

On the improvements of wave forecasting in the Atlantic ocean

Lotfi Aouf, Alice Dalphinet DirOP/MAR/RD

Workshop Atlantic from Space, Southampton, UK, 23-25 January 2019

Consequences of storm Petra 2014 : submersion

Saint Guénolé (Finistère) with max tide wednesday 5 february at 08h00 2014

Historical storm cases INCREO FP7 project : Winds, waves, storm surges

From records from 1924 until 2010

- Availability of data
- High intensity of the event in terms of known damages
- Other specific selection criteria for each coasts:

•Total sea level (= tide + storm surge) > High Atmospheric Tide + 20cm (Atlantic coast)

ATLANTIC

- Storm surge > threshold defined by station
- Instantaneous storm-surge > 1.75 * previous threshold
- •Large geographical extent Large variety of situations

Storm tracks on western European coasts

Motivation

□ Relevance of wave forecasting progress for the Atlantic ocean :

Wave submersion warning (VVS) for the french coasts North Atlantic storms and hurricane season for the west indies

Better wave products for CMEMS users

□ Implementation of earth system with coupling between ocean, Waves and Atmosphere (NEMO/MFWAM/ARPEGE models)

□Innovating with the assimilation of new satellite wave data (CFOSAT, SWOT, SKIM,...)

The current operational wave system MFWAM for CMEMS-GLO waves (marine.copernicus.eu)

□ Global grid of 10 km **3-hourly atmospheric forcing from IFS-ECMWF.** □ Improved wave physics for better surface stress for the coupling with ocean □ Daily surface currents forcing from CMEMS global ocean system □ 3-hourly assimilation of 5 altimeters in operations (Jason 2 & 3 Saral, Cryosat-2, Sentinel-3A) and Sentinel-1 wave spectra since December 2018

ean fields from global wave model MFWAM of Meteo-France with ECMWF forcing sea surface wave significant height

Snapshot of SWH on 13 Sep. 2018

Relevance of satelite wave data : Combined assimilation (altimeters and SAR wave spectra

Current daily coverage (Jason-2 & 3, Cryosat-2, Saral and S-3A)

Good retrieval of 3 to 5 wave systems Limited to long waves with azimuthal cut-off of -200 m

Complementary use between Altimeters SWH and directional Wave spectra Altimeters corrects total wave height, while SAR Spectra corrects directly the directional properties of partitions

Sentinel-1 SAR spectra

Operational CMEMS-Global waves : Combined assimilation Impact on mean wave period

Corrections mean wave period induced by the assimilation of altimeters and **SAR in CMEMS-Global**

50

Latitude (degrees)

Long swell tracks MWP>12 sec

Analysis MWP 2019011818

18 January 2019 at 18:00 UTC

Impact of the assimilation of 3 altimeters and SAR of S1A : Forecast period during GASTON

Ja2-Saral-CR2-Sentinel-1A

Tropical storm GASTON (Atlantic)

Difference between runs of MFWAM with and without assimilation

1-day forecast starting from 31 Aug. 2016 at 18:00, by step of 6 hours

Storm CARMEN (1 january 2018)

SWH from MFWAM 01/01/2018 at 09:00UTC

Impact of S3A during North-Atlantic Storm Analysis increment induced by S3A CARMEN (Jan 2018)

1.2

0.8

0.6

0.4

0.2

1

on SWH from 1 to 3 Jan (step 6h)

impact swh analysis 2018010100

Scatter index of SWH is significantly reduced when using 5 altimeters Comparison with brittany buoy

Peaks are well captured After the assimilation

Times series of SWH : Black line : brittany buoy Red line : Assimilation of S3A Blue line : Assimilation of All

Better resolved coastlines (grid size) Petra storm 5 february 2014

MFWAM 10 km

Coastal unstructured grid up to 200m

05/02 12h temps

05/02 18h

06/02 00h

05/02 06h

05/02 00h

Better waves = better Ocean/waves coupling Development in CMEMS-IBI system

Three coupling forcing computed by the wave model MFWAM

- Momentum flux modified by the waves
- Stokes-Coriolis forcing
- Wave breaking inducing turbulence in the ocean mixed layer

Storm consequences

Spanish cargo « *Luno* » pushed to the coast at Anglet (biscay bay) entrance of Adour estuary wednesday 5 february 2014 10:00 UTC.

Ocean/waves coupling during storm Petra on CMEMS-IBI (5 February 2014)

Impact of the wave coupling on surface current magnitude

The coupling captured better the peaks of SSH at Le Crouesty and Fishguard locations

Red : tide gage Blue : with waves Black : w/o waves

Coupling MFWAM/NEMO Wave forcing impact on SST : storm Petra 05/02/2014

Cooling is observed at the french coastal areas

Impact of wave forcing for 2014 Mean difference

Validation with satellite SST L3S

Ensemble wave forecast (PEARP, PE-AROME)

Probability of SWH > 10 m forecast-24h

Implementing PEARP (35 members) **Global ensemble wave forecast MFWAM** With 3 different wave physics (3x35)

Implementing diagnostic index EFI, Shift Of Tail,...

Extreme Forecast index (SWH) 27 February 2017

Freak waves prediction with ensemble wave forecast storm Eleonor (janvier 2018)

Maximum wave height

Hmax du membre 000 - PEARP du 02/01/2018 18h échéance 18h

1 means 100 % of freak waves risk (in red) Applications for ship routing Forcing the wave model MFWAM with PEARP atmospheric ensemble system (35 members)

---> Probability of BFI >1

Probability of Benjamin Fair Index > 0.5 - MFWAM 02/01/2018 18h lead-time 18h

Conclusions

□ The operational wave forecast in the Atlantic ocean has improved significantly thanks to the assimilation of satellite wave data. marine.copernicus.eu

□ Ensuring reliable wave submersion warning systems and accurate wave products for CMEMS users

□ Waves in the atlantic ocean play a key role for the coupling between Ocean and atmosphere systems (storms and hurricanes in the tropical atlantic, Challenges for warming pool impact on lower layer of the atmosphere)

□ Use of ensemble wave forecasting to provide extreme indicators in the Atlantic ocean

Case of 20 November 2018, 2018: wave spectra from

