Latest Tweets

Projects

<% single.title %>

<% single.prime %>

<% single.domain %>

<% single.description %>

ProjectAbstractPrime CompanyDomainTagsFull text
AIREO – AI ready EO training datasets Artificial Intelligence (AI) and Machine Learning (ML) algorithms have great potential to advance processing & analysis of Earth Observation (EO) data. Training datasets (TDS) are crucial for ML and AI applications but they are becoming a [...]NATIONAL UNIVERSITY OF IRELAND (NIU GALWAY) (IE)Enterpriseapplications, artificial intelligence, enterpriseArtificial Intelligence (AI) and Machine Learning (ML) algorithms have great potential to advance processing & analysis of Earth Observation (EO) data. Training datasets (TDS) are crucial for ML and AI applications but they are becoming a major bottleneck in more widespread and systematic application of AI/ML in EO. The issues include: General lack and inaccessibility of high-quality TDS Absence of standards resulting in inconsistent and heterogeneous TDS (data structures, file formats, quality control, meta data, repositories, licenses, etc.) Limited discoverability and interoperability of TDS Lack of best-practices & guidelines for generating, structuring, describing and curating TDS Another obstacle to the use of AI/ML in EO applications for non-EO experts is a lack of domain specific knowledge such as map projections, file formats, calibration and quality assurance. As such, AI-Ready EO Training Datasets (AIREO) should be self-explanatory, follow FAIR principles and be directly ingestible for AI/ML applications. AIREO approach: Review current initiatives, activities, techniques,tools, practices and requirements for preparing, using and sharing AI-Ready EO Training Datasets Setup AIREO network of stakeholders and practitioners in the AI/ML, EO, data science in communities and from other relevant science disciplines. Capture community requirements and develop: Specifications for AIREO datasets by leveraging existing formats and standards; Best-practices guidelines for preparing, using and sharing AIREO TDS; Pilot and benchmark AIREO datasets for selected use-case applications ; A Python library, compatible with OGC web; interface standards and RESTful APIs, for ingesting AIREO TDS into workflows; Jupyter notebooks showing the use of AIREO pilot datasets & Python library. AIREO specifications, best practices and datasets will: Meet FAIR (Findable, Accessible, Interoperable, Reusable) data principles; Involve and build on top of relevant community initiatives
BALTIC+ SEAL – Sea Level The current knowledge of the water circulation in the Baltic Sea comes essentially from in situ observations and models. The Baltic+ SEAL (Sea Level) Project aims at providing a consistent description of the sea level variability in the Baltic [...]TECHNICAL UNIVERSITY OF MUNICH (DE)Sciencealtimeter, applications, Baltic, marine environment, ocean science cluster, scienceThe current knowledge of the water circulation in the Baltic Sea comes essentially from in situ observations and models. The Baltic+ SEAL (Sea Level) Project aims at providing a consistent description of the sea level variability in the Baltic Sea area in terms of seasonal and inter-annual variation and put the results in relationship with the forcing associated with this variability, using a developed dedicated coastal altimetry product. The objective is to create and validate a novel multi-mission sea level product in order to improve the performances of the current state-of-the-art of the ESA efforts in this topic: the Sea Level Climate Change Initiative (SL_cci). In this sense, this project can actually be considered as a laboratory in which advanced solutions in the pre-processing and post-processing of satellite altimetry can be tested before being transferred to global initiatives, such as the future phases of SL_cci. The Baltic Sea includes the two main areas in which the use of satellite altimetry has been severely limited since the start of the “altimetry era”: the presence of sea ice and the proximity of the coast. During the winter season and the sea ice maximum in end of February, 40% of the Baltic Sea is covered by sea ice. The Team aims to apply an unsupervised classification approach to all possible altimetry satellite missions treated in this project (TOPEX-Poseidon, ERS-1/2, Envisat, Jason-1/2/3, SARAL/AltiKa, CryoSat-2, Sentinel-3A/B) to get reliable open water observations and adapt the classification approach to the sea-ice/open-water conditions and different satellite altimetry mission characteristics (e.g. pulse-limited, SAR). The Baltic Sea area is also strongly impacted by Vertical Land Motion and in particular by the glacial isostatic adjustment. As it has the advantage of being an area very well sampled by tide gauges, which measure relative sea level, the Project aims at constituting a more reliable source to compare the absolute sea level from altimetry with the absolute sea level obtained by subtracting the Vertical Land Motion from the trends at the tide gauge and could even be the data source for experiments of differentiation between TG and altimetry trends in the absence of GPS measurements.
CadasterENV Austria, Multi-Scale and Multi-Purpose Land Cover Monitoring System in Austria In order to meet the reporting obligations from international conventions, European directives and national legislations, countries are required to produce up to date, detailed and harmonised information on their land cover and its use, at [...]GEOVILLE (AT)Applicationsapplications, land coverIn order to meet the reporting obligations from international conventions, European directives and national legislations, countries are required to produce up to date, detailed and harmonised information on their land cover and its use, at different scales, and for different domains of applications. Austria initiated its Land Information System Austria (LISA) in 2010 with the objective to achieve a national consensus on how to perform a continuous mapping of the national land cover and monitor its use. The CadasteENV Austria project aimed at developing a national multi-scale and multi-purpose Land Cover mapping and monitoring system in Austria according to the national specifications defined by the LISA project. The principal objectives of CadasterENV Austria was – the Integration of Pléiades satellite data in the LISA production chain – the production of VHR land cover in Austrian urban agglomerations (10,000 km2) – the development of methods to detect areas with frequent changes (hot spots) based on high resolution satellite images (SPOT 4/5 in preparation to the Sentinel 2 exploitation) – the production of a hot spot change maps (Land Cover Change Alerts) for the whole of Austria. The project was extended with the GSE CadasterENV project to integrate Sentinel-2 into the existing Land Information System Austria (LISA), and to operationalize a national Land Monitoring System, which is multi-temporal (bringing the annual seasonality/variability of land cover / land use to LISA), multi-scale (integrating Sentinel 2 observations with VHR imagery from Pleiades and national airborne campaigns) and multi-purpose (responding to user needs from different land sectorial communities). Five S2-based innovative products were developed (HR Land Cover Mapping, Enriched VHR Land Cover Mapping, Land Cover Change Alert, Land Use Monitoring and Ecosystem Monitoring) and validated over a number of representative pilot areas.
CadasterENV Sweden, Multi-Scale and Multi-Purpose Land Cover Monitoring System in Sweden In order to meet the reporting obligations from international conventions, European directives and national legislations , countries are required to produce up to date, detailed and harmonised information on their land cover and its use, at [...]METRIA MILJOEANALYS (SE)Applicationsapplications, land coverIn order to meet the reporting obligations from international conventions, European directives and national legislations , countries are required to produce up to date, detailed and harmonised information on their land cover and its use, at different scales, and for different domains of applications. All Swedish stakeholders involved in land cover monitoring have emphasized the need for a homogenous and nationwide Land Cover database, which can be updated, on a regular basis and in a cost-effective manner. The objective of the CadasteENV Sweden project was to develop a national multi-scale and multi-purpose Land Cover mapping and monitoring system in Sweden, according to national user specifications. The system is comprised of two components: – a Land Cover mapping component based on a stratified approach which makes use of HR (SPOT-5 in prepararation of Sentinel 2) and VHR (Pleiades) data, combined with airborne data (orthophotos and LIDAR data) and existing land information databases in Sweden. – a Land Cover Change Alert component to detect areas with fast land cover changes (hot spots). The project was extended to support methodological adaptations to Sentinel 2, and facilitate a national roll-out by the Swedish Environmental and Protection Agency (SEPA). The Swedish National Land Cover Mapping (called NMD) which will be released in January 2019 is based on the Land Cover data model and methods developed by CadasterEnv Sweden.
Coastal erosion 1 The Coastal Erosion project shall be conceived as EO application project that aim at developing innovative EO products and methods in response to authoritative end-user requirements. The Coastal Erosion project shall prepare the ground for a [...]I-SEA (FR)Applicationsapplications, coastal zone, ocean science clusterThe Coastal Erosion project shall be conceived as EO application project that aim at developing innovative EO products and methods in response to authoritative end-user requirements. The Coastal Erosion project shall prepare the ground for a long-term exploitation by large user communities, and is expected to provide substantial and concrete benefits to the targeted user communities. The source of EO data used, the novelty of the EO derived products, the innovating algorithmic approaches but also from the awareness and readiness of the user community involved. The innovative aspects of the Coastal Erosion project shall comply with the above prerequisite of the most innovative aspects of the Sentinel-1 and Sentinel-2 missions of the European Copernicus initiative combined with the ERS-1, ERS-2, Envisat and SPOT archives to provide the best products suited to end user requirements over the past 25 year. The scope of the Coastal Erosion project is the development and demonstration of innovative EO products that will be used by users communities responsible to monitor and control this process. Together with the champion user organizations, a set of innovative products and services shall be developed, including a scientifically sound validation, a comprehensive user assessment and a representative service roll-out analysis. While maintaining the openness of the scope and domains of innovation, the Coastal Erosion project shall develop innovative approaches that best exploit the novel observational capabilities of the Sentinel-1 and Sentinel-2 constellations. The Sentinel missions of the European Copernicus initiative brings new observational capabilities that were not available beforehand and, as a consequence, offers unprecedented opportunities to address these R&D priority issues. In particular the Sentinel-1 and Sentinel-2 missions, used individually or jointly, significantly improve the quality and adequacy of High Resolution (HR) satellite observations in both radar and optical domains. In order to fully exploit these new capabilities, additional R&D efforts are needed. The Coastal Erosion project is expected to provide the ideal platform to undertake these R&D activities in close partnership with key user organizations that best represent their respective communities.
Coastal Thematic Exploitation Platform Through the provision of access to large volumes of EO and in-situ data, computing resources, algorithm development space and the fundamental processing software required to extract temporal and spatial information from Big Data, C-TEP shall [...]ACRI-ST S.A.S. (FR)Digital Platform Servicesapplications, coastal zone, platformsThrough the provision of access to large volumes of EO and in-situ data, computing resources, algorithm development space and the fundamental processing software required to extract temporal and spatial information from Big Data, C-TEP shall provide a dedicated service for the observation and monitoring of our coastal environment and society. Integration of satellite EO data, in-situ sensor data and model predictions shall provide an effective means of analysing and understanding the many linked coastal processes across a wide range of space and time scales.
Delay-Doppler Altimetry Studio This project aims at providing to the scientific community the means to understand and use the low levels of Altimetry data and how these data are processed, by providing them with a Fully Adaptable and Configureable Delay Doppler Processor  [...]ISARDSAT LTD. (GB)Sciencealtimeter, applicationsThis project aims at providing to the scientific community the means to understand and use the low levels of Altimetry data and how these data are processed, by providing them with a Fully Adaptable and Configureable Delay Doppler Processor  (DDP) and a friendly user interface (the Tool, to help them interacting with the DDP. The proposed DDP has different options from which the user will be able to choose in favour of their particular field of interest. The project also presents various (9) demonstrations of new features that can be investigated and retrieved when using these lower data processing levels. They are presented as successful cases tudies.
Development of pan-European Multi-Sensor Snow Mapping Methods Exploiting Sentinel-1 The main objective is the development, implementation and validation of methods and tools for generating maps of snowmelt area based on SAR data of the Sentinel-1 mission and the combination with snow products derived from optical sensors of [...]ENVEO – ENVIRONMENTAL EARTH OBSERVATION INFORMATION TECHNOLOGY GMBH (AT)Scienceapplications, polar science cluster, SAR, scienceThe main objective is the development, implementation and validation of methods and tools for generating maps of snowmelt area based on SAR data of the Sentinel-1 mission and the combination with snow products derived from optical sensors of Sentinel-2 and Sentinel-3 missions. The developed algorithm will be used to generate multi-sensor pan-European snow products. A key activity of the project is the development of a retrieval algorithm for mapping extent of wet snow areas which exploits the full technical and operational potential of the Sentinel-1 mission. Round robin experiments between available algorithms will be carried out to select the optimum algorithm. The focus will be on the use of Interferometric Wide swath mode data which is the standard operation mode of Sentinel-1 over land surfaces. Particular attention will be paid to the capability of dual polarization data, and the exploitation of the high spatial resolution and geometric accuracy of the Sentinel-1 data. Because C-band SAR is not sensitive to dry snow, the combination with snow maps derived from optical sensor is required in order to obtain complete pan-European snow maps. We plan to use data of the Sentinel-3 sensors SLSTR and OLCI for the pan-European snow maps, and coincident Sentinel-2 based snow maps (with high spatial resolution) primarily for evaluation and assessment of uncertainty for the combined Sentinel-1 and Sentinel-3 snow product.
DryPan: Novel EO data for improved agricultural drought impact forecasting in the Pannonian basin The Pannonian basin is a sheltered region, with relatively low levels of precipitation (< 600 mm/year), therefore its surrounding mountains are considered a key water source. Over the last decades several drought episodes took place. [...]EODC EARTH OBSERVATION DATA CENTRE FOR WATER RESOURCES MONITORING (AT)Scienceagriculture, applications, climate, science, water resourcesThe Pannonian basin is a sheltered region, with relatively low levels of precipitation (< 600 mm/year), therefore its surrounding mountains are considered a key water source. Over the last decades several drought episodes took place. Scientific research groups with cross-border cooperation on drought monitoring and management were established including the Drought Management Centre for South-Eastern Europe (DMCSEE) (hwww.dmcsee.org) and the Pannonian Basin Experiment (PannEx). These act as a response to combat the increased frequency and intensity of dry spells and heat waves under climate change and the need to increase the capacity of the relevant stakeholders to manage drought events and their impacts. The DryPan project is funded by ESA and builds upon the experiences of the Interreg funded DriDanube products. DryPan’s objectives include: i) to develop and validate a set of novel Earth Observation products and enhanced data sets dedicated to characterise Drought processes in the Pannonian basin; ii) to foster new scientific results addressing some of the main priority areas of research in the region, where space technology may provide a valuable input; iii) to promote the use of advanced EO datasets for Drought Early Warning in the region by facilitating access to the developed products and results through a professional project web site exploiting advanced data access and visualisation tools; and iv) to develop a roadmap identifying additional science priorities as a driver for launching potential new development activities addressing the priorities of the Danube science communities in the timeframe 2020-2021.
EO Mammals Earth Observation (EO) data has been extensively used over the years to assist on the management of marine mammal populations either by establishing protected areas where stakeholders’ activity are reduced, or by minimizing the impact of [...]THE OCEANIC PLATFORM OF THE CANARY ISLANDS (ES)Applicationsapplications, permanently open callEarth Observation (EO) data has been extensively used over the years to assist on the management of marine mammal populations either by establishing protected areas where stakeholders’ activity are reduced, or by minimizing the impact of anthropogenic threats. It is considered a basic and essential tool for the conservation of species, both by researchers and governments. Some examples include weekly predictions of fin whale (Balaenop-tera physalus) distribution that represent a valuable conservation tool in marine protected areas to prevent collisions with ships. Remotely sensed environmental parameters have the potential to identify biological hotspots for cetaceans and to therefore establish areas of marine conservation priority. Satellite measurements of ocean have proved an effective tool to map the environmental variables and processes occurring. It is the main tool for measuring ocean productivity (ocean colour) and its response to climate change/variability. Other variables also related with the presence and movements of cetaceans can be measured from space, e.g. sea surface temperature, sea surface height, etc. This project aims to identify biological hotspots for cetaceans and help the management of marine protected areas, using Earth Observation and other collaborative network’s data.
EO4CBI: Earth Observation for City Biodiversity Index (DUE Innovator III Series) Capturing the status and trends of biodiversity and ecosystem services in urban landscapes represents an important part of understanding whether a metropolitan area is developing in a sustainable manner. The City Biodiversity Index (CBI) was [...]SPACE 4 ENVIRONMENT (LU)Applicationsapplications, urbanCapturing the status and trends of biodiversity and ecosystem services in urban landscapes represents an important part of understanding whether a metropolitan area is developing in a sustainable manner. The City Biodiversity Index (CBI) was developed by the Convention on Biological Diversity (CBD) as a tool to evaluate the state of biodiversity in cities and provide further insights to improve conservation efforts in urban areas. It consists of 23 indicators designed to help cities monitor their progress in implementing conservation efforts and their success in halting the loss of biodiversity as formulated in the Aichi biodiversity targets of the CBD. The EO4CBI project assessed how satellite-based data, in combination with appropriate in-situ and ancillary data, can produce innovative and cost-effective solutions to the implementation of the four CBI indicators: – CBI indicator 1 on “Proportion of natural areas in city”; – CBI indicator 2 on “Connectivity measures and ecological networks to counter fragmentation”; – CBI indicator 11 on “Regulation of quantity of water”; – CBI indicator 12 on “Climate regulation: carbon storage and cooling effect of water”. The products were validated on 10 cities (Addis Ababa, Barcelona, Buenos Aires, Edmonton, Hamilton, Lisbon, Portland, Southern Luxembourg, Stockholm and Tallinn).
EO4URBAN, Multi-Temporal Sentinel-1 SAR and Sentinel-2 MSI Data for Global Urban Services (DUE Innovator III Series) More than half of the people on the planet live in cities and the situatiuon will further worsen with another 2.5 billion people expected to move into cities by 2050. The information decision makers need for their urban planning activities are [...]KTH ROYAL INSTITUTE OF TECHNOLOGY IN STOCKHOLM (SE)Applicationsapplications, urbanMore than half of the people on the planet live in cities and the situatiuon will further worsen with another 2.5 billion people expected to move into cities by 2050. The information decision makers need for their urban planning activities are either non-existent, outdated or collected through time-consuming field surveys or visual interpretation of areal images. Timely, reliable and consistent information on urban land cover and its changing patterns from satellite data is of critical importance to support sustainable urban development. Despite the growing importance of urban land mapping, it remains difficult to map globally and systematically urban areas, due to the heterogeneous mix of land cover types in urban environments, and to the cost of commercial airborne and satellite data. With the recent launches of Sentinel-1 and Sentinel-2, high resolution SAR and optical data with global coverage and free and open data policies are now available, which allow an operational and reliable global urban land mapping to become achievable. EO4URBAN developed some novel and innovative approaches for global urban services around Sentinel 1 C-SAR and Sentinel 2 MSI in support to sustainable urban development. The fusion of SAR and optical data has been proven advantageous due to the complementary nature of the data. Both SAR and optical data have their own merits and limitations, thus the fusion of SAR and optical data can overcome the deficiencies associated with single sensor approaches. The projects evaluated the added value of a joint use of Sentinel 1 and Sentinel 2 in urban land cover and urban extent mapping. Pilot products were developed for 10 cities around the world that represents different urban realities.
Forestry Thematic Exploitation Platform Forestry Thematic Exploitation Platform (Forestry TEP) shall enable commercial, governmental and research users in the forestry sector globally to efficiently access satellite data based processing services and tools for generating value-added [...]VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD (FI)Digital Platform Servicesapplications, forestry, platformsForestry Thematic Exploitation Platform (Forestry TEP) shall enable commercial, governmental and research users in the forestry sector globally to efficiently access satellite data based processing services and tools for generating value-added forest information products. Via the platform, the users can also create and share their own processing services, tools and generated products.
GEORICE (DUE Innovator III Series) The GEORICE innovator addresses research priorities within the Group of Earth Observation Global Agricultural Monitoring (GEOGLAM) initiative related to SAR techniques for rice monitoring. The project developed and demonstrated EO products for [...]UNIVERSITE TOULOUSE III – PAUL SABATIER (FR)Applicationsagriculture, applicationsThe GEORICE innovator addresses research priorities within the Group of Earth Observation Global Agricultural Monitoring (GEOGLAM) initiative related to SAR techniques for rice monitoring. The project developed and demonstrated EO products for crop rice stage monitoring based on the high temporal frequency of Sentinel-1 over the Mekong delta to derive statistics of rice planted area and their phenological stages. GEORICE algorithms have been implemented on a cloud platform and demonstrated to national users in Vietnam up to national scale.
GlobDiversity: Development of High-Resolution RS-Enabled EBVs on the Structure and Function of Terrestrial Ecosystems A global knowledge of the state of and changes to biological diversity can only be based on a combination of in-situ and remotely sensed observations integrated into a comprehensive biodiversity knowledge system. The needs to integrate satellite [...]UNIVERSITY OF ZURICH (CH)Applicationsapplications, ecosystems/vegetationA global knowledge of the state of and changes to biological diversity can only be based on a combination of in-situ and remotely sensed observations integrated into a comprehensive biodiversity knowledge system. The needs to integrate satellite observations in a unified and global biodiversity monitoring strategy has been recognised by the Convention on Biological Diversity (CBD) and the intergovernmental Science-Policy Platform on Biodiversity (IPBES). A framework for such a global and integrated biodiversity monitoring system is developed by the Group on Earth Observation Biodiversity Observation Network (GEO BON) under the general concept of Essential Biodiversity Variables (EBV). GlobDiversity is the first large-scale project explicitly designed to develop and engineer Remotely Sensed enabled Essential Biodiversity Variables (RS-enabled EBVs). The objective of the project is to develop, validate, showcase and scale up a number of High Resolution RS-enabled EBVs on the structure (characterisation of the ecosystem components such as ecosystem extent, distribution and fragmentation) and function (characterisation of the ecosystem processes such as vegetation phenology or primary productivity) of terrestrial ecosystems, in support to the collaborative efforts of CBD, IPBES and GEO BON to build a global knowledge system on the biodiversity of ecosystems. The project produces reference documentation for the development of RS-enabled EBVs, supported by pilot demonstrations of 3 RS-enabled EBVs (Land Surface Phenology, Canopy Chlorophyll Content and Ecosystem Fragmentation) on 10 pilot sites selected in key terrestrial biomes. In addition, Vegetation Height is also investigated as potential future RS-enabled EBV. GlobDiversity contributes to the the collaborative efforts of the biodieversity communtity to prioritize and specify the EBVs retrievable from remote sensing.
GlobWetland Africa: Development of EO Tools for the Conservation, Wise-Use and Effective Management of Wetlands in Africa GlobWetland Africa aims at facilitating the exploitation of satellite observations for the conservation, wise-use and effective management of wetlands in Africa, by providing African stakeholders with EO methods and tools to fulfil their Ramsar [...]DHI GRAS A/S (DK)Applicationsapplications, water resourcesGlobWetland Africa aims at facilitating the exploitation of satellite observations for the conservation, wise-use and effective management of wetlands in Africa, by providing African stakeholders with EO methods and tools to fulfil their Ramsar obligations and monitor the extent, integrity and conditions of their wetlands. The main project output is a free-of-charge and open-source toolbox for the end-to-end processing of a large portfolio of EO products (wetland inventory, wetland habitat mapping, wetland inundation regimes, water quality, mangrove inventory and characterisation, river basin hydrology) and the subsequent derivation of spatial and temporal indicators on wetland status and trends, from local to basin scales. The project is executed in close cooperation with the Africa team of the Ramsar convention on wetlands and a number of African stakeholders representing different user profiles (Ramsar African regional initiatives, Ramsar National Focal Points, River Basin Authorities, International Conservation Organisations). GlobWetland Africa helps African authorities to make the best use of satellite-based information on wetland extent and condition for better measuring the ecological state of wetlands and hence their capacity to support biodiversity and provide ecosystem services. As an ultimate objective GlobWetland Africa aims to enhance the capacity of the African stakeholders to develop their own national and regional wetland observatories.
Hydrology Thematic Exploitation Platform The Hydrology TEP shall offer:
- a Community Platform: an open, collaborative and inclusive community where users can SHARE information, knowledge, algorithms, methods, tools, results, products, services.
- a Service Platform: a portal [...]
ISARDSAT S.L. (ES)Digital Platform Servicesapplications, platforms, water resourcesThe Hydrology TEP shall offer: – a Community Platform: an open, collaborative and inclusive community where users can SHARE information, knowledge, algorithms, methods, tools, results, products, services. – a Service Platform: a portal providing LARGE SCALE EO SERVICES & PRODUCTS customised for hydrology applications. Flood monitoring and small Water bodies mapping, Water quality and level, Hydrological models. – an Enhancing Platform: a workspace based on the Cloud where users can discover, access, PROCESS, UPLOAD, visualise, manipulate and compare data.
INFRASTRUCTURE MAPPING AND PLANNING Infrastructures refer to the fundamental facilities and systems serving a country, city, or other area, including the services and facilities necessary for its economy to function e.g. public and private physical assets such as roads, bridges, [...]E-GEOS (IT)Applicationsapplications, mapping/cartographyInfrastructures refer to the fundamental facilities and systems serving a country, city, or other area, including the services and facilities necessary for its economy to function e.g. public and private physical assets such as roads, bridges, railways, harbors, pipelines, airports, tunnels, etc. In order to insure their proper functioning, infrastructures together with their close neighborhood environment continuously need to be monitored for changes such as physical damages caused by e.g. aging, weathering, quakes, subsidence and flooding. In this context, Earth Observation (EO) represents an opportunity for innovative research, applications and information services not only to support the planning of new infrastructure but also to support its continued monitoring. Nowadays, we are entering into a new era for EO science and applications driven by the continuously increasing observation capacity offered by the EU Sentinel missions, the opportunities for science offered by the ESA Earth Explorer missions and the capabilities to look at the past offered by the existing long-term EO data archives. Furthermore, a variety of national and commercial EO missions with unique capabilities especially in the domain of very high-resolution deliver highly valuable information on our urban environments and infrastructures. At the same time, it is clear that for a complete exploitation of the EO Services necessary to satisfy the needs of the industry and public sector, dedicated development efforts are required. This project gives exactly the opportunity to contribute to the reduction of the existing gaps in the infrastructure management sector by demonstrating that EO data, combined with in-situ data as well as other EO derived products e.g. the ones produced by the Copernicus Land Monitoring Service (CLMS) can provide a real benefit to End Users. For this reason, the study-logic proposed in the project is fully User-Requirement driven. The study-logic can be summarized in the following phases: User needs collection and assessment, to understand the effective user needs and consolidate the requirements in a robust and shared structure to be used for the definition of the requirement baseline. Technical specifications definition, based on the consolidated requirement baseline, to provide a clear and unambiguous technical description of all the EO products and systems needed to support the user needs. Validation and Demonstration, to critically evaluate the identified solutions in real-life use cases relevant for the End Users. For this reason, End Users are key-actors not only in the “User needs collection and assessment” but also during the part of the project.
Land Cover Change Detection and Monitoring Methodologies Based on the Combined Use of Sentinel-1 and Sentinel-2 for Natural Resources and Hazard Management. The main objective of this R&D activity is to develop and validate novel methodologies for Land EO products based on the joint exploitation of Sentinel-1A SAR data and Sentinel-2A optical imagery. The outcome of the activity is intended to [...]CLS COLLECTE LOCALISATION SATELLITES (FR)Scienceapplications, forestry, land coverThe main objective of this R&D activity is to develop and validate novel methodologies for Land EO products based on the joint exploitation of Sentinel-1A SAR data and Sentinel-2A optical imagery. The outcome of the activity is intended to be the prototype implementation of a new change detection methodology for land cover and agricultural monitoring along with the supporting documentation, database and products.A framework for the semi-automatic and probabilistic mapping of land cover changes is proposed within this project. Methodologies will be tuned to track changes due to: natural hazards such as landslides and floods; changes in land cover that influence natural hazard occurrence, like snow cover changes and forest changes; and finally, changes in agriculture. The framework consists of: (i) a multi-sensor training library of change signatures trapped by the Sentinels in a set-up phase and caused by landslides, floods, snow cover, deforestation and agricultural operations, and (ii) a probabilistic classifier which combines image analysis and temporal and/or susceptibility models to recognize, identify, and map changes. The first mandatory step is to prepare a library of spectral changes (i.e. the signatures) due to events occurring between two consecutive Sentinel images of the same type (optical or/and SAR). This step involves the extraction of spectral changes over time using bi-temporal change detection methods like image differencing, spectral angle, independent or principal component analysis as well as time series analysis approaches like the Continuous Change Detection and Classification (CCDC) to map changes using Sentinel-2 data and backscattering coefficient changes for Sentinel-1 data, taking into account the Dual Pol channels and coherence maps. Together with the statistics of the main changes, contextual information will be considered such as the distribution of changes in different geo-environmental contexts. Specific changes associated with landslides, floods, snow, forests, and agriculture will be recognised, mapped and the relative signatures will be extracted. The second phase is devoted to the probabilistic semi-automatic recognition and mapping of a new change, i.e. a new landslide or forest change. The algorithm recognizes changes between a new image and the previous one, it queries the library looking for similar signatures (similar changes that occurred in the past in similar geo-environmental conditions), and if found, it will use the signature as a training area to assign the probabilistic class membership of each pixel in the new image. The probabilistic class membership can be coupled to other probabilistic susceptibility models, if available, to condition or to weigh the classification. The procedure can run separately for S1 and S2 and two distinct maps are obtained. In the case that S1 and S2 images are available simultaneously (or with a non-significant delay) for the same specific event, combined S1-S2 signatures can be adopted to solve possible ambiguities present in the single signatures in assigning the probabilistic class membership. The expected final result is a methodology for automatic recognition and mapping of changes coded in the library. The mapping is probabilistic: for each pixel inside the satellite image, a probability of change is assigned.
Operational Snow Avalanche Detection Using Sentinel-1 NORUT has developed an automatic avalanche detection method within a pre-operational processing chain that uses Sentinel-1 data to detect avalanches. This system is being tested in Northern Norway and is used operationally during winter [...]NORTHERN RESEARCH INSTITUTE (NORUT) (NO)Applicationsapplications, disaster risk, permanently open callNORUT has developed an automatic avalanche detection method within a pre-operational processing chain that uses Sentinel-1 data to detect avalanches. This system is being tested in Northern Norway and is used operationally during winter 2017-2018 with the Norwegian Avalanche Warning Service. The goal of this project is to develop our avalanche detection processing chain to operational status anywhere on Earth, where Sentinel-1 data is available. This will be done by setting up the processing chain for five selected avalanche forecasting regions worldwide including Switzerland, North America and Northern Afghanistan with the aim to transfer the methodology to users with in mind the challenge of delivering consistent avalanche activity monitoring data. in space and time.
Polar Thematic Exploitation Platform The Polar Thematic Exploitation Platform provides a complete working environment where users can access algorithms and data remotely, providing computing resources and tools that they might not otherwise have, avoiding the need to download and [...]POLAR VIEW EARTH OBSERVATION LTD (GB)Digital Platform Servicesapplications, cryosphere, platformsThe Polar Thematic Exploitation Platform provides a complete working environment where users can access algorithms and data remotely, providing computing resources and tools that they might not otherwise have, avoiding the need to download and manage large volumes of data. This new approach removes the need to transfer large Earth Observation data sets around the world, while increasing the analytical power available to researchers and operational service providers. Earth Observation is especially import in the polar regions at a time when climate change is having a profound impact and excitement about new economic opportunities is driving increased attention and traffic, resulting in concerns about the state of the region’s delicate ecosystems. Developing tools to model, understand and monitor these changes is vitally important in order to better predict and mitigate the resulting global economic and environmental consequences. Polar TEP provides new ways to exploit EO data for research scientists, industry, operational service providers, regional authorities and in support of policy development.
QuantEO: a new Intelligent Automation (IA) service for Sentinel-2 Data This project developed a service for automated clustering of Sentinel-2 pixels which allows its users to focus on Earth surface changes rather than on remote sensing problems, and hence to develop their own downstream applications.
Available [...]
PIXSTART (FR)Enterpriseapplications, artificial intelligence, permanently open call, Sentinel-2This project developed a service for automated clustering of Sentinel-2 pixels which allows its users to focus on Earth surface changes rather than on remote sensing problems, and hence to develop their own downstream applications. Available via a standard interface, it produces on demand and in near real time classified Sentinel-2 images at 10 meter resolution, in a new 2D space which preserves all properties of Sentinel-2 information (spectral complexity and topology, maximum spatial resolution), and which is consistent over time and space (from a Sentinel 2-tile to another). This simplified new space is allowing pixel labelling or grouping by a posteriori classes identification, change detection by distance computation, interpolation, and may be used as a pre-processing step for all kinds of machine learning algorithms.
RS4EBV: Remote Sensing for Essential Biodiversity Variables (DUE Innovator III Series) Biodiversity is facing a global crisis as evidenced by dramatic declines in species and habitats. Tracking the state of biodiversity requires operational monitoring systems underpinned by robust indicators. While these indicators convey [...]UN WORLD CONSERVATION MONITORING CENTRE (UN-WCMC) (GB)Applicationsapplications, ecosystems/vegetationBiodiversity is facing a global crisis as evidenced by dramatic declines in species and habitats. Tracking the state of biodiversity requires operational monitoring systems underpinned by robust indicators. While these indicators convey invaluable information to policy makers on the status and trends of biodiversity, their use is hampered due to patchy geographical coverage of input data, differing measuring methodologies and insufficient time series data to track trends. These shortcomings have fuelled the development of Essential Biodiversity Variables (EBV) as an intermediate conceptual step between low-level primary observations and high-level policy-relevant indicators. The EBV conceptual framework has been conceived by a group of internationally ecologists under the lead of GEO-BON. The RS4EBV project aimed to explore, develop and test, through local-scale pilot studies, the potential of satellite remote sensing for selected EBVs such as Ecosystem Functional Diversity (FD), which is a measure of the components that influence how ecosystems operate and function. The project developed and tested remotely-sensed EBVs on biophysical variables (chlorophyll content, LAI and Land Surface Phenology) from S2 time series, and inferred information on the Functional Diversity (FD) of terrestrial ecosystems (diversity of plant community functional traits). The quality of the RS-based FD proxy was assessed, with some in-depth validation of the proposed approaches, in different terrestrial ecosystems such as natural grasslands (North Wyke, UK), Salt marshes (Schiermonnikoog Island, NL) and Temperate forests (Bavaria Forest, DE). The findings of the project have been transferred to the GEO BON working groups on Ecosystem Structure and Function, where the FD modelling approach will be further developed.
SAR4URBAN: SAR for urbanisation monitoring (DUE Innovator III Series) From the beginning of the years 2000, more than half of the world population live in cities and the overall trend of urbanization is growing at an unprecedented speed. The use of Earth Observations and their integration with other source of [...]DLR – GERMAN AEROSPACE CENTER (DE)Applicationsapplications, urbanFrom the beginning of the years 2000, more than half of the world population live in cities and the overall trend of urbanization is growing at an unprecedented speed. The use of Earth Observations and their integration with other source of information into effective urban planning tools can produce a quantum leap in the capacity of countries to track progress towards and achieving international urban development goals. One of the main sources of information on urban areas that is essential to monitor precisely and with regular periodic updates is the monitoring human settlements. The importance to have up-to-date information on human settlements does not only regard urban areas but also rural and peri-urban areas where most of the un-controlled developments are taking place, hence the urgency to have regular and updated information on the evolution of human settlements worldwide . The advent of continuous streams of high quality and free of charge satellite observations such as the Sentinels of the European Copernicus program, in combination with the emergence of automated methods for big data processing and image analysis and the democratization of computing costs, have offered unprecedented opportunities to improve our capacities to efficiently monitor the changes and trends in urban development globally. The SAR4URBAN project developed an innovative approach to automatically extract built-up areas from the joint use of C-band SAR and multi-spectral optical data. The novelty of the method has been the integration of temporal statistics from SAR and optical data into large-scale urban mapping with fully automatic extraction of training samples, machine learning classification and post-classification enhancement. The main output of the SAR4URBAN project has been the World Settlement Footprint (WSF) 2015, the first global map of human settlements generated globally from the joint processing of optical and radar imagery. The WSF 2015 is available at 10m spatial resolution with a global coverage (in urban, peri-urban and rural areas) and is based on the processing of all Sentinel-1 and Landsat-8 imagery acquired in 2014 and 2015.
Sargassum monitoring service The project objective is to develop and implement an innovative automated service based on Earth Observation (EO) data to monitor floating Sargassum algae in the Caribbean area, estimate their drift and eventual landings on the coasts, and [...]CLS COLLECTE LOCALISATION SATELLITES (FR)Applicationsapplications, coastal zone, oceans, permanently open callThe project objective is to develop and implement an innovative automated service based on Earth Observation (EO) data to monitor floating Sargassum algae in the Caribbean area, estimate their drift and eventual landings on the coasts, and provide dedicated bulletins to the end-users.
SaTellite-based Run-off Evaluation And Mapping (STREAM) Water is at the centre of economic and social development; it is vital to maintain health, grow food, and manage the environment. As over half of the world’s potable water supply is extracted from rivers, either directly or from reservoirs, [...]CNR-RESEARCH INSTITUTE FOR GEO-HYDROLOGICAL PROTECTION – IRPI (IT)Scienceapplications, permanently open call, science, water cycle and hydrologyWater is at the centre of economic and social development; it is vital to maintain health, grow food, and manage the environment. As over half of the world’s potable water supply is extracted from rivers, either directly or from reservoirs, understanding the variability of the stored water on and below landmasses, i.e. the Total Runoff, is of primary importance. For this reason, the STREAM Project aims at developing an “observational” physically-based approach for deriving daily runoff estimates from satellite soil moisture (SM), precipitation (P) and terrestrial water storage anomalies (TWSA). The Project will support multiple operational and scientific applications (from flood warning systems to the understanding of water cycle). On the one hand, it will allow fine-tuning a simple modelling framework that adequately forced with satellite observations is potentially suitable for global runoff monitoring at daily time scale. On the other hand, it will allow increasing knowledge on the natural processes, human activities and on their interactions on the land. STREAM is also a feasibility study intended to answer the following research questions: To what extent satellite observations of precipitation, soil moisture and terrestrial water storage anomalies can provide reliable total runoff estimates? Is it possible to obtain a total runoff product with spatiotemporal resolutions beyond the one of GRACE and GRACE-FO measurements? Up to which spatiotemporal scales is this feasible and with which accuracy? The quality assessment of STREAM total runoff estimates will be pursued at multiple pilot basins across the world (5 large basins + multiple sub-basins) characterised by different physiographic/climatic features in order to highlight the role of climatic conditions/basin characteristics on the reliability of STREAM modelling framework and identify the optimal space/time scale that provides the best compromise between total runoff product accuracy and resolution. With respect to the state-of-the-art, the STREAM project proposes the following four innovative characteristics: The STREAM project will investigate the possibility to provide “model-independent” runoff estimates not relying on strong modelling assumptions; The STREAM runoff estimates will be derived solely from satellite observations; Differently from the available literature, the STREAM project will incorporate the fundamental role of soil moisture conditions in the runoff generation process; Beyond the use of off-the-shelf GRACE products (baseline), the STREAM project will explore finer spatial resolutions of sub-catchments by implementing tailored filters. Moreover, the STREAM project will contribute in understanding how limiting factors (e.g. freshwater availability) affect processes on the land surface and how this can adequately be represented in prediction models. The activity is led by CNR-IRPI with the participation of the Institute of Geodesy (GIS) at University of Stuttgart. The duration is of 12 months, until April 2020.  
Sen4CAP: Sentinels for the Common Agricultural Policy The Sen4CAP project aims at providing to the European and national stakeholders of the European Common Agricultural Policy (CAP) validated algorithms, products and best practices for agriculture monitoring relevant for the management of the CAP. [...]UNIVERSITY OF CATHOLIQUE DE LOUVAIN (BE)Applicationsagriculture, applicationsThe Sen4CAP project aims at providing to the European and national stakeholders of the European Common Agricultural Policy (CAP) validated algorithms, products and best practices for agriculture monitoring relevant for the management of the CAP. Special attention shall be given to provide evidence how Sentinel-1 and Sentinel-2 derived information can support the modernization and simplification of the CAP in the post 2020 timeframe. The Sen4CAP project will be developed in close collaboration with DG-Agri, DG-JRC, DG-Grow and in particular with 6 selected national Paying Agencies. Demonstrations and use cases in the shall be conducted in the context of the Paying Agency operations up to national scale addressing a range of monitoring aspects in the IACS cycle including the greening measures of the CAP. Sen4CAP has provided first evidence to Direct Payment Committee on the use of Copernicus for the new CAP monitoring approach which has been announced by DG-Agri in May 2018.
Sentinel-2 for Agriculture (DUE) The Sen2-Agri project is designed to develop, demonstrate and facilitate the Sentinel-2 time series contribution to the satellite EO component of agriculture monitoring at national scale. The project will demonstrate the benefit of the [...]UNIVERSITY OF CATHOLIQUE DE LOUVAIN (BE)Applicationsagriculture, applicationsThe Sen2-Agri project is designed to develop, demonstrate and facilitate the Sentinel-2 time series contribution to the satellite EO component of agriculture monitoring at national scale. The project will demonstrate the benefit of the Sentinel-2 mission for the agriculture domain across a range of crops and agricultural practices. The project objectives are to provide validated algorithms, open source code and best practices to process Sentinel-2 data in an operational manner for major worldwide representative agriculture systems distributed all over the world. Sen2-Agri is a contribution to the GEOGLAM initiative and has been demonstrated with international and national users in 12 countries and is currently available as open source system on the project website http://www.esa-sen2agri.org/
SENTINEL-5P+ INNOVATION The Sentinel-5p+ Innovation activity is motivated by potential novel scientific developments and applications that may emerge from the exploitation of the Copernicus Sentinel-5p mission data. This satellite mission is dedicated to the precise [...]ESA EOP-SDS initiative (IT)Scienceapplications, atmosphere, atmosphere science cluster, science, Sentinel-5PThe Sentinel-5p+ Innovation activity is motivated by potential novel scientific developments and applications that may emerge from the exploitation of the Copernicus Sentinel-5p mission data. This satellite mission is dedicated to the precise monitoring of the Earth’s atmosphere with a highlight on tropospheric composition. The Sentinel-5p spacecraft was launched in October 2017, where fills the gap from the past SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument on ESA’s Envisat satellite, via the yet active Ozone Monitoring Instrument (OMI) carried on NASA’s Aura mission to the future Sentinel-5 The overarching objectives of this Sentinel-5p+ Innovation project are: To develop a solid scientific basis for the application of Sentinel-5p data within the context of novel scientific and operational applications; To develop a number of novel products and retrieval methods that exploit the potential of the Sentinel-5p mission’s capabilities beyond its primary objectives; To define strategic actions for fostering a transition of the target methods and models developed in this project from research to operational activities; To maximise the scientific return and benefits from the Sentinel-5p mission. The Sentinel-5p+ Innovation project addresses seven themes related to atmospheric composition and ocean colour: Theme 1: Glyoxal (CHOCHO) Theme 2: Chlorine Dioxide (OClO) Theme 3: Water Vapour Isotopologues (H2O-ISO) Theme 4: Sulphur dioxide layer height (SO2-LH) Theme 5: Aerosol Optical Depth (AOD) and Bidirectional Reflectance Distribution Function (BRDF) Theme 6: Solar Induced Chlorophyll Fluorescence (SIF) Theme 7: Ocean colour (OC) The individual project themes have been kicked-off end June/beginning of July 2019 and will run for 24 months.  
SENTINEL-5P+ INNOVATION – GLYRETRO (GLYoxal Retrievals from TROPOMI) Glyoxal is the most abundant dicarbonyl present in our atmosphere and is directly emitted from biomass burning and also results from the oxidation of precursor non-methane volatile organic compounds (NMVOC). It is currently estimated that about [...]BELGIAN INSTITUTE OF SPACE AERONOMY (BIRA-IASB) (BE)Scienceapplications, atmosphere, atmosphere science cluster, science, Sentinel-5P, TROPOMIGlyoxal is the most abundant dicarbonyl present in our atmosphere and is directly emitted from biomass burning and also results from the oxidation of precursor non-methane volatile organic compounds (NMVOC). It is currently estimated that about 70% of its production originate from natural sources and fires, while the remaining 30% come from human activities. With a short lifetime (~3 hours), elevated glyoxal concentrations are observed near emission sources. Measurements of atmospheric glyoxal concentrations therefore provide quantitative information on VOC emission and can help to better assess the quality of current inventories. In addition, glyoxal is also known to contribute significantly to the total budget of secondary organic aerosols, which impact both air quality and climate forcing. The GLYRETRO (GLYoxal Retrievals from TROPOMI) activity is one of the seven themes from the ESA S5p innovation (S5p+I) project, which aims at further exploiting the capability of the S5p/TROPOMI instrument with the development of a number of new scientific products. The GLYRETRO project, proposed by both the Royal Belgian Institute for Space Aeronomy and the Institute of Environmental Physics at the University of Bremen, has been successfully kicked-off on July, 1st 2019 and will last two years. The objectives are manifold and can be listed as To develop a scientific glyoxal (CHOCHO) tropospheric column product To collect independent data sets in order to validate the satellite observations To pave the way towards an operationalization of the developed S5p glyoxal product To demonstrate the added-value of the S5p glyoxal product for the user community. For more information on the project, contact Christophe Lerot (christophe.lerot at aeronomie.be).
SENTINEL-5P+ INNOVATION – SO2 Layer Height Project The ESA Sentinel-5p+ Innovation project (S5p+I) has been initiated to develop novel scientific and operational applications, products and retrieval methods that exploit the potential of the Sentinel-5p mission’s capabilities beyond its primary [...]DLR – GERMAN AEROSPACE CENTER (DE)Scienceapplications, atmosphere, atmosphere science cluster, science, Sentinel-5P, TROPOMIThe ESA Sentinel-5p+ Innovation project (S5p+I) has been initiated to develop novel scientific and operational applications, products and retrieval methods that exploit the potential of the Sentinel-5p mission’s capabilities beyond its primary objective. Accurate determination of the location, height and loading of SO2 plumes emitted by volcanic eruptions is essential for aviation safety. The SO2 layer height is furthermore one of the most critical parameters that determine the impact on the climate. The height of volcanic ash columns are often estimated by local observers with mostly unknown accuracy. The plume height can also be determined using aircraft, ground-based radar or LIDAR but such observations are often not available and many volcanic eruptions in remote areas remain not observed. In addition, volcanic plumes containing SO2 but not ash cannot be seen directly. SO2 in the atmosphere has important impacts on chemistry and climate at both local and global levels. Natural sources account for ~30% of SO2 emissions. Next to contributions from volcanic activity, these include emissions from marine phytoplankton and a small contribution from soil and vegetation decay. However, by far the largest contributions in global SO2 production are from anthropogenic sources. These account for the remaining 70% of global emissions and primarily relate to fossil fuel burning, with smaller contributions from smelting and biomass burning. While satellite instruments, in principle, provide global products e.g. from SEVIRI (Second Generation Spin-stabilised Enhanced Visible and Infra-Red Imager) or AIRS (Atmospheric Infra-Red Sounder), they have no or little vertical resolution. SO2 height retrievals have been developed for IR sensors like the scanning IASI (Infrared Atmospheric Sounding Interferometer). This can provide information on the vertical distribution of SO2 in a volcanic plume but only at a horizontal resolution of 12 km. Although retrievals of SO2 plume height have been carried out using satellite UV backscatter measurements from e.g. OMI (Ozone Monitoring Instrument) or GOME-2, until now such algorithms are up to now very time-consuming, since the spectral information content and its characterization require computationally demanding radiative transfer modelling. Due to the high spatial resolution of TROPOMI (Tropospheric Ozone Measurement Instrument) aboard S5p(Sentinel-5p) and consequent large amount of data, an SO2 layer height algorithm has to be very fast. The SO2 Layer Height (SO2LH) theme is dedicated to the generation of an SO2 layer height product for Sentinel-5p taking into account data production timeliness requirements. The S5p+I: SO2LH project is funded by the European Space Agency ESA The coordination of the project is under the responsibility of the German Aerospace Center DLR. The objectives of the SO2 LH project are: • Development of an SO2 layer height product for Sentinel-5p; • Assessment of the performance of the new algorithm specifically with respect to timeliness requirements in operational processing frameworks; • Assessment of the applicability of various algorithms based on e.g. EISF or a LUT approach; • Assessment of the errors in the presence of absorbing and non-absorbing aerosols; • Assessment of retrieval results based on observation conditions, e.g. inhomogeneous scene; • Demonstration of the new retrieval on a number of cases of volcanic eruptions, including intercomparisons to SO2 height levels for volcanic eruptions with available OMI and GOME2 SO2 height level retrievals; • Discussion on how the effect of layer altitude change can be distinguished from a change of vertical column; • Assessment of the contribution of the new LH algorithm to the independent operational SO2 column retrieval • Discussion of mechanisms of adding the LH product to the SO2 operational column product (e.g. inclusion into the existing SO2 total column product), or justification for a standalone product. The S5P+I: SO2LH project had its official kick-off on 3 July 2019 The project duration is 24 month
SENTINEL-5P+ INNOVATION – WATER VAPOUR ISOTOPOLOGUES (H2O-ISO) Atmospheric moisture is a key factor for the redistribution of heat in the atmosphere and there is strong coupling between atmospheric circulation and moisture pathways which is responsible for most climate feedback mechanisms. Water [...]UNIVERSITY OF LEICESTER (GB)Scienceapplications, atmosphere, atmosphere science cluster, science, Sentinel-5PAtmospheric moisture is a key factor for the redistribution of heat in the atmosphere and there is strong coupling between atmospheric circulation and moisture pathways which is responsible for most climate feedback mechanisms. Water isotopologues can make a unique contribution for better understanding this coupling. In recent years, water vapour isotopologue observations from satellites have become available from thermal nadir infrared measurements (TES, AIRS, IASI) which are sensitive above the boundary layer and from shortwave-infrared (SWIR) sensors (GOSAT, SCIAMACHY) that provide column averaged concentrations including sensitivity to the boundary layer. Sentinel 5P (S5P) measures SWIR radiance spectra that allow retrieval of water isotopologue columns but with much improved spatial and temporal coverage compared to other SWIR sensors thus promising an unique dataset with larger potential for scientific and operational applications. The aim of this proposal is to develop and evaluate a prototype dataset from Sentinel 5P for water isotopologues. This will be addressed by a team of experts from University of Leicester, Karlsruhe Institute of Technology and University of Bergen bringing together expertise in atmospheric measurement (EO and in-situ), and modelling with scientific end-users. Objectives: During this project we will demonstrate the feasibility of measuring stable water isotopologues for S5P, specifically ratios of HDO/H2O by: Optimizing the retrieval method making use of the University of Leicester Full Physics (UoL-FP) retrieval algorithm. Examining and characterize the retrieval performance by validation of retrieved waterisotopologues against reference data sets (MUSICA NDACC data and TCCON) and satellite data from IASI and GOSAT. Assess the impact of the S5P datasets using two different models for defined regions of interest. The findings and recommendations of this project will be delivered through a scientific roadmap, in order to further develop the methods and their application including a transition to operational activities. This will benefit from the strong links of the team with relevant international activities, projects and initiatives.
SMELLS (DUE Innovator III Series) SMELLS will implement an innovative approach to combine Sentinel-1 SAR data with thermal disaggregated SMOS-derived soil moisture to derive a soil moisture product at both high-spatial and high-temporal resolution to provide a new tool for [...]ISARDSAT LTD. (GB)ApplicationsapplicationsSMELLS will implement an innovative approach to combine Sentinel-1 SAR data with thermal disaggregated SMOS-derived soil moisture to derive a soil moisture product at both high-spatial and high-temporal resolution to provide a new tool for decision-makers in the Desert locust preventive control system. SMELLS has been developed and demonstrated together with FAO and several national locust entities in West Africa.
SOLFEO – Spaceborne Observations over Latin America For Emission Optimization applications South America hosts the Amazon rain forest, the largest source of natural hydrocarbons (HC) emitted into the atmosphere. However, the forest undergoes continuous pressure due to increasing needs for pasture and agricultural land. Next to this, [...]The Royal Netherlands Meteorological Institute (KNMI) (NL)Scienceapplications, atmosphere, atmosphere science cluster, permanently open call, scienceSouth America hosts the Amazon rain forest, the largest source of natural hydrocarbons (HC) emitted into the atmosphere. However, the forest undergoes continuous pressure due to increasing needs for pasture and agricultural land. Next to this, large urban centers of South America face acute air quality problems. In this tense situation, it is important to closely monitor both the natural emissions released by the rainforest (hydrocarbons) and the rapidly changing anthropogenic emissions from agricultural activities (NH3 and NOx) and fossil fuel burning (NOx). By using satellite observations combined with a state-of-the-art model representation of the relevant processes, we develop advanced inversion algorithms for the estimation of emissions of ammonia(NH3), NOx and hydrocarbons, providing both qualitative and quantitative biogenic and anthropogenic emissions. SOLFEO takes advantage of the fine spatial resolution of OMI (AURA), IASI (METOP) and TROPOMI (Sentinel 5p) data to improve emission estimates over a largely understudied region.
Urban Thematic Exploitation Platform The Urban TEP project shall build up an environment expected to function as:
- Enabling technology,
Technical: Linking big data, IT-infrastructures, processing and analysis solutions;
Thematic: Provision of standardised, new, and tailored [...]
DLR – GERMAN AEROSPACE CENTER (DE)Digital Platform Servicesapplications, platforms, urbanThe Urban TEP project shall build up an environment expected to function as: – Enabling technology, Technical: Linking big data, IT-infrastructures, processing and analysis solutions; Thematic: Provision of standardised, new, and tailored products and services; Societal: Improving access to and distribution of data, methods and information. – Instrument to gain of knowledge on the urban system: Contribution to close gaps in earth system science; Increased efficiency, effectiveness and sustainability of functions and services in policy, planning, economy, and science). – Market place of ideas and driver of innovation; – Access point for and network of stakeholders and experts; – Seed point for the animation of new user communities outside EO/geo-sector.
WorldCereal – Global crop monitoring at field scale The overarching goal of the WorldCereal project is to develop an open source EO solution for monitoring of global crop area extent, which can be exploited by a wide community of stakeholders involved in the agricultural sector and active over a [...]VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK VITO (BE)Applicationsagriculture, applicationsThe overarching goal of the WorldCereal project is to develop an open source EO solution for monitoring of global crop area extent, which can be exploited by a wide community of stakeholders involved in the agricultural sector and active over a range of scales – from national agricultural reporting, regional crop productivity management, up to global assessment of cultivated crop area extent. Delivering maps of crop area extent in a timely manner and tracking its seasonal changes over time will be emphasized to monitor the dynamics of the global agricultural productive area. The WorldCereal project has the following principal objectives: to demonstrate the feasibility of global crop mapping at field scale based on open high resolution EO data such as Sentinel-1, Sentinel-2 and Landsat-8; to develop innovative and efficient open source EO algorithms and tools making full use of cloud computing capabilities for mapping the global extent of annual cropland and two of the major staple crops wheat and maize on a seasonal basis; to build a collaborative approach to exchange with the agricultural community relevant in-situ data sets and disseminate the global crop mapping results in a transparent manner to showcase the utility of the WorldCereal products by conducting use case studies related to the GEOGLAM initiative and SDG reporting. ‪As the global crop monitoring at field scale is a true global challenge we are happy to count on an impressive international user group supporting WorldCereal: FAO, AMIS, GEOGLAM, AAFC, AFSIS, BAGE, CIMMYT, CIMMYT-GLTEN, DSSI, DG-JRC, GEOSYS, GODAN, ICARDA, ICRISAT, IFPRI, INTA, JECAM, N2AFRICA, NASAHarvest, ONESOIL, PlantVillage, RADI, ROTHAMSTED RESEARCH, WFP. The user group remains open to new stakeholders interested in contributing to the goals of WorldCereal which aims to be a community effort.
WorldCover The KO has been hold the 27 August 2019 at ESRIN, for a duration of 2 years.
The Mid Term Review has been successfully passed the 31 August 2020.
The Final results are expected for June 2021.
The project consists of the following cardinal [...]
VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK VITO (BE)Applicationsapplications, land coverThe KO has been hold the 27 August 2019 at ESRIN, for a duration of 2 years. The Mid Term Review has been successfully passed the 31 August 2020. The Final results are expected for June 2021. The project consists of the following cardinal requirements: Generation, delivery and validation of a LC map of the world consisting of a minimum of: 10 predefined classes (based on IPCC Level 1) 10 meters resolution 75 % overall accuracy (as specified by CEOS WGCV) Fast generation and validation (possibly less than 3 months after last data take).