Latest Tweets

Projects

<% single.title %>

<% single.prime %>

<% single.domain %>

<% single.description %>

ProjectAbstractPrime CompanyDomainTagsFull text
4DATLANTIC – OCEAN HEAT CONTENT – (OHC) This project aims at developing, testing and implementing innovative methods able to use space geodetic data from altimetry and gravimetry to generate the regional ocean heat content (OHC) change over the Atlantic Ocean. The ESA MOHeaCAN [...]MAGELLIUM (FR)Sciencealtimeter, Atlantic, climate, gravity and gravitational fields, ocean, regional initiatives, scienceThis project aims at developing, testing and implementing innovative methods able to use space geodetic data from altimetry and gravimetry to generate the regional ocean heat content (OHC) change over the Atlantic Ocean. The ESA MOHeaCAN project strategy will be pursued and refined at regional scales both for the data generation and the uncertainty estimate. In practice, we propose to develop a purely space-based product paying a careful attention to the error propagation along the processing scheme. This will enable to keep the product independent from in situ data which are the unique source of data for validation. By keeping the space-based product independent from in-situ data we ensure that we can validate properly and precisely both the space product and its uncertainty.  In addition, the product will be only based on observations. With this approach there is no premature mixing with model solutions. The data and their uncertainty are driven by observations only. Thus, the space-based product fits the needs for any model validation. This is absolutely essential to ensure an efficient dissemination of the product among the climate modelling community.  These products will be used and analysed to address the major science questions helping us to better understand the complexity of the Earth and climate system. The study will be focused on the Meridional Heat Transport (MHT) in the North Atlantic with a regional heat budget. In parallel, our early adopters will assess the OHC products strengths and limitations for the implementation of new solutions for society. The ESA Regional Initiative 4DATLANTIC OHC Project has been kicked-off on 7 July 2020, for a duration of 2 years.
Atlantic cities: smart, sustainable and secure ports and protecting the ocean The project aims at developing and delivering to the end user communities a number of customized EO-based information services to support decision making processes in the Atlantic Region:

Climate Resilience
Atlantic Cities and Ports
[...]
DEIMOS SPACE UK LTD (GB)Regional InitiativesAtlantic, oceans, ports, regional initiatives, sustainable development, urbanThe project aims at developing and delivering to the end user communities a number of customized EO-based information services to support decision making processes in the Atlantic Region: Climate Resilience Atlantic Cities and Ports Protecting the Ocean The Climate Resilience Service will be focused on providing information and know-how for assessing the risks and potential socio-economic impacts of coastal processes such as erosion and flooding, to: Critical infrastructures Business activities Coastal protection elements The main service users are: environmental agencies municipalities coastal business activities The Cities and Ports Service will focus on addressing the needs identified by coastal cities with ports, supporting the social cohesion and inclusiveness while ensuring the harmonious co-existence of many economic activities and the well-being of its inhabitants and tourists. This service therefore aims to support ports, cities and related entities in: Assessing the activities in and around ports Monitoring of maritime transport Detecting port-related pollution Identifying security/safety issues for assets. The Protecting the Ocean Service will focus on: detecting emerging pollutants such as marine litter monitoring the environmental status of ocean areas, including MPAs and other marine ecosystem relevant areas. This service addresses users from national and international authorities and other entities responsible for reporting marine status and indicators.
Atlantic Regional Initiative – Applications: Offshore Wind Energy Services based on Earth Observation (EO) can provide valuable information during the design stage by providing a long time series of wind data that allows a better assessment and characterization of the wind resource energy production potential [...]Deimos Engenharia (PT)Regional InitiativesAtlantic, energy and natural resources, oceans, regional initiatives, renewable energyServices based on Earth Observation (EO) can provide valuable information during the design stage by providing a long time series of wind data that allows a better assessment and characterization of the wind resource energy production potential of different possible wind farm (WF) sites, helping to select the most advantageous ones. These typical site wind characteristics can also assist in the determination of the optimal location of each individual wind turbine (WT) inside the specified site boundaries, minimizing combined WT wake influence and therefore minimizing energy production losses. Once the WF is operational, the EO based services can help establish optimal site maintenance weather windows and help foresee or determine/monitor possible rain erosion effects on the WT blades. Long time series of wind and wave data will help determine possible overall weather windows for those operations, while short term weather forecast can provide valuable information to guide the planned maintenance activities (e.g. adjust time window for the activity based on weather forecast inputs). This 2-year project focuses on the development of an integrated application covering: A planning dashboard for wind farm design and operations, including weather windows for offshore operations planning. The dashboard aims to provide a single access point to the different EO services to be developed with advanced data visualisation and download capabilities so that the user is able to trigger service runs, access easily all service outputs, compare different site locations, configurations and maintenance scenarios, and get support from a team of specialised personnel for each one of the services. The EO-based services will cover different activity areas of wind farm design and operations from wind resource and wake effect assessment to the definition of maintenance operations weather windows, provided by dedicated expert teams coming from different partners. The users will interact with those EO experts to better understand the capabilities, optimal conditions of use and possible limitations of the different presented services, therefore easing their learning curve on the usage and uptake on these products. Hopefully this process, that will be upscaled to other users in the final workshop of the project, will improve significantly the uptake of these types of products by the wind energy sector. The dashboard should integrate these new EO based services with wind industry sector standard metrics for energy production, operational costs and total cost of energy to provide more recognisable and actionable information to the end users and therefore ease the uptake of these types of services by these non-EO expert user communities. Winds for resource assessment. The main focus will be on making EO data and derived products easily accessible for end users and on the development of new applications, which can integrate the EO data seamlessly into the applications already in use by the wind energy community and in particular the wind energy industry. The aim is to fully integrate satellite wind based products with well established industry standard wind farm planning and operations software solutions (SOWFA) and indicators (AEP and LCOE), addressing the full information value chain to provide meaningful and familiar information to infrastructure managers and other interested stakeholders. Assessment of wind turbine wake effects. The work will provide access to the higher resolution SAR based EO datasets, produced by DTU, to downstream industry standard applications developed by Wavec. Those applications will use those wind satellite products as ground truth to run the required simulations to assess and minimise wake effects. As in the previous service, standard energy production and cost indicators such as AEP and LCOE will be estimated in these simulations to provide actionable and familiar information to the different stakeholders. Assessment of rain erosion of wind turbine blades. The work will use rain data from the GPM mission to characterise rain events, which, combined with wind data from satellite EO, will produce novel rain-wind data series for selected sites with operating wind farms. The work will be the first of its kind, thus in a prototype level data for initial evaluation by end users, namely, wind farm owners, wind farm operators and wind farm planners. The main partner to demonstrate the services will be EDP, through the Windfloat Atlantic wind farm project installed 20 km off the Portuguese coast at Viana do Castelo. During the user engagement the consortium team will be in contact with a series of stakeholders working in the Atlantic Region to help consolidate the technical requirements. As a result, additional service exercises for different users might be prepared. This activity corresponds to Theme 2 of the original Invitation to Tender.
Black Sea and Danube Regional Initiative – Applications: Environmental Risk Management in the Danube Catchment The Environmental Risk Management in the Danube Catchment (The Danube Environmental Risk Assessment Platform, DEAP) project aims to create a platform of applications based on Earth Observation (EO) to support Environmental Risk Management within [...]The Icon Group (IE)ApplicationsBlack Sea and Danube, regional initiativesThe Environmental Risk Management in the Danube Catchment (The Danube Environmental Risk Assessment Platform, DEAP) project aims to create a platform of applications based on Earth Observation (EO) to support Environmental Risk Management within the Danube catchment.  The purpose of the project is to provide regional stakeholders, who currently do not regularly use EO data, with access to dynamic environmental assessments using such datasets. The service will comprise a suite of cloud-based applications which will detect, monitor, analyse and characterise the sources of environmental problems using available EO data in conjunction with in-situ inputs and other reference data.  Service applications will be developed for deployment in the cloud and shall employ advanced dispersion modelling techniques in conjunction with EO Data to deliver meaningful (actionable) maps, statistics and other data across 20 countries. The project includes engagement with regional stakeholders, the definition of the service portfolio and data processing chains, and the provision of the operational service to stakeholders. The service will benefit from existing ESA/EC DIAS infrastructures to support the delivery of environmental risk assessments in a fully automated way. At an operational level, the service will identify industrial waste discharge, transport waste discharge, agricultural run-off, and ecosystem degradation in near real time, and shall represent a unique tool to regional agencies.  Stakeholders include environmental protection agencies, port authorities, fisheries management agencies, the International Commission for the Protection of the Danube, various development agencies, etc. This activity corresponds to Priority Application Domain C of the original Invitation to Tender.
Black Sea and Danube RI – Applications This activity is part of the EO (Earth Observation) Exploitation Platforms element of ESA’s Earth Observation Envelope Programme (EOEP-5) aiming to establish regional information services for Black Sea Region in the agriculture and forestry [...]GISAT S.R.O. (CZ)Enterpriseapplications, enterprise, regional initiativesThis activity is part of the EO (Earth Observation) Exploitation Platforms element of ESA’s Earth Observation Envelope Programme (EOEP-5) aiming to establish regional information services for Black Sea Region in the agriculture and forestry domains. It is intended to develop a suite of service cases demonstrating the monitoring services to CAP paying agencies, precision agriculture, monitoring of agriculture production and forest resource management (forest area, type and deforestation mapping) with users in Czech Republic, Georgia, Romania and Hungary.
Blue economy: innovation clusters, Atlantic natural resources management and maritime spatial planning The 2-years Blue Economy project aims at developing and demonstrating EO driven data solutions, which deliver actionable information to key coastal stakeholders. Applications will focus on the areas of coastal monitoring, ocean renewable energy, [...]GMVIS SKYSOFT S.A. (PT)Regional InitiativesAtlantic, blue economy, coastal zone, marine environment, maritime spatial planning, oceans, regional initiatives, renewable energyThe 2-years Blue Economy project aims at developing and demonstrating EO driven data solutions, which deliver actionable information to key coastal stakeholders. Applications will focus on the areas of coastal monitoring, ocean renewable energy, and marine litter. It is being implemented through the European Space Agency’s Atlantic Regional Initiative. In parallel, a range of Atlantic-focused recommendations will be developed from engaged stakeholder inputs, and community development activities. These perspectives will (i) inform and enhance the roadmap being developed by the European Space Agency for the Atlantic Region, and (ii) find a seed Community of Practice of maritime-EO technology innovators for the Atlantic, focused on developing EO solutions to address Marine Strategy Framework, and Marine Spatial Planning ambitions. Rationale: As the Maritime Spatial Planning (MSPD) and Marine Strategy Framework (MSFD) directives are implemented across Europe, EU member states and aligning nations need innovative information gathering tools to monitor progress towards the goals of these two directives. Information from satellites can satisfy a number of these monitoring needs. The EO sector needs to demonstrate technological viability, and while doing so engage with policy makers and legislators to ensure information products are acceptable for monitoring and legal purposes. The Blue Economy project is a demonstration of this potential for Atlantic coastal states. A synthesis of products/services being developed is available in these slides.
Earth Observation data For Science and Innovation in the Black Sea (EO4SIBS) In the frame of the ESA Regional Initiatives, a set of coordinated activities between science, public sector, industry growth and infrastructure components focussing on regional priorities with high interest for Member States, a number of [...]UNIVERSITY OF LIEGE (BE)Sciencecarbon science cluster, ocean science cluster, oceans, regional initiatives, science, Sentinel-2, Sentinel-3In the frame of the ESA Regional Initiatives, a set of coordinated activities between science, public sector, industry growth and infrastructure components focussing on regional priorities with high interest for Member States, a number of Science and Application projects are being runned for the Black Sea and Danube region. In this context, the EO4SIBS (Earth Observation data For Science and Innovation in the Black Sea) project is dedicated to Ocean Science. The objectives of this project are: To develop a new generation of algorithms that can ingest the wealth of spatial, temporal and spectral information provided by recent sensors providing high quality reference products for the blue and green ocean. In particular, regarding Ocean Colour derived products, innovative, high quality reference products of Chl-a, Total Suspended Matter (TSM) and turbidity products will be generated for the whole Black Sea geographical area, with a special focus on the western part directly influenced by the Danube River plume. Merged products will be generated to combine the high temporal resolution of S-3 OLCI and high spatial resolution of S-2 MSI satellite products and capture the optimal spatio-temporal coverage over the Black Sea waters. Concerning altimeter datasets, Level-3 Sentinel-3A [2016, 2018] and Cryosat-2 [2011, 2018] along-track product will be generated and their impact for coastal sea level trend study in the Black Sea assessed, and Level-4 multi-mission gridded products over the [2011, 2018] for improved mesoscale studies. Finally, 10 year (2010-2020) of improved gap-free high resolution salinity products will be generated. To collect new data to support the development of novel algorithms and to propose laboratory analyses of the highest quality To build novel composite products that integrate the satellite information with that from robotic platforms and numerical ocean models; To assess how the use of EO data improves our knowledge of good environmental status (GES) and climate change in the Black Sea. In particular three scientific use cases will be assessed : Physical oceanography and biochemical ecosystems; Black Sea level dynamics and trends; Deoxygenation. To disseminate the developed tools and products to the regional and international scientific and end-user community through the setting of a web platform, the organization of dissemination events, the participation to conferences.
Earth Observation for Air Quality and Health ‘AlpAirEO’ – Alps regional initiative Recently, the European Environmental Agency (EEA) reported that air pollution contributed to 400.000 annual deaths in the EU. The Alps are special. They host 14 million people and attract many tourists and businesses. Due to the diverse [...]DLR – GERMAN AEROSPACE CENTER (DE)Regional Initiativesair quality, Alps, atmosphere science cluster, climate, health, regional initiatives, Sentinel-3, Sentinel-5PRecently, the European Environmental Agency (EEA) reported that air pollution contributed to 400.000 annual deaths in the EU. The Alps are special. They host 14 million people and attract many tourists and businesses. Due to the diverse landscape and climate, pollution hotspots can develop in certain areas while pristine environments prevail throughout most of the high Alpine regions. As part of the “eo4alps” initiative ESA held a workshop in June 2018 with leading scientists to discuss the potential benefits of earth observation of the Alpine region. “Air quality & health” was identified as one of four priority actions. The project “AlpAirEO” will use state-of-the-art technology to deliver innovative science and information services to support expert and non-expert stakeholders and thereby help to improve the general quality of life in the Alps. By approach of co-design, the needs of the health community will be addressed. Satellites EO in conjunction with atmospheric models and surface observations can deliver the spatial coverage and quality needed. The project will look into the available data from operational instruments like MODIS and GOME-2 and especially the new Sentinel mission instruments starting with Sentinel 3 SLSTR for aerosols and Sentinel 5P TropOMI covering NO2. Additionally, the Copernicus Atmospheric Monitoring Service (CAMS) and Copernicus Climate Change Service (C3S) will provide important information on atmospheric constituents and climate indicators. For reference, surface-based data from observation networks for the Alpine region will also be taken into consideration. The unprecedented capabilities of the new Sentinels and the Copernicus services will be combined with available environmental information and demographic data, e.g. population density. By following the recommendations of WMO-CCI and WHO, the findings of epidemiological studies and evidence of regional health statistics, daily information on health risk due to environmental stress can be derived.Results will be made freely available based on the Bioclimatic Information System hosted by AlpEnDAC as part of the Virtual Alpine Observatory. Project lead: German Aerospace Center (DLR) Project Duration: 2020 – 2022   Discover more projects, activities and resources on the Alps regional initiative (EO4ALPS) page.  
Earth Observation for Alpine ecosystems ‘eco4alps’ – Alps regional initiative The project is an Application element of EO4ALPS Regional Initiative. It will develop 6 EO services on ecosystem mapping and monitoring in the alpine region, addressing the specific requirements of national and regional stakeholders and being [...]Solenix Schweiz GmbH (CH)Regional InitiativesAlps, ecosystems/vegetation, forestry, platforms, regional initiativesThe project is an Application element of EO4ALPS Regional Initiative. It will develop 6 EO services on ecosystem mapping and monitoring in the alpine region, addressing the specific requirements of national and regional stakeholders and being sufficiently large in scope and content to strengthen regional cooperation across alpine countries: ecosystem mapping, forest disturbance, forest phenology, forest fire recovery, grassland management and grassland abandonment. A 2nd objective of the project is to demonstrate the added value of an open and federated network of platforms to provide these services at regional scale. A proof of concept on a transboundary area of 50,000 km2 will demonstrate the adequacy and usefulness of the proposed services.   Discover more projects, activities and resources on the Alps regional initiative (EO4ALPS) page.  
Earth Observation for Landslides ‘eo4alps landslides’ – Alps regional initiative The project focuses on implementing regional geoinformation services and products for landslide risk assessment over the Alpine mountain range.

EO4ALPS-landslides will set the basis for the creation of harmonized and advanced landslide [...]
SATT CONECTUS ALSACE (FR)Regional InitiativesAlps, disaster risk, land, regional initiatives, thematic exploitation platformThe project focuses on implementing regional geoinformation services and products for landslide risk assessment over the Alpine mountain range. EO4ALPS-landslides will set the basis for the creation of harmonized and advanced landslide inventories and susceptibility/hazard maps based on EO ground motion services linked to advanced modelling capabilities all embedded in the user-driven GeoHazard Exploitation Platform (GEP). The project is user-driven with the engagement of more than 20 authorities and other stakeholders responsible for landslide disaster risk management involved in all project phases.   Discover more projects, activities and resources on the Alps regional initiative (EO4ALPS) page.  
Earth Observation for operational hydrology ‘eo4alps snow’ – Alps regional initiative The project focuses on implementing a high-resolution quasi real-time snow monitoring to improve water resource management.

It is taking advantage of the recent developments in physically-based snow modelling and is based on high-resolution [...]
MobyGIS Srl (IT)Regional InitiativesAlps, regional initiatives, Sentinel-1, Sentinel-2, snow and ice, water cycle and hydrologyThe project focuses on implementing a high-resolution quasi real-time snow monitoring to improve water resource management. It is taking advantage of the recent developments in physically-based snow modelling and is based on high-resolution optical and radar EO missions such as Sentinel-1 and 2. The core service is a snow water equivalent (SWE) product generated using a cloud based processing environment to be delivered over the entire Alpine arc region. The eo4alps team is planning to engage users from public and private sectors, such as public agencies, research centers, associations and hydropower companies.   Discover more projects, activities and resources on the Alps regional initiative (EO4ALPS) page.  
Grassland cutting detection for agriculture The main objective is to provide an operational methodologies and software components that combines the data from remote sensing satellites (in particular Sentinel‐1 and Sentinel‐2) that will allow to detect and monitor the grassland cutting and [...]KAPPAZETA LTD (EE)Enterpriseagriculture, regional initiatives, Sentinel-1, Sentinel-2The main objective is to provide an operational methodologies and software components that combines the data from remote sensing satellites (in particular Sentinel‐1 and Sentinel‐2) that will allow to detect and monitor the grassland cutting and grazing. This tool is intended to be deployed by the National Paying Agencies (NPAs) which have the role to control the owners of permanent and agricultural land to insure they adhere to certain management policies of the EU Common Agriculture Policy resulting in 90% accuracy of grassland cutting detection rates, fewer in situ inspections, and decrease wrongly allocated funds due to fraudulent farmers. The system was demonstrated to the Paying Agencies of Estonia, Denmark and Sweden and further extended to develop the service trial in Poland – Agency for Restructuring and Modernisation of Agriculture (ARMA).
MedEOS – Mediterranean coastal water monitoring This activity is part of the ESA Regional Initiatives programme. Its objective is to support the implementation of regional priorities in the Mediterranean region by i) developing and delivering a customized set of EO based products that fully [...]Deimos Engineering and Systems (ES)Regional Initiativesbathymetry and seafloor topography, Mediterranean, regional initiatives, sea surface topography, Sentinel-1, Sentinel-2, Sentinel-3This activity is part of the ESA Regional Initiatives programme. Its objective is to support the implementation of regional priorities in the Mediterranean region by i) developing and delivering a customized set of EO based products that fully exploit the large volumes of EO data from the Sentinel missions and other EO missions and ii) achieving measurable progresses in embedding this EO-derived information into the strategies and cooperation actions within the Mediterranean region. The specific objective of the Sea Application project is to improve the characterisation, quantification and monitoring of land-based pollution in the Mediterranean coastal waters by optimizing the use of the Sentinel missions and other relevant space and in-situ datasets to develop multi-mission high resolution gap-free maps of water quality parameters (e.g. Chl-a, turbidity, TSM, nutrients, bacteriological concentration,…) and added-value innovative products (e.g. river plumes contour,…) over the period 2015-present.
Mediterranean Regional Initiative Land Project Objectives: to develop product, method and algorithm to infer the soil sealing within the 20 km of the coast all along the med basin usig S1 and S2 constellation at 10 meters resolution.Planetek Italia (IT)Regional Initiativesapplications, land, Mediterranean, regional initiatives, Sentinel-1, Sentinel-2Objectives: to develop product, method and algorithm to infer the soil sealing within the 20 km of the coast all along the med basin usig S1 and S2 constellation at 10 meters resolution.