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Atlantic Meridional Overturning Circulation (AMOC) *\\&%esa

e Atlantic is unusual as MOC transports heat
north across equator. Changes affect e.qg.:

- SST in the N. Atlantic

- NW European weather+climate
- eastern US seaboard sea level
- rainfall in the Sahel

- hurricanes and monsoons
- CO, uptake+carbon transport / storage

e possibly through links with the Atlantic
Multidecadal Variability (AMV/O oscillation)

e AMOC is predicted to slowdown or stop
under global warming (cf. paleo record)
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How the AMOC is measured at 26.5° N \\\&i‘%esa

e AMOC at 26.5°N consists of 3 components:
1) Ekman transport - from winds (satellite / re-analysis)
2) Florida Straits transport — from calibrated cable measurements

3) mid-ocean transport - from mooring array via geostrophy (upper ocean re-
circulation + deep return flow) - linked via dynamic height / density to SLA

e in addition a zero net throughflow condition is imposed

e from these measurements an overturning stream function is calculated, which
has a maximum at ~1100m, above which flow is northward and below southwards

e the 3 components of the northward flow, Ekman, Florida Straits and Upper Mid-
Ocean (UMO), together give the strength of the AMOC

McCarthy, G. D. et al. 2015 Measuring the Atlantic Meridional Overturning Circulation at 26°N.
Prog. Oceanogr. 130, doi:10.1016/j.pocean.2014.10.006
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RAPID 26.5°N time series 20042017 dcesa
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Satellite altimetry + Argo &\\\“\\ eSa

e astimate | - . e Argo used to estimate dynamic
—— SSH-based estimate @ 41 N . .
ool height at 1000m + T&S profiles
for geostrophic shear to give 3-D
18 ) absolute dynamic height from
16} LA - surface to 2000m
s+ | * Argo results regressed against

—
o
T

s altimeter SLA and upper 1000m
transport calculated, Ekman added

12

Overturning Transport
at 41°N (Sv)

Willis 2010 Can in situ floats and
satellite altimeters detect long-
8+ {1 term changes in the Atlantic Ocean

overturning? Geophys. Res. Lett.,

1992 1994 1996 1998 200$ea2r002 2004 2006 2008 2010 37, doi:10.1002/2010GL042372.
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Satellite altimetry \\\&‘%esa

e developed a SLA proxy for
the 26.5°N UMO transport

22 1 (over period of RAPID
observations)
207 e combined with Florida
c% 1g Straits transport and Ekman
G transport from winds
CED 16 - e observations back to 1993
Frajka-Williams 2015 Estimating the
14 4 — MOC from RAPID 26°N Atlantic overturning at 26°N using
{ == MOC* using UMO proxy satellite altimetry and cable
12 measurements, Geophys. Res. Lett.,

42, doi:10.1002/2015GL063220.
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AMOC and bottom pressure \\\&&%esa

e Alternative formulation of AMOC: transport T(y) at latitude y over depth range
(z1, z2) depends on the East-West pressure p(y, z) difference over that range (pg
mean density, f Coriolis parameter)

1 72
T(y) = —ff Pe(y,z) — pw(y,z)dz.
Pol I 21

e making sufficiently accurate in situ measurements of ocean bottom pressure
(OBP) to directly apply the above equation is problematic

e GRACE gravimetry — measuring time-varying gravity — provides measurements
of OBP anomalies (mm H,0) from mascon gravity fields
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AMOC from Ocean Bottom Pressure (OBP) \\\&i‘%esa

—LNADW: GRACE
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Landerer et al. 2015 North Atlantic Figure 3. Meridional transport estimates from GRACE OBP anomalies on the
meridional overtu rning circulation eastern and western margin integrated over the 3000-5000 m depth layer at

26.5N, compared to the RAPID-MOCHA estimate of LNADW. The RMS differ-
ence between these two estimates is 1.2 Sv and the correlation is R =0.69. The
1 sigma error of the GRACE-LNADW estimate is £1.1 Sv.
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variations from GRACE ocean bottom
pressure anomalies, Geophys. Res. Lett.,
42, doi:10.1002/ 2015GL065730.



Some other studies dcesa

e Mercier et al. (2015, Prog. Oceanogr.) - altimetry, Argo, hydrography to
reconstruct AMOC (in density space) along Greenland-Portugal OVIDE section

e Dong et al. (2015, GRL) - synthetic T & S profile from altimetry SLA (based on
correlations) to give variability of SAMOC between 20°S and 35°S

e Majumder et al. (2016, JGR) - Argo and altimeter sea surface height to construct
3-D velocity field and hence estimate AMOC at 20°, 25°, 30° and 35°S.

e Worthington et al (2019, JGR) — GRACE OBP and in situ BP for deep overturning
variability at 26.5°N

e at this meeting, see poster by Frajka-Williams et al. on AMOC from altimetry and
gravimetry — how best to combine altimetry and gravimetry to estimate the AMOC
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Limitations dcesa

e altimetry + Argo - only feasible where major flows are in water of depth 2000m
or more => restricted latitudinally ~39°- 45°N in N. Atlantic

e altimetry - relationships between sea level anomalies and dynamic height and T
& S may change on longer timescales as water mass properties vary

e gravimetry — uncertainties at longer timescales due need to correct for glacial
isostatic adjustment (removal of trend), effect of land hydrology on measurements
near coasts, plus coarse spatial resolution (3°)

e satellite AMOC estimates provided typically at monthly time resolution

e problem affecting all satellite AMOC measurements is that of validation and
verification over decadal times scales

e can only be sure of satellite determined AMOC measurements by comparison
with in situ direct observations
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Observing AMOC - future requirements \\\ﬁt‘i‘?%;esa

60°N e key question: AMOC meridional coherence
/omw e new in situ observing systems being deployed

(RAPID 26.5°N time series from 2004)

e altimetry (sea surface height / level) and
gravimetry (OBP) can help "join the dots”

e challenge: how best to combine observations?

30°N

escatterometry and passive microwave
contribute to wind information (=> Ekman)
e infrared SST and passive microwave SST &
SSS for links to AMV and air-sea interactions

“ 1 e altimetry for coastal sea level
s 7 e challenge - to characterise AMOC impacts
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Observing the AMOC from Space - conclusions

e Observing the AMOC, determining its
meridional coherence, how it is
changing over long times scales
(decades), and the consequent impacts
(weather, climate, sea level),

is a challenging problem.

e Satellite observations of winds, sea
level / sea surface height, ocean bottom
pressure, SSS & SST can all contribute.

e The overarching challenge is to build a
sustained observing system.
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