

→ ATLANTIC FROM SPACE WORKSHOP

23–25 January 2019 National Oceanography Centre Southampton, UK

> Beach Litter Monitoring via Drone

Remote Sensing

200

Co-funded by the UE

+

European Space Agency

THE PROJECT

Litterdrone Team | Atlantic from Space Workshop | 23-25/01/2019 | Slide 2

*

Litter Drone

European Space Agency

DRONE-BASED IMAGE ACQUISITION

COMPUTER BASED IMAGE ANALYSIS

¿WHAT IS MARINE LITTER?

Man made solid waste that, for any cause, are abandoned in marine or coastal environment

SOURCE: PNUMA

LITTERDRONE ORIGIN

- Marine litter
 characterization as a key factor to eradicate them
- Official **monitoring** program for marine litter on beaches (MAPAMA)
- Standardization and automation of marine litter characterization

SOURCE: Surfrider España

FUNDED BY EU (BLU-LABS PROGRAM)

EASME/EMFF/2016/1.2.1.4

Blue Labs Innovative Solutions for Maritime Challenges

> Supported by:

With Collaboration of:

PARQUE NACIONAL MARÍTIMO TERRESTRE DAS ILLAS ATLÁNTICAS DE GALICIA

> Partners:

DRONES & FLIGHTS

*

Litter Drone

European Space Agency

esa

UAV'S & CAMERAS

UAV'S & CAMERAS

REAL FLIGHTS

IMAGE ACQUISITION: ORTHO-PHOTO

IMAGE ACQUISITION: ORTHO-PHOTO

Photomodeler: from photos to Ortho-photo (geo-referenced, exact)

TEST ZONE

- Flying on one of the monitored beaches:
 "playa de Rodas" (Galician Atlantic Islands Maritime-Terrestrial National Park)
- Detection of true marine litter and comparison with official data
- Flying on another (non monitored) beach

With the collaboration of

ARQUE NACIONAL MARITIMO TERRESTR DAS ILLAS ATLÁNTICAS DE GALICIA

REAL FLIGHTS

Flight transects

Flight with individual photo shots labelled

IMAGE PROCESSING

Litterdrone Team | Atlantic from Space Workshop | 23-25/01/2019 | Slide 15

*

European Space Agency

IMAGE PROCESSING

Objects detection with beta version: sand characterization

SAND CHARACTERIZATION

SAND CHARACTERIZATION (method II)

Use of differential components (R-G, R-B, G-B).

Use of normalized differential indexes: (c2-c1)/(c1+c2)

OBJECT DETECTION

IMAGE TYPE: RGB

VISIBLE, CONVENTIONAL CAMERA

GLOBAL REPORT

IMAGE SUPERPOSITION

IMAGE SUPERPOSITION: methods

- Manual selection of (at least three control points) and affine transformation.
- Use of geo-referentiation files: scale info + one control point from image origins.
- Manual introduction of scale info + one control point (for displacement).

Future Lines:

➤ Two control points → definition of two "control vectors" → enough to deduce scale info and displacement).

IMAGE SUPERPOSITION:

10.1

px 🗠

7,45 % 🗸 termica-registrada.png (890,8 MB)

Q

0

Automatic recognition of more common objects: lids, bottles, cans, sticks... and also auxiliary objects (white targets)

S	ShowObjectsWindow			- 0 X
Litterdrone			Código: 78 Descr: Beverage Cans	Rechazar
	ST		Estàndar: OSPAR100 ML MLW MEDPOL	Aceptar
Cargar Imagen del Muestreo	Cargar Imagen del Muestreo		Sugerencia: NO HAY SUGERENCIA	Grabar Lista
Crear Calibración del Fondo			P - Botella plastico O - Botella vidrio M - Lata	Exportar
Cargar Bandas (capas) Extra	Realzado 🛛 🖓	Malla, cuadrícula (cm): 5	m - PEG H - Bastoncillo OTRAS v	
Generar Informe	Ubicar en Mapa		Filtrar	61 Ir a
Revisar Informe	Detalle del Objeto		Reconocidos No reconocidos	< >
Salir	Objeto 61 de 92. Area (cm^2): 61.360000.		◯ Negativos	
	Longitud (cm): 14.408604. Ancho (cm): 5.586906.		Otras Clases	SALIR
rce Dx0/OpticsPro ence 11				

Decision tree is implemented computing discriminant functions. For class i, at stage n, we take into account feature value x:

$$D_i^{n+1} = D_i^n \cdot d_i(x)$$

$$d_{i}(x) = \begin{cases} 0, x > x_{max} \cup x < x_{min} \\ \exp\left[-\frac{1}{2}(\frac{x - x_{med}}{x_{desv}})^{2}\right] \end{cases}$$

Empirical equations inspired by Bayes rule and gaussian distribution.

Minimum, Maximum, Median & Deviation are computed from real samples and manually revised.

Human correction of non recognized objects

CONCLUSIONS

Litterdrone Team | Atlantic from Space Workshop | 23-25/01/2019 | Slide 28

*

European Space Agency

CONCLUSIONS

> Interesting project ending at January 2019.

Future Lines:

- ✓ Testing New Cameras.
- ✓ Improving Object Recognition.
- ✓ Jump to Market.

MEETING OF DRONE TECNONOLOGY, REMOTE SENSING AND COMPUTER VISION,

MORE PROJECTS OF THIS KIND ARE EXPECTED IN THE FUTURE

RECOMMENDATIONS

> Pay attention to drone technology & computer vision.

> Drone technology & hyperspectral sensors (or new hyperspectral sensors for drones).

> Drone imaging over the sea (near to coastline and/or drones launched from ships).

Projects trying to integrate drone and satellite images.

Litterdrone Team | Atlantic from Space Workshop | 23-25/01/2019 | Slide 30

· = ■ ► = = + ■ = = = = ■ ■ = = = = = ■ ■ ■ ■ = = = ■ ₩ =

THANK YOU !

www.litterdrone.eu