UNIVERSITY OF BERGEN (NO)
The Swarm+ Coupling: High-Low Atmosphere Interactions ITT Statement of Work (SoW) has highlighted the “compelling scientific problem” of “the least-understood causes of planetary winds,” namely planetary outflows induced by “non-thermal (e.g., frictional heating, particle precipitation, wave-particle acceleration) processes.”
The Swarm+ Coupling High-Low Atmosphere Interactions: Ion Outflow (“Swarm+ Outflow”) project, which began in May 2019, centers on using Swarm spacecraft to tackle unanswered questions around non-thermal processes that lead to ion outflow. The project approach is as follows:
This approach involves combining Swarm plasma and field measurements with measurements from a host of other instruments, including European Incoherent SCATter (EISCAT) radars, the Cluster satellites, and University of Oslo all-sky camera measurements.
Geophysical Research Letters (2021)
Electron Density Depletion Region Observed in the Polar Cap Ionosphere
Journal of Geophysical Research: Space Physics (2021)
Space Weather (2021)
Journal of Geophysical Research: Space Physics (2020)