The assimilation of phytoplankton functional types for operational forecasting in the North-West European Shelf

Jozef Skakala (PML), Stefano Ciavatta (PML), Robert Brewin (PML), David Ford (Met Office), Susan Kay (PML), Robert McEwan (Met Office)
Copernicus Marine Ecosystem Monitoring Service (CMEMS) currently provides reanalysis of the ecosystem state on the NWE Shelf based on total chlorophyll assimilation. The Copernicus service will be updated with PFTs DA (the presented work) for reanalysis (2019) and near-real time operational forecasting (2020).
Data Assimilation
The Earth Observations (EOs)

NASA MODIS

NASA SeaWiFS

NOAA OISST

NASA VIIRS

ESA MERIS

NERC NC, MIOS, BGC-Argo

Ocean colour
PFT chlorophyll distributions with errors (17-24/6/08), will be operationally available through CMEMS.

Regional product for SCC & PFTs

<table>
<thead>
<tr>
<th>[Chl]</th>
<th>RMSD</th>
<th>Bias</th>
</tr>
</thead>
</table>

Diatoms

Dinoflagellates

Nano-phytopl.

Pico-phytopl.

Brewin et al., 2017
Importance of phytoplankton size/type

<table>
<thead>
<tr>
<th>Phytoplankton Size/Type</th>
<th>Characteristics</th>
</tr>
</thead>
</table>
| **Pico-phytoplankton (<2μm)** | - High remineralisation of organic matter
- Low export (outgas CO$_2$)
- High growth rates
- High light absorption
- High surface-to-volume ratio
- Loss grazing |
| **Nano-phytoplankton (2-20μm)** | - Moderate remineralisation
- High sinking rates
- Moderate growth rates
- Moderate absorption
- Calcium carbonate cycle
- DMS cycle (e.g. *Phaeocystis*) |
| **Micro-phytoplankton (>20μm)** | - Lower remineralisation
- High export production
- High sinking rates
- Lower (flat spectral) absorption
- Silicate cycle
- DMS cycle (e.g. some dinoflagellates)
- Rich food source (↑ in some essential fatty acids) |
The ecosystem model: NEMO-FABM-ERSEM

Operational forecasting

NEMO V3.6

NEMOVar

3D-VAR
First-Guess-at-Appropriate-Time
Log-transformation
Incremental Analysis Update

Daily DA (12 UTC). 1 year (2010) simulations. Correlation length scales on the level of Rossby radius (1/4 deg). 3:1 model-to-observational error ratio. The DA updates PFT chlorophyll and subsequently the other PFT variables (carbon, nitrogen, phosphorus, silicon) to preserve the background stochiometry. Each DA step followed by a 5 day forecast.

Skakala et al, JGR-Oceans, 2018
Annual spatial medians of the four PFT chlorophyll

<table>
<thead>
<tr>
<th>Ref</th>
<th>Diatom</th>
<th>Nano</th>
<th>Pico</th>
<th>Dino</th>
</tr>
</thead>
<tbody>
<tr>
<td>noDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chl DA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFT DA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satellite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PFTs DA is by far the closest to the Satellite
Annual median total chlorophyll-a concentrations

Largest impact: southern North Sea
Median Shelf annual time series
Possible interpretations of EO – reanalysis match-ups

A) Large Model to EO error ratio

B) Consistency between model dynamics and reanalysis increments
Forecast skill

[Chart showing bias vs. median absolute difference for different PFTs (Phytoplankton Functional Types) across 1 to 5 days of forecast skill, with reanalysis and PFTs DA categories highlighted.]
In situ validation showed that DA substantially improves representation of pCO2 (bias lowered by 50%), but it has statistically insignificant, or inconsistent impact on nutrients (nitrate, phosphate, silicate).

Improved representation of surface pCO2 (μbar) on the NWE Shelf (annual mean). Maps such as these will be part of Met Office reanalysis products (2019) and available for the near-real time application (2020).

- **Free run**
- **DA**

Largest impact: southern North Sea
Conclusions

• PFT DA is a useful approach improving the representation of ecosystems on the North-West European Shelf.

• PFT DA outperforms TotChl DA in simulating the ocean-colour phytoplankton community structure. PFT DA produces distributions very close to EO, we argue this is a sign of dynamical consistency between EO and model.

• PFT DA outperforms TotChl DA in PFT forecasting skill and has comparable results in how it represents / forecasts total chlorophyll.

• DA improves representation of pCO2 impacting on the estimate of air-sea carbon flux.

• The assimilation system developed here will be part of Copernicus monitoring service for reanalysis (2019) and for forecasting / near-real time applications (2020).