Latest Tweets

Projects

<% single.title %>

<% single.prime %>

<% single.domain %>

<% single.description %>

ProjectAbstractPrime CompanyDomainTagsFull text
ALBIOM (ALtimetry for BIOMass) The ALBIOM project (ALtimetry for BIOMass) proposes to derive forest biomass using SAR Altimetry Data from the Copernicus Sentinel-3 (S3) Mission.

Biomass is at present monitored globally using optical satellites, SAR and LiDAR technology, [...]
DEIMOS SPACE UK LTD (GB)Sciencealtimeter, Biomass, biosphere, carbon cycle, carbon science cluster, forestry, land, Sentinel-3The ALBIOM project (ALtimetry for BIOMass) proposes to derive forest biomass using SAR Altimetry Data from the Copernicus Sentinel-3 (S3) Mission. Biomass is at present monitored globally using optical satellites, SAR and LiDAR technology, but it is still poorly quantified in most parts of the world, and the satellite data currently exploited for this purpose are not enough to achieve the goal of global biomass mapping and monitoring with sufficient accuracy. In this context, data from existing satellites but unexploited so far, capable of providing additional independent biomass information, have the potential for a very important role in global observation of biomass, advancing our understanding of the carbon cycle and management of forests, biodiversity and ecosystems. The ALBIOM project combines: A modelling component, through the development of a Sentinel-3 altimeter backscattering simulator over vegetated areas, based on the existing state of the art modelling of the backscattering of Ku and C-band signals from vegetation, to establish the physical relationships between the backscattered signal from S3 altimeter and the different levels of biomass; An algorithm component, through the development of a suitable inversion algorithm for biomass estimation from S3 altimeter data, investigating both a simple method based on error minimization (i.e. derivation of analytical or empirical model function) and a more empirical Artificial Neural-Network (ANN) approach trained on the model outputs, or on a combination of model outputs and data; A prototype biomass product is generated as final project output over specific sites of boreal and tropical forests and shared with a number of users to assess its validity. ALBIOM is an innovative project, since both the use of Sentinel-3 SAR altimeter data to retrieve biomass and the generation of a Sentinel-3 SAR altimeter backscatter simulator over vegetated areas have not been accomplished before. The outcome of such project will have an important scientific impact, as it can provide a new global biomass dataset derived from S3 altimetry, which could be integrated into existing high-resolution biomass products derived from data fusion methods. The project would also open up new perspectives on the use of all the historical data from the past altimetry missions for biomass mapping. Users potentially interested in the results of ALBIOM include environmental agencies, space agencies, private companies, and all the entities interested in bioenergy, deforestation and forest degradation, biodiversity conservation, and sustainable management of biomass resources. This 12 month activity is led by Deimos Space UK with the participation of University of La Sapienza (IT) and Tor Vergata University (IT). ============================================================================ Methods and Results The developed Sentinel-3 SRAL altimeter waveforms simulator, obtained through the modification & merging of the Tor Vergata Vegetation Scattering Model (TOVSM) and the Soil And Vegetation Reflection Simulator (SAVERS), can simulate both bare soil and forest backscattered waveforms.  Simulated signals have been compared to both innovative Sentinel-3 waveforms, provided by the G-POD SARvatore for Sentinel-3 service (now moved to the ESA Altimetry Virtual Lab on EarthConsole®), and official Sentinel-3 L2 products. The analysis of results over different types of surfaces has shown that waveforms related to forested surfaces present at least two peaks, due to the top of canopy and the ground. The presence of topography may introduce other peaks in the waveforms making the identification of vegetation and topographic effects very challenging. Despite these composite patterns, the developed simulator proved its capability to reproduce the main characteristics of Sentinel-3 waveforms. Citations De Felice Proia G.,Restano M., Comite D.,Clarizia M.P., Benveniste J., Pierdicca N. and Guerriero L., “AnElectromagnetic Simulator for Sentinel-3 SAR Altimeter WaveformsOver Land—PartI: Bare Soil,” in IEEE Transactions on Geoscience and RemoteSensing, vol. 60, pp. 1-11, 2022, Art no. 2007211, doi:10.1109/TGRS.2022.3210720. De Felice Proia G.,Restano M., Comite D.,Clarizia M.P., Benveniste J., Pierdicca N. and Guerriero L., “AnElectromagnetic Simulator for Sentinel-3 SAR Altimeter WaveformsOver Land—PartII: Forests,” in IEEE Transactions on Geoscience and RemoteSensing, vol. 60, pp. 1-10, 2022, Art no. 2007310, doi:10.1109/TGRS.2022.3210722. ESA Altimetry Virtual Lab: https://earthconsole.eu/wp-content/uploads/2022/03/SARvatore_br_singlepages_220315.pdf  ============================================================================
BALTIC+ Sea-Land biogeochemical linkages (SeaLaBio) The overall goal of the ESA funded project Baltic+ SeaLaBio (Sea-Land Biogeochemical linkages) running from Dec 2018 to May 2020 is to develop methods for assessing carbon dynamics and eutrophication in the Baltic Sea through integrated use of [...]FINNISH ENVIRONMENT INSTITUTE (SYKE) (FI)ScienceBaltic, carbon cycle, carbon science cluster, land, ocean science cluster, oceans, Sentinel-2, Sentinel-3The overall goal of the ESA funded project Baltic+ SeaLaBio (Sea-Land Biogeochemical linkages) running from Dec 2018 to May 2020 is to develop methods for assessing carbon dynamics and eutrophication in the Baltic Sea through integrated use of EO, models, and ground-based data The poor state of the Baltic Sea again became apparent during summer 2018 in form of massive and long-lasting cyanobacteria blooms. Warm and sunny weather, combined with good availability of nutrients led to the worst algae situation in a decade. Climate change is expected to cause further warming in this region making these events more and more common in the future. The decades of dumping untreated waste water into the Baltic Sea and the use of fertilizers in agriculture have resulted in strong internal loading. While the water treatment situation has improved and fertilizers are being used more responsibly, the flux of carbon and nutrients from land to sea is still great and in many areas largely unknown. The Sentinel satellites of the Copernicus programme offer an excellent opportunity for characterizing and monitoring the fluxes and processes occurring in coastal zones. This in turn will lead to improved process understanding. With this in mind, the Baltic+ SeaLaBio research project aims to find an answer to the question: • Can we quantify the carbon flux from land to sea with Sentinel-3 (S3) OLCI and Sentinel-2 (S2) MSI data in the Baltic Sea region? And if not, what are the main obstacles and potential solutions to be addressed in the future? In addition to frequent cyanobacteria blooms, the high absorption by colored dissolved organic matter (CDOM) causes problems to the utilization of EO for monitoring the state of the Baltic Sea. The available processors for S3 and S2 often provide overestimated values for Chlorophyll a and underestimate CDOM. The main source of these problems is the failure of the atmospheric correction to provide reasonable marine reflectances. Thus, the project focuses especially on improving the atmospheric correction and in-water inversion algorithms for S3 and S2 images. The developed methods will be validated with in situ data collected from different parts of the Baltic Sea. We will also improve the spatial resolution of a biogeochemical (BGC) model (Ecological ReGional Ocean Model, ERGOM) and compare its output against the EO results. S3 OLCI has a better band combination for water quality estimation than S2 but its spatial resolution limits its use in river estuaries and archipelagos common in the coastal areas of the Baltic Sea. Hence, the synergistic use of these two data sources can lead to improved coverage in coastal regions without compromising the thematic quality of the data. The project will actively disseminate its progress and results in various Baltic Sea and EO events.
BICEP – Biological Pump and Carbon Exchange Processes The ocean carbon cycle is a vital part of the global carbon cycle. It has been estimated that around a quarter of anthropogenically-produced emissions of CO2, caused from the burning of fossil fuels and land use change, have been absorbed by the [...]Plymouth Marine Laboratory (GB)Sciencecarbon cycle, carbon science cluster, ocean science cluster, oceans, permanently open call, scienceThe ocean carbon cycle is a vital part of the global carbon cycle. It has been estimated that around a quarter of anthropogenically-produced emissions of CO2, caused from the burning of fossil fuels and land use change, have been absorbed by the ocean. On the other hand, significant advances have been made recently to expand and enhance the quality of a wide range of Remote Sensing based products capturing different aspects of the ocean carbon cycle. Building on recommendations made in a series of recent meetings and reports, on ESA lead initiatives and projects and on other relevant international programmes, the objective of the BICEP project is to bring these developments together into an holistic exercise to further advance our capacity to better characterise from a synergetic use of space data, in-situ measurements and model outputs, the different components of the ocean biological carbon pump, its pools and fluxes, its variability in space and time and the understanding of its processes and interactions with the earth system. To achieve this goal, the BICEP project will first synthesise the current state of knowledge in the field and produce a consolidated set of scientific requirements that define the products to be generated, as well as how these products will be evaluated and used to produce an enhanced BICEP dataset. Major emphasis will be placed on developing unified products to ensure that the carbon budgets made are in balance. Uncertainties in the derived products will also be quantified. A large in situ dataset of ocean carbon pools and fluxes will be created, to be used to evaluate and select the algorithms, with a focus on five key test sites, representative of the range of conditions in the global ocean. Using these selected algorithms, a 20-year time series of data will be generated, built through application of the selected algorithms to the ESA OC-CCI time series, a merged, bias-corrected ocean-colour data record explicitly designed for long-term analysis. The dataset will be used as input to a novel, satellite-based characterisation of the ocean biological carbon pump, quantifying the pools and fluxes, how they vary in time and space, and how they compare with ocean model estimates. The satellite-based Ocean Biological Cabon Pump analysis will then be placed in the context of carbon cycling in other domains of the Earth System, through engagement with Earth System modellers and climate scientists. Finally, a workshop will be organized, to be used as a vehicle to engage the international community in a discussion on how the BICEP work could be pushed forward, and integrated with results from other components of the ocean carbon cycle (e.g. CO2 air-flux and ocean acidification) not covered in the project, and how the representation of satellite-based ocean carbon work could be further improved in the context of large international Earth System analysis, such as the Global Carbon Project and assessments made within the International Panel of Climate Change (IPCC). The proposed work will be delivered by a consortium of twelve international Institutes, led by the Plymouth Marine Laboratory (PML, Plymouth, UK) and composed of top-level scientists, with collective expertise on Remote Sensing, statistical modelling, ocean carbon cycling, theoretical ecology and Earth System science.
BIOMASCAT: Assessing vegetation carbon dynamics from multi-decadal spaceborne observations Characterization of forest biogeochemical cycles is of paramount importance in Earth system science to understand contemporaneous dynamics and for expanding global land models in order to predict future trends of vegetation and climate. Thanks [...]GAMMA REMOTE SENSING AG (CH)Sciencebiosphere, carbon cycle, carbon science cluster, forestry, land, permanently open call, SAR, scienceCharacterization of forest biogeochemical cycles is of paramount importance in Earth system science to understand contemporaneous dynamics and for expanding global land models in order to predict future trends of vegetation and climate. Thanks to the increasing amount of spaceborne observations of land and ocean surfaces, data-driven models are revealing intriguing trends and mechanisms and model evaluation exercises are reaching global insights into temporal dynamics, which would not be achievable otherwise. The global characterization and the accurate knowledge of terrestrial carbon pools have been acknowledged as a fundamental variable for driving research in the terrestrial component of Earth system models. Traditionally, carbon pools are best estimated from measurements of forest inventories. However, these estimates are sparse in time and sometimes only locally relevant. There is therefore a strong requirement for data collection approaches that expand these spatial-temporal representativeness limits. However to date, despite the long term records of observations from space, only one dataset of biomass extended over multiple years so far – a 10 year passive microwave data. This project is developing a more comprenensive approach to the inforamtion gap by combining SAR and scatterometer data collected since the early 1990s to estiamte biomass properties. As the spatial resolution of both sensors is consistent with the range of length scales typcially used within ecosystem models it is expected that this development will provide a unique contribution to improving ecosystem modelling and assessment.
CARBON-RO: Near-Real-Time CARBON EXTREMES There is a need for comprehensive, accurate, and low-latency information on land carbon fluxes to be underpinned by high resolution remote-sensing datastreams. A key policy-relevant challenge for the scientific community is the lack of a rapid [...]UNIVERSITY OF EXETER (GB)Sciencebiosphere, carbon science cluster, ecosystems/vegetationThere is a need for comprehensive, accurate, and low-latency information on land carbon fluxes to be underpinned by high resolution remote-sensing datastreams. A key policy-relevant challenge for the scientific community is the lack of a rapid quantification of carbon losses from recent mega droughts or fires despite numerous observations being available. The Near-Real-Time (NRT) Carbon Extremes project will address this major challenge, with the following objectives:  to develop robust observation-based estimates of changes in the land carbon sinks and their driving processes in near-real-time. to realize a first NRT process-based system for land biogeochemistry.  to utilise output from the NRT system in combination with Earth Observation (EO)-data to diagnose and attribute the impact of climate extremes on the regional and global carbon cycle (Europe heatwave 2022, Brazil fires 2022, and a further region, to be defined depending on weather extreme occurrence, in 2023).  A key policy-relevant challenge for the scientific community is the lack of a rapid quantification of carbon losses from recent mega droughts or fires despite numerous observations being available. The NRT Carbon Extremes project will address this major challenge, with the following objectives:  To address these objectives, we will implement a near-real-time (NRT) carbon monitoring system for the terrestrial biosphere. For the first time the community will exploit ECVs and Dynamic Global Vegetation Models (DGVMs) in NRT instead of with a lag of 2-3 years. We will apply 3 global DGVMs with NRT climate forcing data (ERA5), and combine their results with EO-derived products to attribute the net carbon flux to underlying processes (i.e. changes fluxes: primary production, respiration and fire; and carbon stocks). 
DACES – Detection of Anthropogenic CO2 Emissions Sources The project aims at developing a new methodology for detecting anthropogenic carbon dioxide emission sources. CO2 data from OCO-2 and NO2, SO2 and CO data from Sentinel-5P are collocated. The plan is to analyze these data in synergy to better [...]FINNISH METEOROLOGICAL INSTITUTE (FI)Scienceatmosphere, atmosphere science cluster, carbon cycle, carbon science cluster, permanently open call, science, Sentinel-5P, TROPOMIThe project aims at developing a new methodology for detecting anthropogenic carbon dioxide emission sources. CO2 data from OCO-2 and NO2, SO2 and CO data from Sentinel-5P are collocated. The plan is to analyze these data in synergy to better detect anthropogenic CO2 sources and plumes. In detail OCO-2 XCO2 data is deseasonalized and detrended, and further correlated/clustered to the spatial distribution of other species such as NO2, SO2, CO. Further a direct detection of emission plumes is done for anthropogenic sources using NO2, SO2 and CO datasets, and collocating the plumes with XCO2 data. The corresponding CO2 enhancements and ratios between different species at local level is then calculated. The project has been kicked-off the 5th October.
Earth Observation data For Science and Innovation in the Black Sea (EO4SIBS) In the frame of the ESA Regional Initiatives, a set of coordinated activities between science, public sector, industry growth and infrastructure components focussing on regional priorities with high interest for Member States, a number of [...]UNIVERSITY OF LIEGE (BE)ScienceBlack Sea and Danube, carbon science cluster, ocean science cluster, oceans, regional initiatives, science, Sentinel-2, Sentinel-3In the frame of the ESA Regional Initiatives, a set of coordinated activities between science, public sector, industry growth and infrastructure components focussing on regional priorities with high interest for Member States, a number of Science and Application projects are being runned for the Black Sea and Danube region. In this context, the EO4SIBS (Earth Observation data For Science and Innovation in the Black Sea) project is dedicated to Ocean Science. The objectives of this project are: To develop a new generation of algorithms that can ingest the wealth of spatial, temporal and spectral information provided by recent sensors providing high quality reference products for the blue and green ocean. In particular, regarding Ocean Colour derived products, innovative, high quality reference products of Chl-a, Total Suspended Matter (TSM) and turbidity products will be generated for the whole Black Sea geographical area, with a special focus on the western part directly influenced by the Danube River plume. Merged products will be generated to combine the high temporal resolution of S-3 OLCI and high spatial resolution of S-2 MSI satellite products and capture the optimal spatio-temporal coverage over the Black Sea waters. Concerning altimeter datasets, Level-3 Sentinel-3A [2016, 2018] and Cryosat-2 [2011, 2018] along-track product will be generated and their impact for coastal sea level trend study in the Black Sea assessed, and Level-4 multi-mission gridded products over the [2011, 2018] for improved mesoscale studies. Finally, 10 year (2010-2020) of improved gap-free high resolution salinity products will be generated. To collect new data to support the development of novel algorithms and to propose laboratory analyses of the highest quality To build novel composite products that integrate the satellite information with that from robotic platforms and numerical ocean models; To assess how the use of EO data improves our knowledge of good environmental status (GES) and climate change in the Black Sea. In particular three scientific use cases will be assessed : Physical oceanography and biochemical ecosystems; Black Sea level dynamics and trends; Deoxygenation. To disseminate the developed tools and products to the regional and international scientific and end-user community through the setting of a web platform, the organization of dissemination events, the participation to conferences.
EOCYTES: Evaluation of the effect of Ozone on Crop Yields and the TErrestrial carbon pool using Satellite data Living Planet Fellowship research project carried out by Jasdeep Singh Anand.

Terrestrial ecosystems are a major carbon pool, and so act to mitigate anthropogenic climate change. However, vegetation in these carbon pools are damaged by [...]
UNIVERSITY OF LEICESTER (GB)Scienceatmosphere, biosphere, carbon cycle, carbon science cluster, land, living planet fellowship, scienceLiving Planet Fellowship research project carried out by Jasdeep Singh Anand. Terrestrial ecosystems are a major carbon pool, and so act to mitigate anthropogenic climate change. However, vegetation in these carbon pools are damaged by tropospheric O3, which is formed from anthropogenic NOx and aerosol emissions. Damaged vegetation cannot sequester as much carbon, so this will lead to a degradation of carbon pools, and a worsening of climate change. In addition, O3 exposure also decreases crop yields, and therefore poses a threat to global food security. Previous investigations into O3 exposure on vegetation have relied on long-term in-situ studies using eddy covariance methods. Such investigations are costly and extremely geographically limited, and do not cover most of the tropics and emerging economies. Additionally, poorly constrained factors such as CO2 fertilisation also increase the uncertainty of derived estimates of O3-related damage. Satellite datasets from ESA and third-party missions provide long-term global monitoring of atmospheric composition and plant productivity, and could be combined with existing models of land-atmosphere processes to better constrain the rate of degradation of the terrestrial carbon pool, and to provide more useful metrics on crop losses stemming from O3 exposure. This project will analyse satellite datasets of O3, and vegetation indices as well as use the JULES land surface model to assess the extent short-term and long-term O3 exposure decreases the terrestrial carbon sink and decreases crop yields, particularly near megacities where emissions of O3 precursors are most concentrated. These results will be validated against existing in-situ datasets, such as the SoyFACE experiments, along with historical crop yield data.
FORESTSCAN ESA’s upcoming Biomass mission will deliver valuable P-band SAR data aimed at forest aboveground biomass (AGB) estimation across the humid tropics. Additionally, the current NASA GEDI mission on the International Space Station (LiDAR), the [...]UCL CONSULTANTS LTD (GB)ScienceBiomass, carbon science cluster, forestry, SAR, scienceESA’s upcoming Biomass mission will deliver valuable P-band SAR data aimed at forest aboveground biomass (AGB) estimation across the humid tropics. Additionally, the current NASA GEDI mission on the International Space Station (LiDAR), the NASA NISAR and JAXA ALOS-4 (L-band SAR) will widen our possibilities to estimate AGB from space. However, all these missions rely on calibration and validation data derived from field-plots. Which needs to be scalable across the typically hectare-scale satellite sensor footprints. The ForestScan project will investigate novel technologies such as Terrestrial Laser Scanning (TLS) and Unmanned Aerial Vehicle-based Laser Scanning (UAV-LS) to complement manual plot based measurements of AGB by collecting and analysing such data for three tropical sites in French Guiana (Paracou), Gabon (Lopé) and Malayisa (Sepilok). In addition at each of these sites airborne laser scanning data is available. The specific objectives of the study are (i) the development of a protocol for acquiring such measurements in tropical forests; (ii) analysing scaling properties of forest structure in tropical forests and (iii) high precision limited area measurement (plot census, TLS and UAV-LS) with wide area airborne laser scanning. Ultimately this effort will support the systematic collection and understanding of reference data for biomass product validation as required for the CEOS Good Practices Guideline (Duncanson et al., 2021, DOI:10.5067/doc/ceoswgcv/lpv/agb.001).
HR-AlbedoMap: Generation of high-resolution spectral and broadband surface albedo products based on Sentinel-2 MSI measurements The project aims at improving a current surface albedo generation system by adapting and integrating a deep learning system for cloud detection, an advanced atmospheric correction model which considers the surface BRDF effects, and a new [...]UCL CONSULTANTS LTD (GB)Sciencecarbon science cluster, permanently open call, science, Sentinel-2, Surface Radiative PropertiesThe project aims at improving a current surface albedo generation system by adapting and integrating a deep learning system for cloud detection, an advanced atmospheric correction model which considers the surface BRDF effects, and a new technology allowing to retrieve high-resolution albedo from high-resolution reflectance by combining with downscaled MODIS BRDF climatology
IMITATE – Introducing Machine-learning Into Targeted Analysis for Terrestrial Ecosystems The proposed IMITATE project aims to address the following questions:How well can machine learning methods emulate physical process-based land surface models, focused over Europe?Can explainable AI techniques provide new insights into process [...]UNIVERSITY OF LEICESTER (GB)ScienceAI4EO, carbon cycle, carbon science cluster, Ecosystems, land surface, scienceThe proposed IMITATE project aims to address the following questions: How well can machine learning methods emulate physical process-based land surface models, focused over Europe? Can explainable AI techniques provide new insights into process understanding when combining land surface models and Earth Observation data Are the learnt relationships between the modeled inputs and outputs consistent with those from Earth Observation data? To do this the project will: produce land surface model simulations from the JULES ESM (Earth System Model) over Europe focusing on the carbon cycle develop, train and evaluate machine learning models (emulators) against the simulated land surface parameters use these emulators to investigate the complex emergent relationships and feedback to gain an increased understanding of the underlying Earth System processes and to test whether data from satellite-based essential climate variables (e.g. ESA-CCI) are consistent with the relationships learnt from the land surface models. produce an Emulated-GPP (gross primary productivity) data product based on EO data, using the relationships learnt from the land surface model.
LAND SURFACE CARBON CONSTELLATION STUDY The carbon cycle is central to the Earth system, being inextricably coupled with climate, the water cycle, nutrient cycles and the production of biomass by photosynthesis on land and in the oceans. In the natural system the balance among carbon [...]LUND UNIVERSITY (SE)Sciencecarbon cycle, carbon science cluster, scienceThe carbon cycle is central to the Earth system, being inextricably coupled with climate, the water cycle, nutrient cycles and the production of biomass by photosynthesis on land and in the oceans. In the natural system the balance among carbon in the atmosphere, the land and the ocean is regulated through fluxes between these three main reservoirs. In addition to these natural components, there are the flux contributions to the atmosphere from human activities, namely, fossil fuel burning, cement production, and a range of land management practices. Understanding the patterns of exchanges of carbon between the atmosphere and the land and the underlying processes associated to them such as CO2 fertilization, changes in climate, and changes to natural disturbance regimes, are critical to improving knowledge of the carbon cycle, its direct and indirect impacts on society. Identifying approaches to mitigate and adapt for the consequences of the anthropogenic disturbance of the carbon cycle is hampered by the uncertain uptake of atmospheric carbon by the terrestrial biosphere, and the response of this uptake to climate change itself. To achieve such understanding and reduce these uncertainties requires an integrated approach to the carbon cycle which exploits both observations (satellite and in situ) and modelling. The main objective of the Land surface Carbon Constellation (LCC) project is to demonstrate the synergistic exploitation of satellite observations from active and passive microwave sensors together with optical data for an improved understanding of the terrestrial carbon and water cycles. This will be achieved by: adapting a numerical land surface model for its application in a data assimilation framework, acquisition and analysis of campaign data sets at Sodankylä (Finland) and Majadas de Tietar (Spain) supporting the development of the model and the data assimilation scheme on the local scale. The LCC Study started in October 2020 and contributes to ESA’s Carbon Science Cluster, focussing on its land component.
Methane+ The ESA Methane+ project aims at exploiting the SWIR and TIR CH4 observations from different satellites in order to better differentiate between sources and sinks of CH4 on the regional and global scale. For this we will use the CH4 observations [...]Netherlands Institute for Space Research (NWO-I) (NL)Scienceatmosphere, atmosphere science cluster, atmospheric chemistry, carbon science cluster, CrIS, IASI, Metop, permafrost challenge, science, Sentinel-5P, SUOMI-NPPThe ESA Methane+ project aims at exploiting the SWIR and TIR CH4 observations from different satellites in order to better differentiate between sources and sinks of CH4 on the regional and global scale. For this we will use the CH4 observations of TROPOMI on Copernicus Sentinel-5p, IASI on MetOp-B, and CrIS on Suomi NPP in combination with atmospheric inversion models. OBJECTIVES: Given the identified opportunities and challenges of the current generation of space borne methane sensors, and the scope of the current study, the specific study objectives are as follows: Providing support for the algorithm development for the CH4 SWIR retrieval from TROPOMI, TIR from IASI/CrIS, and joint SWIR-TIR retrieval from TROPOMI and IASI/CrIS. Assess the quality of the TROPOMI, IASI and CrIS CH4 retrievals by comparing data products generated with different algorithms and product validation using independent ”ground-based” measurements. Investigate the added value of combining CH4 SWIR and TIR in regional case studies. Infer global sources and sinks of CH4 from inverse modelling of 2 years of TROPOMI and IASI (and/or CrIS) data. Investigate the added value of the combined use of SWIR and TIR CH4 observations. Investigate the consistency of the SWIR and TIR CH4 satellite data, with model simulated transport and chemistry. Formulate a road map for future CH4 satellite remote sensing based on the outcomes of this study as well as parallel studies covering the use of CH4 from TROPOMI across the full range of scales. The Methane+ project started on 22-Jan-2020 with a duration of 2 years.
MethEO – Methane emissions in the Northern Hemisphere by applying both data from Earth Observing (EO) satellites and global atmospheric methane inversion model estimates The project will investigate Northern Hemisphere methane (CH4) sources and their connection to the soil freezing and thawing at high latitudes. We will innovatively combine methods for monitoring of CH4 (methane) emissions in the Northern [...]FINNISH METEOROLOGICAL INSTITUTE (FI)Scienceatmosphere, atmosphere science cluster, biosphere, carbon cycle, carbon science cluster, permafrost challenge, permanently open call, polar science cluster, science, Sentinel-5P, SMOSThe project will investigate Northern Hemisphere methane (CH4) sources and their connection to the soil freezing and thawing at high latitudes. We will innovatively combine methods for monitoring of CH4 (methane) emissions in the Northern Hemisphere by applying both data from Earth Observing (EO) satellites and global atmospheric methane inversion model estimates. The EO data consists of global soil F/T estimates obtained from the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission (from the SMOS+ Frozen soil project) as well as retrievals of atmospheric methane obtained from the Greenhouse Gases Observing Satellite (GOSAT) and the newly launched Sentinel 5 Precursor TROPOMI (S5P-TROPOMI) observations. The project has been kicked-off the 5th September. A first informal progress meeting has been on 20th December. First results have been shown and look promising.
MULTI-FLEX: towards a strategy for fluorescence monitoring at multiple scales within the context of the FLEX/S-3 tandem mission Living Planet Fellowship research project carried out by Marco Celesti.

The future FLEX/Sentinel-3 tandem mission will provide unique information on vegetation dynamics by exploiting Sun-induced fluorescence and reflectance at the [...]
UNIVERSITY OF MILANO BICOCCA (IT)Sciencebiosphere, carbon cycle, carbon science cluster, land, living planet fellowship, science, Sentinel-3Living Planet Fellowship research project carried out by Marco Celesti. The future FLEX/Sentinel-3 tandem mission will provide unique information on vegetation dynamics by exploiting Sun-induced fluorescence and reflectance at the unprecedented spatial scale of 300m x 300m. This magnified view into the photosynthetic machinery will enhance our ability to face the actual and future challenges related to food production and to the interactions between natural ecosystems and the climatic and biogeochemical Earth system. Towards the FLEX mission, a lot of technical and scientific development is ongoing in order to build up the knowledge necessary to translate this spectral information into a meaningful and concrete way to retrieve photosynthesis from space. Within this context, the ATMOFLEX project started in February 2018 with the main aim of collecting Sentinel-3A measurements and collocated ground observations characterizing the state of the atmosphere for an extended period of time. As a core objective of ATMOFLEX, several sites have been instrumented with state-of-the-art hyperspectral spectroradiometers continuously measuring over the vegetation. Moreover, for a limited period of time, Sentinel-3B OLCI data in a FLEX-like configuration will be acquired, together with airborne acquisition with the FLEX airborne demonstrator (HyPlant). This will bring the unique opportunity of a multi-scale, multi-platform dataset acquired with fluorescence-capable devices, over a coherent time and geographical frame. This project is focused in exploiting the potential of fluorescence and reflectance to describe photosynthetic dynamics, by exploiting the dataset acquired within the ATMOFLEX project, developing a flexible tool built on physically based RTMs for retrieving information about vegetation biophysical/biochemical parameters and Sun-induced fluorescence, capable of dealing with multiple spectral and spatial resolution data. High level parameters retrieved from model inversion such as the fluorescence quantum efficiency will be compared with simpler fluorescence- and reflectance based metrics proposed to track vegetation photosynthetic dynamics or to correct for mixed pixel problems arising at the spatial scale offered by satellite observations. Apart from contributing to the development of an innovative approach for a coupled retrieval of fluorescence and vegetation parameters, the direct benefit of this approach would be to enrich the dataset of the ATMOFLEX sites with consistent data that can be further exploited at a later stage. Moreover, the multi-scale approach proposed in this project will improve our understanding of the link between punctual measurements performed on the ground and satellite observation in the context of the future FLEX cal/val activities, a fundamental step towards the creation of robust and reliable products out of the mission.
Ocean Virtual Laboratory The aimof this activity is To exploit the synergy between Sentinel instruments and other mission EO datasets together with in situ measurements in complex waters and improve scientific understanding of ocean and coastal processes and impacts.The [...]OCEANDATALAB (FR)Sciencealtimeter, carbon cycle, carbon science cluster, CryoSat, oceans, platforms, Sentinel-1, Sentinel-2, Sentinel-3The aimof this activity is To exploit the synergy between Sentinel instruments and other mission EO datasets together with in situ measurements in complex waters and improve scientific understanding of ocean and coastal processes and impacts.The main objective of the project is to develop a virtual plateform to allow oceanographers to discover the existence and then to handle jointly, in a convenient, flexible and intuitive way, the various co-located EO datasets and related model/in-situ datasets over dedicated regions of interest with a different multifacet point of view. This is first demonstrated over the Agulhas region. Developed tools shall foster the emergence of new methods prototype and products making use of the complementarity between sensors to study ocean related processes. The tool shall also provide the best possible visibility on the upcoming Sentinel1/2/3 datatakes to help plan and coordinate with field campaign. The OVL is filling the gap between Space agencies data portals that distributes specific EO data and analysis software like IDL/ENVI or Matlab that are more suitable for in-depth analysis of a given dataset. A few GIS systems such as Google Earth are able to import several data layers but very little interaction with data (apart for basic layer transparency) is possible. The project scientific committee has to ensure that the developed OVL is providing significant added value and is not duplicating existing efforts in the international community. Scientists in the consortium shall ensure that OVL is built for scientists and with a large beta-tester community and response effectiveness to satisfy most needs of a rather versatile community.
PHOTOPROXY: TECHNICAL ASSISTANCE FOR THE PHOTOSYNTHETIC-PROXY EXPERIMENT In few years from now, ESA’s BIOMASS and FLEX Earth Explorers satellite missions will open a new opportunity to enhance our knowledge of the global carbon cycle. In particular, the scientific exploitation of BIOMASS and FLEX in synergy with the [...]FORSCHUNGSZENTRUM JUELICH GMBH (DE)ScienceBiomass, biosphere, carbon cycle, carbon science cluster, FLEX, land, science In few years from now, ESA’s BIOMASS and FLEX Earth Explorers satellite missions will open a new opportunity to enhance our knowledge of the global carbon cycle. In particular, the scientific exploitation of BIOMASS and FLEX in synergy with the Sentinel satellite series and other existing and future missions (e.g. CMOS, GEDI, NISAR, Tandem-X/L) will provide an unprecedented opportunity to better understand and characterize the different components of the carbon cycle and its dynamics. Preparing for the fast exploitation of this unique and unprecedented observational capacity, ESA has launched the Carbon Science Constellation Initiative. This initiative will be implemented through a cluster of different studies, research activities, campaigns and tool development efforts dedicated to support the scientific community to explore the potential synergies between different Earth Observation approaches and maximize the scientific impact of this unique set of sensors for carbon cycle research. With the PhotoProxy project, we address relevant open aspects that are related to the quantitative assessment of vegetation photosynthesis and vegetation stress from space. In the past years the fluorescence signal that is emitted from the core of the photosynthetic apparatus during photosynthetic energy conversion, has become the most promising indicator of actual photosynthetic rates. In 2012, the European Space Agency has selected the FLEX satellite mission to become ESA’s 8th Earth Explorer mission (Drusch et al. 2017). FLEX will be the first dedicated fluorescence mission that will provide global maps of both peak of the fluorescence signal on a high spatial resolution and relevant revisiting time. In addition to fluorescence, which can be measured across various scales ranging from the single leaf to the ecosystem (Rascher et al 2015, Wieneke et al 2018), in recent years, alternative approaches to the remote detection of photosynthetic carbon fluxes (photosynthesis or gross primary productivity, GPP) have been proposed. These approaches include reflectance-based measures by NIRv (Badgely et al. 2017) and CCI (Gamon et al. 2016), which are both related to pigment and structurally-based changes in vegetation [see Fig below as an example for the complementary information content of the different remote sensing measures]. Together, these remote sensing approaches offer a way to revolutionize our assessment of photosynthetic carbon uptake and vegetation health from space. However, major questions remain regarding the exact function of each of these signals and their relationship to each other. There are several indications that fluorescence may be the best remote sensing parameter to constrain predictions of CO₂ uptake rates, but we expect that a combination of the different measures will provide the best estimates of actual vegetation function. Thus with this activity we are working in an international consortium to address the following objectives: Test the applicability of the recently developed reflectance indices CCI and NIRv to track diurnal and seasonal vegetation dynamics. Perform a comparison of CCI, NIRv and solar induced chlorophyll fluorescence to better judge the quality of the different approaches to understand and model vegetation dynamic. Compare a benchmark dataset of those parameters to flux estimates from airborne and ground-based systems. Determine the scale-dependence (temporal and spatial) of the correlation between each optical metric and photosynthetic carbon uptake. Determine the factors that confound the interpretation of reflectance-based signals, and the conditions under which these occur. Determine the degree by which physiological regulation and structural adjustments influence each signal. Related publications Badgley G, Field C.B. and Berry J.A. (2017) Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances, 3; e1602244 Drusch M., Moreno J., Del Bello U., Franco R., Goulas Y., Huth A., Kraft S., Middleton E., Miglietta F., Mohammed G., Nedbal L., Rascher U., Schüttemeyer D. & Verhoef W. (2017) The FLuorescence EXplorer mission concept – ESA’s Earth Explorer 8. IEEE Transactions on Geoscience and Remote Sensing, 55, 1273-1284 Gamon J.A., Huemmrich K.F., Wong C.Y.S, Ensminger I., Garrity S., Hollinger D.Y., Noormets A., Peñuelas J. (2016) Photosynthetic phenology of evergreen conifers. Proceedings of the National Academy of Sciences, 113 (46), 13087-13092 Rascher U., Alonso L., Burkart A., Cilia C., Cogliati S., Colombo R., Damm A., Drusch M., Guanter L., Hanus J., Hyvärinen T., Julitta T., Jussila J., Kataja K., Kokkalis P., Kraft S., Kraska T., Matveeva M., Moreno J., Muller O., Panigada C., Pikl M., Pinto F., Prey L., Pude R., Rossini M., Schickling A., Schurr U., Schüttemeyer D., Verrelst J. & Zemek F. (2015) Sun-induced fluorescence – a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant. Global Change Biology, 21, 4673–4684 Wieneke S., Burkart, A., Cendrero-Mateo M. P., Julitta T., Rossini M., Schickling A., Schmidt M., Rascher U. (2018) Linking photosynthesis and sun-induced fluorescence at sub-daily to seasonal scales. Remote sensing of environment, 219, 247 – 258   [Book chapter]: J. Quiros-Vargas, B. Siegmann, A. Damm, R. Wang, J. Gamon, V. Krieger, B.S.D. Sagar, O. Muller, U. Rascher, “Fractal Geometry and the Downscaling of Sun-induced Chlorophyll Fluorescence Imagery” in Encyclopaedia of Mathematical Geosciences, B.S. Daya Sagar, Q. Cheng, J. McKinley, F. Agterberg, Eds. (Springer Nature, 2022)
PHYSIOGLOB: Assessing the inter-annual physiological response of phytoplankton to global warming using long-term satellite observations Living Planet Fellowship research project carried out by Marco Bellacicco.

Phytoplankton is considered to be responsible for approximately 50% of the planetary primary production and is at the basis of the trophic chain. Large scale factors [...]
ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT (ENEA) (IT)Sciencecarbon cycle, carbon science cluster, climate, living planet fellowship, ocean science cluster, oceans, scienceLiving Planet Fellowship research project carried out by Marco Bellacicco. Phytoplankton is considered to be responsible for approximately 50% of the planetary primary production and is at the basis of the trophic chain. Large scale factors such as climate, ocean circulation, and mostly anthropogenic activities, affect phytoplankton biomass and distribution. For all of these reasons, in the ocean, phytoplankton is defined as a sort of sentinel of changes in the ecosystem, because they rapidly respond to environment perturbations. Light, nutrients and temperature are the most important environmental variables that influence phytoplankton production. Phytoplankton cells respond to changes in light and nutrients with physiological strategies that enhance the efficiency of light capturing, photosynthetic capacity, growth and persistence. There are two different kinds of phytoplankton responses to light: photoadaptation and photoacclimation. The photoadaptation describes changes that might happen at genotype level, and are expected to occur at a long evolutionary time-scale. The photoacclimation is a cellular process that allows phytoplankton to change the intracellular chlorophyll-a concentration (Chl) in relation to environmental factors and it includes, among the others, regulation of the pigment amount and other components of the photosynthetic machinery. The temperature is the other main environmental agent that affects phytoplankton. It has been proved that ocean warming, mostly due to anthropogenic activities, causes an expansion of the low-Chl and low-productivity areas impacting strongly on marine ecosystem.  The most important and easily observable mechanism due to photoacclimation is variation of the photosynthetic pigment concentration (i.e. Chl) at the cellular scale which is thus can be observed and quantified using space-borne observations. Photoacclimation can be described in terms of variation of the ratio between chlorophyll-a and carbon (Chl:C ratio). Unfortunately, this process is currently overlooked by standard operational ocean colour algorithms used to retrieve information about both the phytoplankton standing stock and production. PhysioGlob wants to study the inter-annual physiological response of phytoplankton to global warming using long-term satellite observations (i.e. entire ESA OC-CCI time-series) through the Chl:C ratio. Phytoplankton carbon could be estimated from the particle backscattering (bbp, λ). One of the most used and applied algorithm for bbp (λ) is the Quasi Analytical Algorithm (QAA). We want to re-evaluate retrieval of bbp (λ) over the global ocean with the QAA, using field data of remote-sensing reflectance (Rrs) and inherent optical properties (IOP), and then compare phytoplankton carbon with Chl to estimate the physiological signal. In order to study the trend and oscillation of this process we: i) study the single time series in separate M-SSA analyses to evaluate similarities among the inter-annual variabilities of the Chl:Cphyto ratio, SST, and phytoplankton indices also highlighting possible differences; ii) proceed with a joint M-SSA analysis of the time series to better understand the spatio-temporal structure associated with inter-annual variability in the Chl:Cphyto ratio or phytoplankton indices and global ocean temperature field. This coupled analysis will also help in addressing the question to which extent the inter-annual oscillatory modes found in the Chl:Cphyto ratio or phytoplankton indices can be attributed to its response to inter-annual variability in SST field.
PROMCOM: Production of lower tropospheric methane and carbon monoxide distributions through combined use of ESA Sentinel-5 Precursor shortwave infrared and IASI/CrIS thermal infrared satellite data Living Planet Fellowship research project carried out by Diane Knappett.

Global distributions of the methane (CH4) column average and carbon monoxide (CO) total column are observable by satellite shortwave infrared (SWIR) spectrometers [...]
UKRI Rutherford Appleton Laboratory (GB)Scienceatmosphere, carbon cycle, carbon science cluster, living planet fellowship, science, Sentinel-5P, TROPOMILiving Planet Fellowship research project carried out by Diane Knappett. Global distributions of the methane (CH4) column average and carbon monoxide (CO) total column are observable by satellite shortwave infrared (SWIR) spectrometers through detection of surface-reflected solar radiation. Observations by ENVISAT SCIAMACHY and GOSAT-TANSO have been exploited extensively to investigate biogenic, pyrogenic and anthropogenic sources and, in the case of methane, to quantify emissions through inverse modelling. ESA’s S5P offers a major advance on these preceding satellite SWIR spectrometers for identification and quantification of sources on finer scales by providing the first contiguous, daily global coverage at high spatial resolution (7 x 7 km). However, for inverse modelling of emission sources, height-resolved information would offer a major innovation on column information; particularly resolution of the lower tropospheric layer. This Fellowship proposes to develop and apply a scheme to achieve this by combining SWIR and TIR information on CH4 and CO.  RAL has developed a state-of-the-art scheme to retrieve global height-resolved methane distributions from thermal infrared (TIR) measurements in the Infrared Atmospheric Sounding Interferometer (IASI) 7.9 µm band (Siddans et al., 2017). While providing information on two independent vertical layers in the troposphere, sensitivity in this band decreases towards the ground, due to decreasing thermal contrast between the atmosphere and surface. A combined retrieval scheme exploiting in addition the high signal-to-noise information from S5P (SWIR/column) with that from IASI or CrIS (TIR/height-resolved) would enable lower tropospheric distributions of methane and CO to be resolved. Lower tropospheric concentrations are more closely-related to emission sources than are column measurements and inverse modelling of surface fluxes should be less sensitive to errors in representation of transport at higher altitudes; a limiting factor for current schemes.  As baseline, ESA S5P Level 2 (L2) products will be combined with retrievals from RAL’s IASI scheme; either as additional prior information for the IASI retrieval (L2-L1) or by combining retrieved L2 products (L2-L2). The IASI TIR scheme will then be modified and applied to CrIS (Suomi-NPP or NOAA-20), whose observations are separated by ~5 minutes from S5P compared to ~4 hours for IASI. Test data sets will be compared with analyses, models and surface measurements. Possibilities to improve on: (a) ESA’s S5P products, (b) the TIR scheme or (c) the SWIR-TIR scheme will then be assessed. Finally, the best performing scheme will be run to produce a fully-sampled 1-year CH4 and CO height-resolved dataset which will be made accessible to the science community.
Satellite Oceanographic Datasets for Acidification (OceanSODA) Since the beginning of the industrial revolution humans have released approximately 500 billion metric tons of carbon into the atmosphere from burning fossil fuels, cement production and land-use changes. About 30% of this carbon dioxide (CO2) [...]UNIVERSITY OF EXETER (GB)Sciencecarbon cycle, carbon science cluster, climate, ocean science cluster, oceans, science, SMOS, SSTSince the beginning of the industrial revolution humans have released approximately 500 billion metric tons of carbon into the atmosphere from burning fossil fuels, cement production and land-use changes. About 30% of this carbon dioxide (CO2) has been taken up by the oceans, largely by the dissolution of this CO2 into seawater and subsequent reactions with the dissolved carbonate ions present in seawater. Anthropogenic emissions CO2 levelled out in 2016, but have since begun to increase again, rendering absolutely critical to monitor ocean carbon uptake. The long-term uptake of carbon dioxide by the oceans is reducing the ocean pH, a process commonly known as ocean acidification. The uptake is also altering the ocean chemistry and ecology, impacting marine ecosystems on which we rely. Recent work has begun to investigate the use of satellite Earth Observation, especially focusing on satellite sea surface salinity and sea surface temperature data, exploiting empirical methods to monitor surface-ocean carbonate chemistry. These techniques complement in situ approaches by enabling the first synoptic-scale observation-based assessments of the global oceans and are particularly well suited to monitoring large episodic events. The Satellite Oceanographic Datasets for Acidification (OceanSODA) project will further develop the use of satellite Earth Observation for studying and monitoring marine carbonate chemistry. Besides further developments of algorithms linking satellite variables with marine carbonate system parameters and the associated validation, a distinct focus will be on selected scientific studies and downstream impact assessment. This will include characterising and analysing how upwelling (of low pH waters) and compound events impact the carbonate system, and characterising the flow and impact on marine ecosystems of low pH waters from large river systems. The project will also work closely with the World Wide Fund for Nature (WWF), the U.S. National Oceanic and Atmospheric Administration (NOAA) and The Ocean Foundation, to support their work on coral reef conservation, the designation of marine protected areas and investigation of wild fisheries health and sustainable management.
SEN4CARBON Theme 1: Terrestrial Gross Primary Production (SEN4GPP) The objective of the Sen4GPP project is to assess time-space variability of terrestrial gross primary production  (GPP) of terrestrial ecosystems by a synergistic exploitation of the complementary information provided by  the Sentinel [...]NOVELTIS SAS (FR)Sciencecarbon cycle, carbon science cluster, science, Sentinel-1, Sentinel-2, Sentinel-3, Sentinel-5PThe objective of the Sen4GPP project is to assess time-space variability of terrestrial gross primary production  (GPP) of terrestrial ecosystems by a synergistic exploitation of the complementary information provided by  the Sentinel missions (Sentinel-2, Sentinel-3 and Sentinel-5P) at multiple spatial and temporal resolutions, as well as other Earth Observation and in situ data.
SEN4CARBON Theme 2: Fire Dynamics (SENSE4FIRE) Based on the new possibilities of the Sentinel series of satellites, this project aims to develop a highly novel approach to derive global fire emissions estimates based on the characterisation of individual fires and their behaviour. These data [...]TECHNISCHE UNIVERSITAT DRESDEN (DE)Sciencecarbon cycle, carbon science cluster, science, Sentinel-1, Sentinel-2, Sentinel-3, Sentinel-5PBased on the new possibilities of the Sentinel series of satellites, this project aims to develop a highly novel approach to derive global fire emissions estimates based on the characterisation of individual fires and their behaviour. These data will be combined with bottom-up estimates of fuel and combustion and top-down constraints on total carbon emissions and emissions factors. Furthermore, observations of atmospheric composition will be exploited to provide an uncertainty assessment from top-down emission estimation.  The new approach will highlight the power of Sentinels to reduce emissions uncertainty, understand direct and indirect effects of fire on long-term changes in the carbon cycle, and highlight the linkages between fuels, fire behaviour, and emissions with the potential of improved fire predictions.
Sentinel-3 Primary Production over Land (TerrA-P) Gross primary production (GPP) and terrestrial net primary production (NPP) are fundamental quantities in the global carbon cycle, and for the production of food, fibre and biomass for human use. This project aims at exploiting Sentinel-3 data [...]VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK VITO (BE)Sciencebiosphere, carbon cycle, carbon science cluster, land, science, Sentinel-3Gross primary production (GPP) and terrestrial net primary production (NPP) are fundamental quantities in the global carbon cycle, and for the production of food, fibre and biomass for human use. This project aims at exploiting Sentinel-3 data to develop and validate a productive model, consistent across different regions and ecosystems.The objective of the TerrA-P project is to define, implement and validate a model to derive information on the vegetation productivity based on data from MERIS and Sentinel-3. To reach this goal, knowledge and expertise from three domains need to be combined. These domains are: the ecophysiology of the plants which is expressed in the productivity model, the EO data sets that can be used as input for this model, and the in-situ data that allow the validation of the model outcome using EO-input data.
SENTINEL-5P+ INNOVATION OCEAN COLOUR (S5P+-I-OC) The S5P+I-OC project will explore the capacity of the Sentinel-5p TROPOMI data to provide novel Ocean Colour (OC) products. More specifically, the objectives of this S5P+ Innovation activity are to:

develop a solid scientific basis for the [...]
ALFRED WEGENER INSTITUTE (DE)Scienceatmosphere science cluster, carbon cycle, carbon science cluster, ocean science cluster, oceans, science, Sentinel-3, Sentinel-5P, Sentinel-5P+ Innovation, TROPOMIThe S5P+I-OC project will explore the capacity of the Sentinel-5p TROPOMI data to provide novel Ocean Colour (OC) products. More specifically, the objectives of this S5P+ Innovation activity are to: develop a solid scientific basis for the application of S5P data within the context of novel scientific and operational OC products applications; assess existing algorithms which have been used for OC product retrievals from SCanning Imaging Absorption Spectro-Meter for Atmospheric CHartographY (SCIAMACHY), Ozone Monitoring Instrument (OMI) and Global Ozone Monitoring Experiment (GOME-2); develop novel OC products and retrieval methods that exploit the potential of the S5P mission’s capabilities beyond its primary objectives, in particular, the chlorophyll-a concentration (CHL) of important phytoplankton groups (PFT-CHL), the underwater light attenuation coefficients (Kd) for the ultraviolet (UV) and the blue spectral region separately (KdUV, KdBlue), and the sun-induced marine chlorophyll-a fluorescence signal (SIF-marine) from TROPOMI S5P level-1 data; explore the potential of the UV range of S5P for ocean biology; use complementary products from Sentinel-3 (S3) and S5P for exploring the UV measurements of TROPOMI for assessing sources of coloured dissolved organic matter (CDOM) and the amount of UV-absorbing pigments in the ocean; validate with established reference in situ datasets and perform intercomparison to other satellite OC data; define strategic actions for fostering a transition of the methods from research to operational activities; maximize the scientific return and benefits from the S5P mission for surface ocean research and services (e.g. CMEMS) by assessing the synergies with other satellite sensors, in particular explore the synergistic use of S5P and S3.
SENTINEL-5P+ INNOVATION SOLAR INDUCED CHLOROPHYLL FLUORESCENCE (SIF) The ESA –TROPOSIF project is one of the seven themes from the Sentinel-5p+ Innovation (S5p+I)  activity funded by ESA, which aims at developing novel scientific products / retrieval methods from the data acquired by the TROPOMI (TROPOspheric [...]NOVELTIS SAS (FR)Scienceatmosphere science cluster, biosphere, carbon cycle, carbon science cluster, land, science, Sentinel-5P, Sentinel-5P+ Innovation, TROPOMIThe ESA –TROPOSIF project is one of the seven themes from the Sentinel-5p+ Innovation (S5p+I)  activity funded by ESA, which aims at developing novel scientific products / retrieval methods from the data acquired by the TROPOMI (TROPOspheric Monitoring Instrument) instrument aboard the Copernicus Sentinel-5 Precursor mission launched in October 2017. Although the Sentinel-5P mission was designed to monitor the Earth’s atmosphere, TROPOMI’s spectral and radiometric performance enable to also monitor terrestrial Solar Induced Fluorescence (SIF) with an unprecedented spatial and temporal resolution. What is SIF? Solar induced chlorophyll fluorescence (SIF) is an electromagnetic signal emitted by the chlorophyll a of assimilating plants: part of the energy absorbed by chlorophyll a is not used for photosynthesis, but emitted at longer wavelengths as a two-peak spectrum roughly covering the 650–850 nm spectral range. The SIF signal responds instantaneously to perturbations in environmental conditions such as light and water stress, which makes it a direct proxy for photosynthetic activity. However, SIF emission constitutes only a small fraction (typically 0.5%-2%) of the radiance at the top of the canopy, which is mostly composed of reflected sunlight, and its estimation from space-borne spectrometers requires both high spectral resolution and advanced retrieval schemes. Why should we care about SIF? Over the last few years, solar-induced chlorophyll fluorescence (SIF) observations from space have emerged as a promising resource for evaluating the spatio-temporal distribution of gross carbon uptake (GPP = gross primary productivitt) by terrestrial ecosystems, the characterization of which still remains uncertain to date. In the particular case of climate studies, our ability to anticipate the evolution of net and gross carbon fluxes over the globe under a changing climate largely relies on global terrestrial biosphere models (TBMs). Their parameterization remains largely uncertain and it is anticipated that satellite SIF products will provide a significant constraint (reduction in uncertainty) on the projections of the terrestrial carbon updake.
SHRED: Sentinel-1 for High REsolution monitoring of vegetation Dynamics Living Planet Fellowship research project carried out by Mariette Vreugdenhil.

Through its role in the global water-, carbon- and energy cycles, vegetation is a key control in land surface processes and land-atmosphere interactions. [...]
TECHNISCHE UNIVERSITAT WIEN (TU WIEN) (AT)Sciencebiosphere, carbon cycle, carbon science cluster, land, living planet fellowship, science, Sentinel-1, SMOSLiving Planet Fellowship research project carried out by Mariette Vreugdenhil. Through its role in the global water-, carbon- and energy cycles, vegetation is a key control in land surface processes and land-atmosphere interactions. Vegetation is strongly affected by variability in climate drivers like temperature, radiation and water availability. Vegetation phenology, the timing of vegetation phases, is a sensitive indicator of terrestrial ecosystem response to climate change, and changes herein, e.g. lengthening of the growing season, can influence terrestrial carbon uptake and thus, depending on the net effect, either exacerbate or dampen global warming. The effect of moisture availability on vegetation dynamics is still debated. While some studies found no relation between precipitation and vegetation dynamics when using visible-infrared (VI) remote sensing (RS), others attributed reductions in vegetation water, productivity and carbon uptake to droughts. Thus, the effects of water availability on vegetation dynamics and the subsequent feedbacks are still not fully understood. Nevertheless, understanding these effects are essential since droughts are expected to become more frequent with global warming and demand of agricultural food production increases to ensure global food security. To identify the processes involved in interactions between climate drivers and vegetation dynamics long-term high-resolution Earth Observation (EO) datasets are needed. Microwave RS, with the advantage that it’s not hindered by clouds, smoke or illumination, provides complementary information on vegetation compared to VI RS. Vegetation Optical Depth (VOD), which describes the attenuation of microwave radiance by vegetation, is sensitive to the water content in the above ground biomass. Global VOD datasets are available from active and passive microwave observations, and have been successfully used to study trends and inter-annual variability in vegetation. However, to date the use of microwave observations has always been a trade-off between coarse spatial and high temporal resolution. With the Copernicus Sentinel-1 series, for the first time high temporal and spatial resolution backscatter time series have become available. Studies have demonstrated the sensitivity of the VH/VV Cross Ratio (CR) to vegetation. Here I will optimally combine the Sentinel-1 CR with VOD retrieved from EEUMETSAT Metop ASCAT backscatter observations to develop a global 1 km VOD product. The novel high-resolution VOD will be evaluated using Leaf Area Index from Copernicus Global Land Service (CGLS), ESA’s SMOS VOD and VOD from AMSR2. Subsequently, I will use novel machine learning approaches to quantify the impact of water availability on vegetation dynamics. The high-resolution VOD will allow the analysis of variations in impact of water availability on vegetation dynamics between land cover types, e.g. differences between natural and agricultural lands.
SMOS+ VEGETATION ESA’s SMOS mission is part of ESA’s Living Planet Programme and carries the first-ever, polar-orbiting, space-borne, 2-D interferometric radiometer providing observations at 1.4 GHz. From the Level 1 brightness temperatures we derive the Level-2 [...]THE INVERSION LAB THOMAS KAMINSKI CONSULTING (DE)Sciencebiosphere, carbon cycle, carbon science cluster, land, science, SMOSESA’s SMOS mission is part of ESA’s Living Planet Programme and carries the first-ever, polar-orbiting, space-borne, 2-D interferometric radiometer providing observations at 1.4 GHz. From the Level 1 brightness temperatures we derive the Level-2 data products, namely surface soil moisture and vegetation optical depth (VOD) (over land) and sea surface salinity (over oceans). SMOS not only contributes towards our understanding of the global water cycle, but also has the potential to improve our understanding of the global carbon cycle. The assimilation of SMOS soil moisture into a carbon assimilation scheme built around a terrestrial biosphere model was found to improve global CO2 flux estimates. Similarly, assimilating SMOS soil moisture and AMSR-E C-band VOD data into an evapotranspiration (ET) model was found to improve ET and root-zone soil moisture estimates over Australia.However, there is still a lack of in-depth understanding of the VOD product, and its potential to monitor vegetation properties and processes has not yet been satisfactorily explored. In this context, this activity aims to increase the scientific return of the SMOS VOD data product by preparing and promoting its use for vegetation applications in the fields of agriculture, drought monitoring and land surface modeling.