temporal coverage compared to other SWIR sensors thus promising an unique dataset with larger potential for scientific and operational applications. The aim of this proposal is to develop and evaluate a prototype dataset from Sentinel 5P for water isotopologues. This will be addressed by a team of experts from University of Leicester, Karlsruhe Institute of Technology and University of Bergen bringing together expertise in atmospheric measurement (EO and in-situ), and modelling with scientific end-users. Objectives: During this project we will demonstrate the feasibility of measuring stable water isotopologues for S5P, specifically ratios of HDO/H2O by: Optimizing the retrieval method making use of the University of Leicester Full Physics (UoL-FP) retrieval algorithm. Examining and characterize the retrieval performance by validation of retrieved waterisotopologues against reference data sets (MUSICA NDACC data and TCCON) and satellite data from IASI and GOSAT. Assess the impact of the S5P datasets using two different models for defined regions of interest. The findings and recommendations of this project will be delivered through a scientific roadmap, in order to further develop the methods and their application including a transition to operational activities. This will benefit from the strong links of the team with relevant international activities, projects and initiatives.
SENTINEL-5P+ INNOVATION CHLORINE DIOXIDE (OCLO) The S5PI+ OClO project is one of the seven themes of ESA's Sentinel-5p+ Innovation activity, which aims at developing products for the TROPOMI instrument on the Sentinel-5 Precursor satellite which are not yet part of the operational processor. [...]UNIVERSITAET BREMEN (DE)Scienceatmosphere, atmosphere science cluster, science, Sentinel-5P, TROPOMIThe S5PI+ OClO project is one of the seven themes of ESA’s Sentinel-5p+ Innovation activity, which aims at developing products for the TROPOMI instrument on the Sentinel-5 Precursor satellite which are not yet part of the operational processor. The Copernicus Sentinel-5P satellite was launched in October 2017 and provides operational data since July 2018. This mission is intended as a gap-filler between the time series of the former instruments GOME and SCIAMACHY, the still operating OMI and the future Copernicus S5 instruments. The stratospheric ozone layer plays an important role for life on Earth as it absorbs a large part of the harmful UV radiation coming from the sun. The amount and vertical distribution of ozone in the stratosphere is determined by transport and by an equilibrium between chemical ozone production on the one hand and catalytic ozone destruction cycles on the other hand. Anthropogenic emissions of long-lived halogen containing substances such as CFCs and halons have disturbed this equilibrium as additional reactive halogens have been released in the stratosphere. This lead to global reductions in ozone columns and the annual appearance of the ozone hole over Antarcica in austral winter / spring. Strong ozone depleteion is also observed in Arctic winter / spring but only in years where the stratosphere is cold enough to facilitate formation of Polar Stratospheric Clouds (PSCs). As a reaction on the rapid loss of stratospheric ozone, the Montreal Protocol was signed in 1987, phasing out the emissions of many long-lived halogen containing substances. Several amendments to this protocol have in the last decades lead to further and more rapid decreases in emissions of of ozone depleting substances, and stratospheric halogen levels are already decreasing. Because of the long lifetimes of the emitted substances, it is expected that return to the ozone levels of the 1980s will take at least until 2050. Stratospheric chlorine activation can be monitored directly by measuring ClO with microwave radiometry. In the UV/visible spectral range, the OClO molecule can be retrieved as it has a structured absorption spectrum. As the only known formation of OClO is by reaction of ClO and BrO, the amounts of OClO are proportional to the concentrations of these two species. With BrO concentrations being much less variable than those of ClO, OClO can be used as a quantitative measure of chlorine activation at least at solar zenith angles around twilight. Retrievals of OClO have been performed for all UV/vis heritage instruments (GOME, SCIAMACHY, GOME2, OMI) and the S5P OClO product will act as a continuation of these timeseries. Atmospheric profiles of OClO have also been retrieved from SCIAMACHY, OSIRIS and GOMOS measurements, providing additional information on the vertical distribution of OClO. For the validation of the S5P OClO product, ground-based observations of OClO from instruments in the NDACC network can be used.
SENTINEL-5P+ INNOVATION OCEAN COLOUR (S5P+-I-OC) The S5P+I-OC project will explore the capacity of the Sentinel-5p TROPOMI data to provide novel Ocean Colour (OC) products. More specifically, the objectives of this S5P+ Innovation activity are to:

develop a solid scientific basis for the [...]
ALFRED WEGENER INSTITUTE (DE)Scienceatmosphere science cluster, carbon cycle, carbon science cluster, ocean science cluster, oceans, science, Sentinel-3, Sentinel-5P, TROPOMIThe S5P+I-OC project will explore the capacity of the Sentinel-5p TROPOMI data to provide novel Ocean Colour (OC) products. More specifically, the objectives of this S5P+ Innovation activity are to: develop a solid scientific basis for the application of S5P data within the context of novel scientific and operational OC products applications; assess existing algorithms which have been used for OC product retrievals from SCanning Imaging Absorption Spectro-Meter for Atmospheric CHartographY (SCIAMACHY), Ozone Monitoring Instrument (OMI) and Global Ozone Monitoring Experiment (GOME-2); develop novel OC products and retrieval methods that exploit the potential of the S5P mission’s capabilities beyond its primary objectives, in particular, the chlorophyll-a concentration (CHL) of important phytoplankton groups (PFT-CHL), the underwater light attenuation coefficients (Kd) for the ultraviolet (UV) and the blue spectral region separately (KdUV, KdBlue), and the sun-induced marine chlorophyll-a fluorescence signal (SIF-marine) from TROPOMI S5P level-1 data; explore the potential of the UV range of S5P for ocean biology; use complementary products from Sentinel-3 (S3) and S5P for exploring the UV measurements of TROPOMI for assessing sources of coloured dissolved organic matter (CDOM) and the amount of UV-absorbing pigments in the ocean; validate with established reference in situ datasets and perform intercomparison to other satellite OC data; define strategic actions for fostering a transition of the methods from research to operational activities; maximize the scientific return and benefits from the S5P mission for surface ocean research and services (e.g. CMEMS) by assessing the synergies with other satellite sensors, in particular explore the synergistic use of S5P and S3.
SENTINEL-5P+ INNOVATION SOLAR INDUCED CHLOROPHYLL FLUORESCENCE (SIF) The ESA –TROPOSIF project is one of the seven themes from the Sentinel-5p+ Innovation (S5p+I)  activity funded by ESA, which aims at developing novel scientific products / retrieval methods from the data acquired by the TROPOMI (TROPOspheric [...]NOVELTIS SAS (FR)Scienceatmosphere science cluster, biosphere, carbon cycle, carbon science cluster, land, science, Sentinel-5P, TROPOMIThe ESA –TROPOSIF project is one of the seven themes from the Sentinel-5p+ Innovation (S5p+I)  activity funded by ESA, which aims at developing novel scientific products / retrieval methods from the data acquired by the TROPOMI (TROPOspheric Monitoring Instrument) instrument aboard the Copernicus Sentinel-5 Precursor mission launched in October 2017. Although the Sentinel-5P mission was designed to monitor the Earth’s atmosphere, TROPOMI’s spectral and radiometric performance enable to also monitor terrestrial Solar Induced Fluorescence (SIF) with an unprecedented spatial and temporal resolution. What is SIF? Solar induced chlorophyll fluorescence (SIF) is an electromagnetic signal emitted by the chlorophyll a of assimilating plants: part of the energy absorbed by chlorophyll a is not used for photosynthesis, but emitted at longer wavelengths as a two-peak spectrum roughly covering the 650–850 nm spectral range. The SIF signal responds instantaneously to perturbations in environmental conditions such as light and water stress, which makes it a direct proxy for photosynthetic activity. However, SIF emission constitutes only a small fraction (typically 0.5%-2%) of the radiance at the top of the canopy, which is mostly composed of reflected sunlight, and its estimation from space-borne spectrometers requires both high spectral resolution and advanced retrieval schemes. Why should we care about SIF? Over the last few years, solar-induced chlorophyll fluorescence (SIF) observations from space have emerged as a promising resource for evaluating the spatio-temporal distribution of gross carbon uptake (GPP = gross primary productivitt) by terrestrial ecosystems, the characterization of which still remains uncertain to date. In the particular case of climate studies, our ability to anticipate the evolution of net and gross carbon fluxes over the globe under a changing climate largely relies on global terrestrial biosphere models (TBMs). Their parameterization remains largely uncertain and it is anticipated that satellite SIF products will provide a significant constraint (reduction in uncertainty) on the projections of the terrestrial carbon updake.
SOLFEO – Spaceborne Observations over Latin America For Emission Optimization applications South America hosts the Amazon rain forest, the largest source of natural hydrocarbons (HC) emitted into the atmosphere. However, the forest undergoes continuous pressure due to increasing needs for pasture and agricultural land. Next to this, [...]The Royal Netherlands Meteorological Institute (KNMI) (NL)Scienceapplications, atmosphere, atmosphere science cluster, permanently open call, scienceSouth America hosts the Amazon rain forest, the largest source of natural hydrocarbons (HC) emitted into the atmosphere. However, the forest undergoes continuous pressure due to increasing needs for pasture and agricultural land. Next to this, large urban centers of South America face acute air quality problems. In this tense situation, it is important to closely monitor both the natural emissions released by the rainforest (hydrocarbons) and the rapidly changing anthropogenic emissions from agricultural activities (NH3 and NOx) and fossil fuel burning (NOx). By using satellite observations combined with a state-of-the-art model representation of the relevant processes, we develop advanced inversion algorithms for the estimation of emissions of ammonia(NH3), NOx and hydrocarbons, providing both qualitative and quantitative biogenic and anthropogenic emissions. SOLFEO takes advantage of the fine spatial resolution of OMI (AURA), IASI (METOP) and TROPOMI (Sentinel 5p) data to improve emission estimates over a largely understudied region.
SUNLIT – Synergy of Using Nadir and Limb Instruments for Tropospheric ozone monitoring The project aims at developing a new global tropospheric ozone datasets form TROPOMI and OMI measurements. These data will be a valuable addition to the operational TROPOMI Tropospheric ozone column product by the convective cloud differential [...]FINNISH METEOROLOGICAL INSTITUTE (FI)Scienceatmosphere, atmosphere science cluster, permanently open call, scienceThe project aims at developing a new global tropospheric ozone datasets form TROPOMI and OMI measurements. These data will be a valuable addition to the operational TROPOMI Tropospheric ozone column product by the convective cloud differential method, which will be available for tropics only. In addition, the multi-limb-instrument stratospheric ozone column dataset, compatible with nadir total ozone column measurements, which will be created as an intermediate step of the proposed development, will have its own value and can be used in climate-related ozone studies. The project has been kicked-off the 5th September. A first informal progress meeting has been on 10th December. First results have been shown and look promising.
Technology and atmospheric mission platform – OPerations (TOP) The proposed atmospheric mission platform has the twofold aim of demonstrating that (1) multiple data sources (the "data triangle" namely satellite-based products, numerical model output, and ground measurements) can be simultaneously exploited [...]SISTEMA GMBH (AT)Digital Platform Servicesatmosphere science cluster, permanently open call, platforms, scienceThe proposed atmospheric mission platform has the twofold aim of demonstrating that (1) multiple data sources (the “data triangle” namely satellite-based products, numerical model output, and ground measurements) can be simultaneously exploited by users (mainly scientists), and (2) a fully Virtual Research Environment that allows avoiding the download of all data locally, and retrieving only the processing results is the optimal solution.
Volcanic monItoring using SenTinel sensors by an integrated Approach (VISTA) Volcanic monItoring using SenTinel sensors by an integrated Approach (VISTA) project is aimed at developing a novel ensemble of algorithms to completely characterized the effects of volcanic emissions on land and atmosphere. Volcanic activity is [...]GEO-K SRL (IT)Scienceatmosphere, atmosphere science cluster, land, permanently open call, science, Sentinel-5PVolcanic monItoring using SenTinel sensors by an integrated Approach (VISTA) project is aimed at developing a novel ensemble of algorithms to completely characterized the effects of volcanic emissions on land and atmosphere. Volcanic activity is observed worldwide with a variety of remote sensing instruments, each one with advantages and drawbacks. Because a single remote sensing instrument able to furnish a comprehensive description of a given phenomenon doesn’t exist, a multi-sensor approach is required. In particular, the aim of this study is the definition of a new generation of integrated methods which aim at exploiting the information of the COPERNICUS Sentinels data (from Visible-VIS to Thermal Infrared-TIR) by means of already consolidated retrieval algorithms and novel ML procedures. The increasing availability of Sentinel’s data allows an innovative perspective to achieve the objective of a complete monitoring of the eruptions effects by a unique satellite mission. Currently the possibilities offered by the COPERNICUS Sentinel missions are only partially explored to provide new consistent and statistically reliable information about volcanic cloud quantification and dispersion in the atmosphere and ash deposits on the ground. Such information is crucial for aviation safety and civil protection purposes therefore new tools to exploit satellite observations are required. The project will develop specific methodologies integrating inverse modeling techniques (based on radiative transfer models) with dedicated machine learning (ML) approaches to formulate a set of novel integrated methods. The expected outcomes of the project are improvements in satellite volcanic ash/ice/water vapour particles/SO2 cloud detection and retrievals (altitude, extension, mass, concentration, aerosol optical depth and effective radius), the development of a specific ML based algorithm to map the presence of ash deposits over land and the generation of new satellite-based prototypal services to mitigate the effect of volcanic eruption on health, environment, aviation and to better understand volcanic processes.