Use of Satellite Data to Support Ocean Wind & Wave Forecasting: A Review

ESA Atlantic from Space Workshop NOC, Southampton, UK 23-25 Dec. 2018

Saleh Abdalla^(*), Giovanna De Chiara, Jean Bidlot, Lars Isaksen ECMWF, Shinfield Park, RG2 9AX, UK ^(*) Saleh.Abdalla (AT) ECMWF.INT

Outline

- "Earth System" approach & coupling.
- Status of ocean wind and wave data (Altimeter), analysis and forecasts.
- Progress in ocean wind & wave forecasts
- Status of ocean surface winds Scatterometer & SMOS .
- Conclusions in a form of assessment and potential for improvements.

"Earth System" approach.

Coupling.

Uncoupled: Ocean – Land – Atmosphere – Sea ice

"Earth System" Approach

Strategy 2016-2025

- Coupled modelling of the Earth System Components
- Interactions between the different components in the model and assimilation
- Coupled assimilation → consistent initial conditions to the coupled model.

Earth System components

Coupled models within Integrated Forecasting System (IFS)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Status of ocean sea-state (mainly altimeter) data, analysis and forecasts

Ocean wind & waves measurements

- In-situ:
 - **Buoys**: significant wave height, wave period, wind vector, wave spectrum.
 - **Platforms**: significant wave height, wave period, wind vector.
 - Coastal radars: significant wave height.
 - Others: e.g. Wave parameters from pressure transducers; winds from *ships*.
- From space:
 - Altimeters: Significant wave height (SWH), surface wind speed. (e.g. Sentinel-3 SRAL).
 - Synthetic Aperture Radar (SAR): wave spectrum (of long waves), surface wind (e.g. Sentinel-1).
 - **Scatterometer** (SCAT): surface wind vector (e.g. MetOps ASCAT).
 - Real Aperture Radar: significant wave height, wave spectrum (CFOSat SWIM).
 - Others: e.g. Wind speed from **SMOS**.

Altimeter (Sentinel-3A) wind speed & significant wave height comparison against in-situ measurements

Impact of wave data assimilation (Altimeter SWH)

- ECMWF wave model (ECWAM) which is part of Integrated Forecasting System (IFS).
- Assimilation of SWH at a scale of ~70-80 km (super-observations).
- Based on Optimum Interpolation (OI).
- Control: assimilating Jason-2, CryoSat-2 and SARAL/AltiKa SWH data.
- Impact of adding Jason-3 & Sentinel-3A data:
 - Improvement of model analysis
 - Improvement of model forecast.
 - Improvement of the robustness of the wave data assimilation system.

Impact of altimeter SWH data (from 5 altimeters) assimilation on model analysis (1 Dec. 2016 – 30 Apr. 2017)

Impact of altimeter SWH data (from 5 altimeters) assimilation on model forecasts (1 Dec. 2016 – 30 Apr. 2017)

Daily Coverage of NRT Altimeter SWH (1 May

ECMUF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Progress in ocean wind & wave forecasts in the North Atlantic

Progress in surface wind speed forecasts since 2000: 1. Bias

Progress in surface wind speed forecasts since 2000: 2. Random error

Progress in significant wave height forecasts since 2000: 1. Bias

Progress in significant wave height forecasts since 2000: 2. Random error

Status of ocean surface winds – Scatterometer & SMOS

Scatterometer ocean surface vector winds

- ✓ Scatterometer wind vectors are important measurements at the atmosphere/ocean interface
- ✓ They have always known to have an impact on the atmosphere analysis and forecast
- In a coupled atmosphere/ocean/wave assimilation system it has been proven that Scatterometer winds have an impact on the ocean parameters too

21

SMOS wind products

- ✓ SMOS mission provides multi-angular L-band brightness temperature (resolution 30/80 km).
- L-band is less affected by rain, spray and atmospheric effects than higher mw frequencies (Cband, Ku-band). There is no saturation at high wind speed like for radars.
- ✓ Ifremer has developed a SMOS wind speed GMF focused on high wind speed.

Assessment and potential for improvements.

1. Focusing on the Atlantic

- Due to circulation in the atmosphere, impact of atmospheric data (or lack of data) propagates from eastwards. (e.g. Kelly et al., 2007)
- Data on the North Atlantic impacts Europe in a couple of days.
- The Atlantic itself, feels the impact of data in the Pacific 5-7 days before.

G. Kelly, J.-N. Thepaut, R.o Buizza and C. Cardinali (2007): "The value of observations. I: Data denial experiments for the Atlantic and the Pacific", Q. J. R. Meteorol. Soc. 133: 1803–1815, DOI: 10.1002/qj.150

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHE

2. ECMWF 24 Forecast Impact (FSOI) – Example from February 2018:

Adapted from Alan Geer's ECMWF Annual Seminar 2018 talk

3. Need for reference observation dataset for high winds

- Model: good agreement for 3-20 m/s, underestimation for strong winds
- > For strong winds:
 - ASCAT and buoys observations agree well with each other, giving the lowest wind.
 - AMSR2, SMOS and platforms are also coherent with each other, giving higher wind speed values.
 - ASCAT strong winds seem to be underestimated compared to other data.
 - Clear bias between buoys and platforms, strong winds from buoys could be underestimated?
 - Why such a good agreement between ASCAT/buoys and AMSR2/platforms?

Lucia Pineau-Guillou et al. (2017)

4. Future of Scatterometer data:

- Many scatterometer sensors flying at the moment:
 - C-band sensors on Metop-A, Metop-B, Metop-C (EUMETSAT)
 - Ku-band sensors on ScatSat-1 (ISRO), HY-2B (NSOAS), CFOSAT (CNES/CNSA)
 - At ECMWF we are using Metop-A/B. Metop-C and ScatSAT assessments are ongoing.
- Planned launches in the near future: Oceansat-3 (ISRO), FY-3E (CMA)
- Long-term planned missions: EPS-SG (EUMETSAT) with 3 SCA instruments in the 2022-2043 timeframe
- The availability of other atmosphere/ocean interface measurements like surface ocean currents and surface stress is desirable to improve the way scatterometer winds are retrieved and used in NWP.

5. Future of Altimeter and SAR data:

- Many altimeters are flying at the moment:
 - Sentinel-3A and 3B.
 - Jason-3 and Jason-2.
 - CryoSat-2.
 - SARAL/AltiKa.
 - Others: HY-2B, CFOSAT
- Planned launches in the near future: Sentinel-6A and 6B, Sentinel-3C and 3D.
- The availability of wide swath altimeters is useful.
- SAR:
 - Sentinel-1A and 1B.
 - Planned: Sentinel-1C and 1D.

6. Need for other wind measurements

• L-band microwave wind measurements:

- SMOS winds have great potential in providing ocean winds in extreme conditions (TC, extratropical storms).
- The continuous availability of L-band microwave wind measurements in the future is of great value/interest.

• Wind profiles:

- Aeolus is the first satellite mission to acquire profiles of Earth's wind on a global scale.
- Continuous availability of such data is important to improve weather forecasts.

7. List of desirable extra measurements:

- Provision of the following from space with good accuracy over the whole globe in near real time is highly desirable (some have already been mentioned in the previous slides):
 - surface ocean currents (accompanied with wind vectors if possible)
 - surface stresses
 - wind profiles
 - L-band microwave surface wind measurements
 - swath measurements of sea state (significant wave height)
 - atmospheric surface pressure

Thanks

Extra

Earth surface modelling components @ECMWF in 2018

NEW03.4		EC-WAM	LIM2
NEMO3.4 (Nucleus for European Modelling of the Ocean)		ECMWF Wave Model	The Louvain-la-Neuve Sea Ice Model
Madec et al. (2008) Mogensen et al. (2012)		Janssen, (2004)	Fichefet and Morales Maqueda (1997)
		Janssen et al. (2013)	Bouillon et al. (2009)
			Vancoppenolle et al. (2009)
ORCA1_Z42: 1.0° x 1.0°		ENS-WAM : 0.25° x 0.25°	
ORCA025_Z75 : 0.25° x 0.25°		HRES-WAM: 0.125° x 0.125°	ORCA025_Z75 : 0.25° x 0.25°
		Stress To To To To To To To To To To To To To	
Hydrology-TESSEL	NEW SNOW	• NEW LAI • H ₂ O / E / CO ₂	Lake & Coastal area • Enhance ML
Balsamo et al. (2009) van den <u>Hurk</u> and <u>Viterbo</u> (2003)	Dutra et al. (2010)	Boussetta et al. (2013) Integration of	Mironov et al (2010), Snow ML5
	Revised snow density	New satellite-based Carbon/Energy/Wat	ter Dutra et al. (2010), Soil ML9
Global Soil Texture (FAO)	Liquid water reservoir	Leaf-Area-Index Boussetta et al. 201	13 Balsamo et al. (2012, 2010) Dutra et al. (2012, 2016)
New hydraulic properties Variable Infiltration capacity & surface runoff revision	Revision of Albedo and sub-grid snow cover	SOIL Evaporation Acusti-Panareda et	t al. 2015 Extra tile (9) to Balsamo et al. (2016) for sub-grid lakes and ice
		Balsamo et al. (2011),	LW tiling (Dutra)
		Albergel et al. (2012)	
	V 7	Net terrestrike uptike 0-1	

IT NOO

R1 , R2

Atmos Land Resol.	ECMWF in 2018
80 km	ERAI
32 km	ERA5+ SEAS5+*
18 km	ENS+*
9 km	HRES+*

<u>*Ocean</u>

used across forecast systems and in Ocean reanalysis

(*migration completed with HRES-coupled operational from the 5th June 2018)

33

Data exchanges in the ECMWF coupled model

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Fields in () are not

currently used in

operations

Nobs and total FSOI by instrument: NH, SH, TR

FSOI: Forecast Sensitivity to Observation Influence (24h forecast), by Cristina Lupu.

Nobs and total FSOI: Mass and wind

May – August 2016

FSOI: Forecast Sensitivity to Observation Influence (24h forecast), by Cristina Lupu.

Winter Pacific forecasts: Verification of mean 500 hPa geopotential *rmse* up to day 10 for SEAOUT in grey dotted and SEAIN in black: Both experiments are verified using ECMWF operational analysis verified in the North Atlantic

37