Latest Tweets

Projects

<% single.title %>

<% single.prime %>

<% single.domain %>

<% single.description %>

ProjectAbstractPrime CompanyDomainTagsFull text
EO4PAC – Earth Observation for Permafrost dominated Arctic Coasts EO4PAC project aims at the development of a roadmap for the next generation of the Arctic Coastal Dynamics database. The focus is on complementation of in situ  records with satellite data across the entire Arctic.b.geos GmbH (AT)ScienceArctic, coastal zone, permafrost challenge, polar science clusterEO4PAC project aims at the development of a roadmap for the next generation of the Arctic Coastal Dynamics database. The focus is on complementation of in situ  records with satellite data across the entire Arctic.
Methane+ The ESA Methane+ project aims at exploiting the SWIR and TIR CH4 observations from different satellites in order to better differentiate between sources and sinks of CH4 on the regional and global scale. For this we will use the CH4 observations [...]Netherlands Institute for Space Research (NWO-I) (NL)Scienceatmosphere, atmosphere science cluster, atmospheric chemistry, carbon science cluster, CrIS, IASI, Metop, permafrost challenge, science, Sentinel-5P, SUOMI-NPPThe ESA Methane+ project aims at exploiting the SWIR and TIR CH4 observations from different satellites in order to better differentiate between sources and sinks of CH4 on the regional and global scale. For this we will use the CH4 observations of TROPOMI on Copernicus Sentinel-5p, IASI on MetOp-B, and CrIS on Suomi NPP in combination with atmospheric inversion models. OBJECTIVES: Given the identified opportunities and challenges of the current generation of space borne methane sensors, and the scope of the current study, the specific study objectives are as follows: Providing support for the algorithm development for the CH4 SWIR retrieval from TROPOMI, TIR from IASI/CrIS, and joint SWIR-TIR retrieval from TROPOMI and IASI/CrIS. Assess the quality of the TROPOMI, IASI and CrIS CH4 retrievals by comparing data products generated with different algorithms and product validation using independent ”ground-based” measurements. Investigate the added value of combining CH4 SWIR and TIR in regional case studies. Infer global sources and sinks of CH4 from inverse modelling of 2 years of TROPOMI and IASI (and/or CrIS) data. Investigate the added value of the combined use of SWIR and TIR CH4 observations. Investigate the consistency of the SWIR and TIR CH4 satellite data, with model simulated transport and chemistry. Formulate a road map for future CH4 satellite remote sensing based on the outcomes of this study as well as parallel studies covering the use of CH4 from TROPOMI across the full range of scales. The Methane+ project started on 22-Jan-2020 with a duration of 2 years.
MethEO – Methane emissions in the Northern Hemisphere by applying both data from Earth Observing (EO) satellites and global atmospheric methane inversion model estimates The project will investigate Northern Hemisphere methane (CH4) sources and their connection to the soil freezing and thawing at high latitudes. We will innovatively combine methods for monitoring of CH4 (methane) emissions in the Northern [...]FINNISH METEOROLOGICAL INSTITUTE (FI)Scienceatmosphere, atmosphere science cluster, biosphere, carbon cycle, carbon science cluster, permafrost challenge, permanently open call, polar science cluster, science, Sentinel-5P, SMOSThe project will investigate Northern Hemisphere methane (CH4) sources and their connection to the soil freezing and thawing at high latitudes. We will innovatively combine methods for monitoring of CH4 (methane) emissions in the Northern Hemisphere by applying both data from Earth Observing (EO) satellites and global atmospheric methane inversion model estimates. The EO data consists of global soil F/T estimates obtained from the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission (from the SMOS+ Frozen soil project) as well as retrievals of atmospheric methane obtained from the Greenhouse Gases Observing Satellite (GOSAT) and the newly launched Sentinel 5 Precursor TROPOMI (S5P-TROPOMI) observations. The project has been kicked-off the 5th September. A first informal progress meeting has been on 20th December. First results have been shown and look promising.