

DROUGHT MONITORING AND CROP YIELD FORECASTING

Nirajan Luintel, Emanuel Bueechi, Wolfgang Preimesberger, Wouter Dorigo

Climate and Environmental Remote Sensing (CLIMERS) Group

Department of Geodesy and Geoinformation

TU Wien, Vienna

ESA UNCLASSIFIED - For ESA Official Use Only

Please download data for todays practical

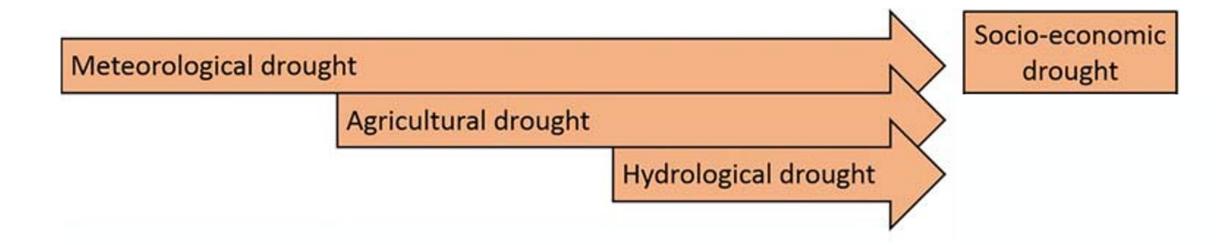
https://ruhr-unibochum.sciebo.de/s/H4qH9M48S9yyy pQ

Or directly from eo-college

What is drought?

- Drier than normal condition leading to water shortage
- Impacts on environment and economy

Drought types



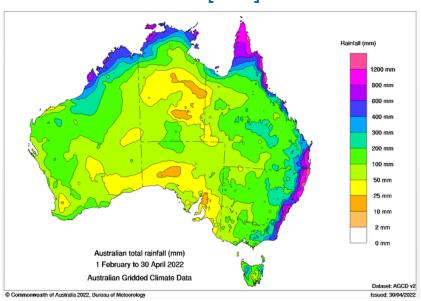
[Crocetti et al, 2020]

duration of drought

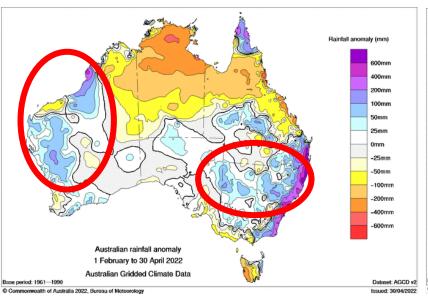
How do we quantify drought?

 Drought is not a physical variable but an indicator of deviating conditions, and can be expressed in various ways

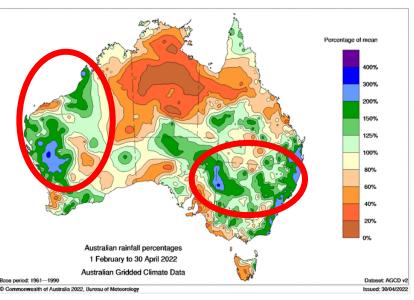
Rainfall January-April 2022 [mm]



Anomaly from long-term mean rainfall [mm]

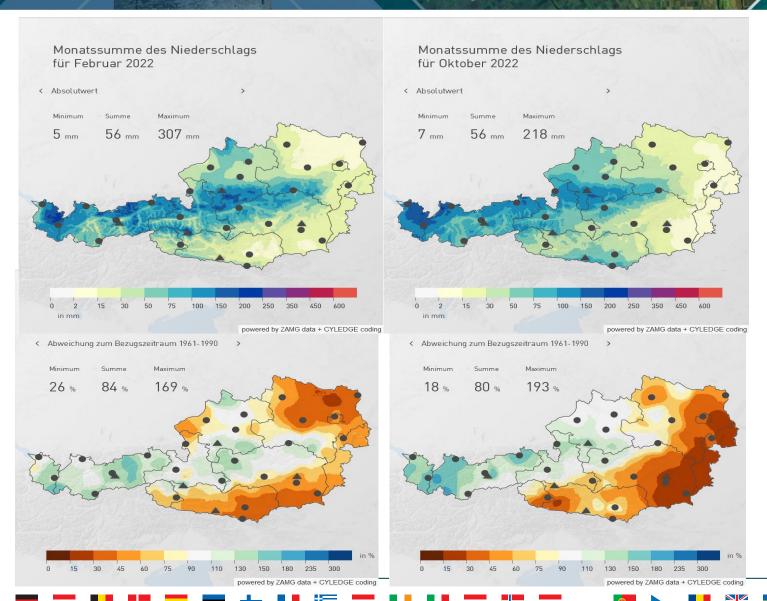


Percentages of long-term mean rainfall [mm]



http://www.bom.gov.au/climate/maps/rainfall/?variable=rainfall&map=totals&period=3month®ion=nat&year=2022&month=03&day=31

Also seasonal differences need to be accounted for

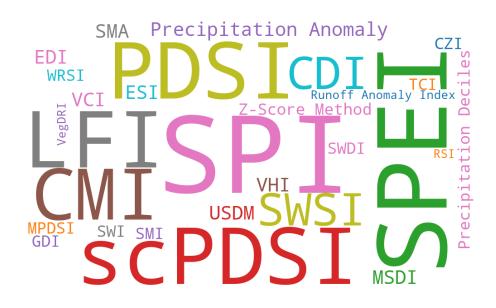


Different scenario of drought for different seasons

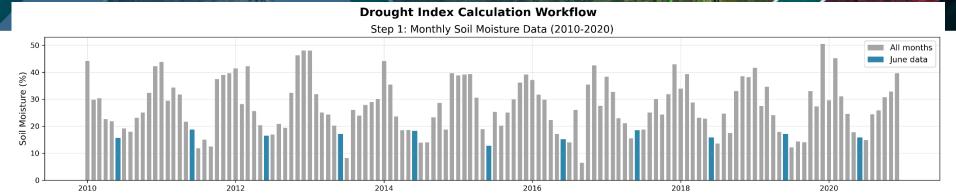
https://www.zamg.ac.at/cms/de/klima/klima-aktuell/klimamonitoring

Indices -> standardized values **express moisture deficit**:

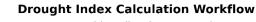
- Standardized Precipitation Index (SPI), using Precipitation only
- Standardized Precipitation-Evapotranspiration Index (SPEI), using P and potential ET
- Palmer Drought Severity Index (PDSI), based on P and T
- Self-calibrating PDSI
- And many more...

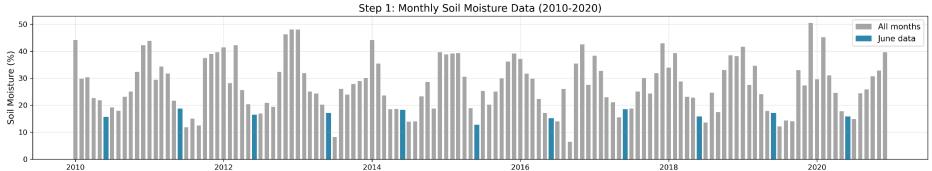




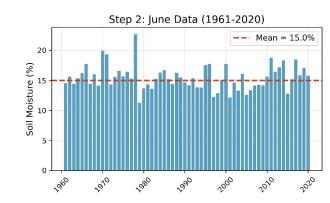


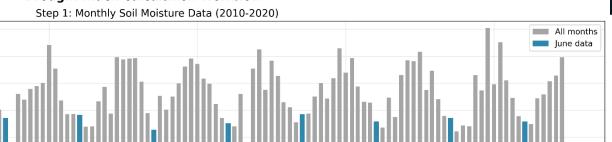
Example of standardization with normal distribution fitting (z-score)



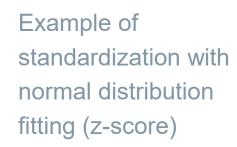


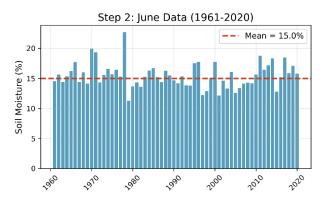
Example of standardization with normal distribution fitting (z-score)





2018

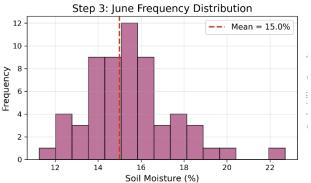


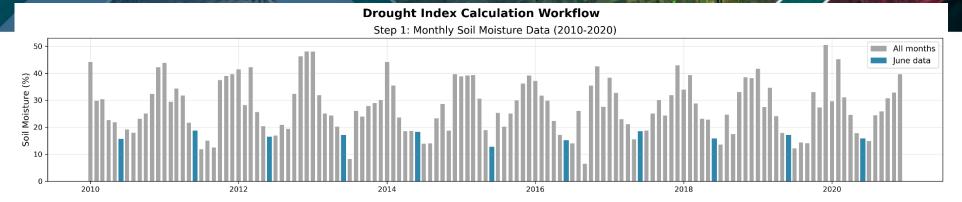


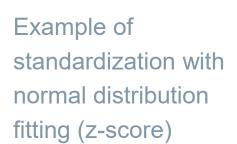
2012

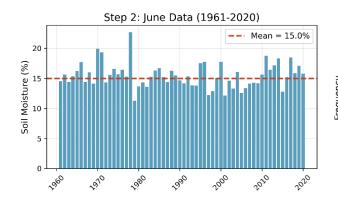
50

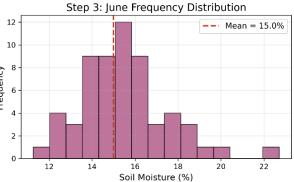
Soil Moisture (%)

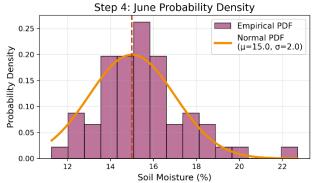


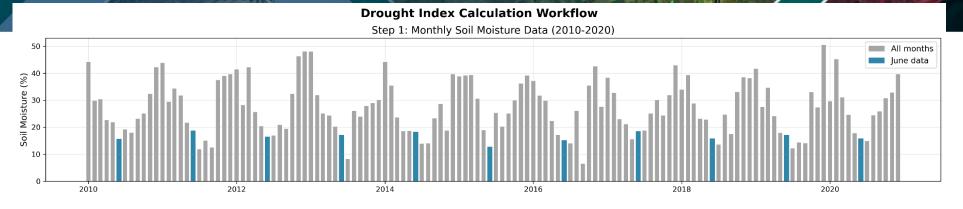


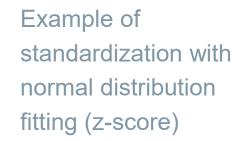


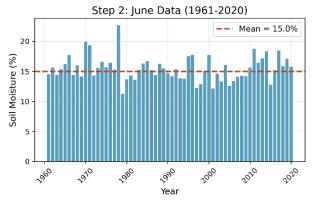


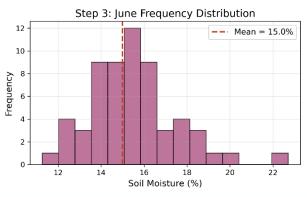


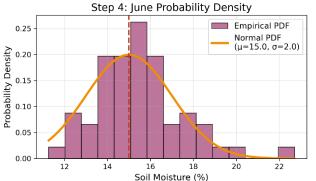


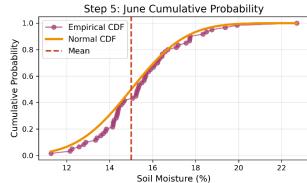


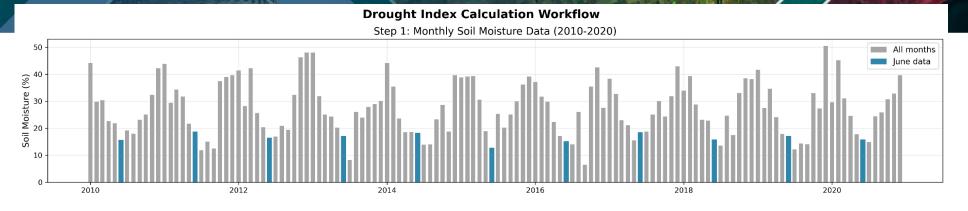


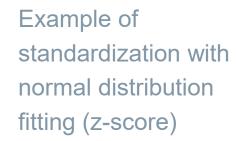


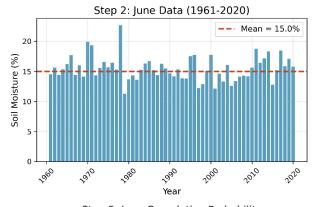


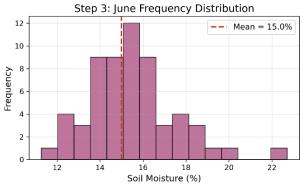


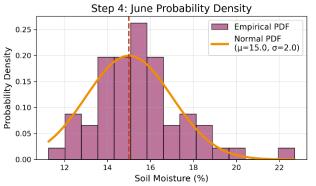


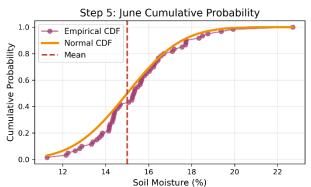


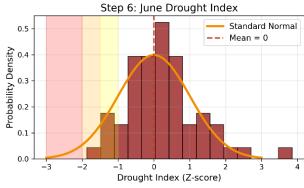


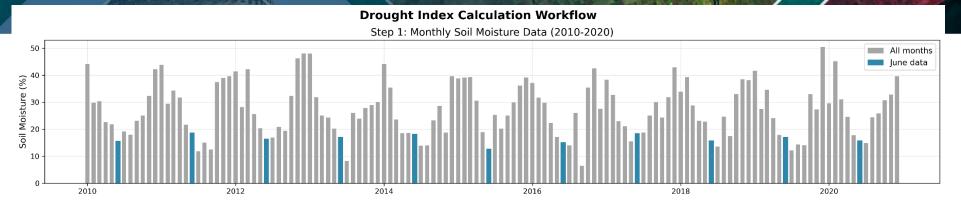




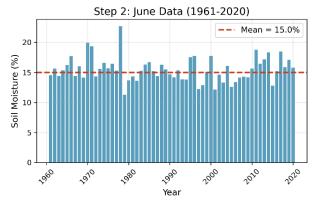


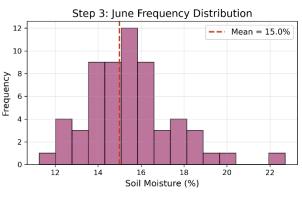


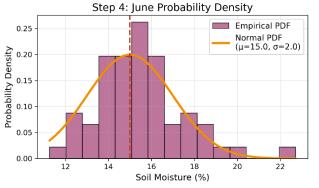


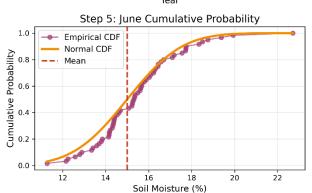


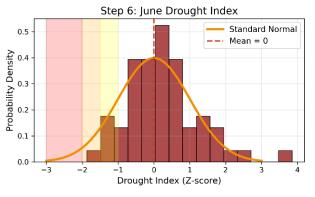
Example of standardization with normal distribution fitting (z-score)

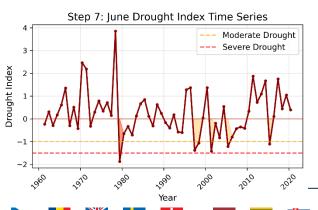




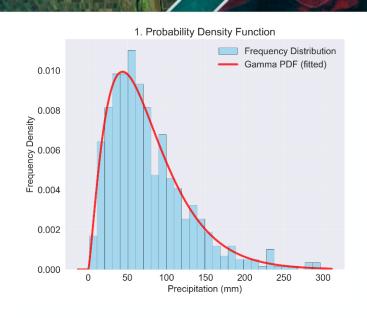




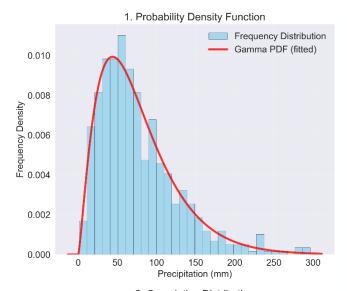


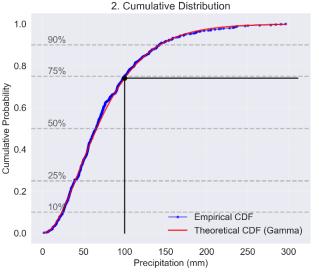


- Variability of precipitation is much higher than that of other variables, (e.g., T and ET_pot)
- Precipitation and other variables are stationary (i.e., they have no temporal trend)

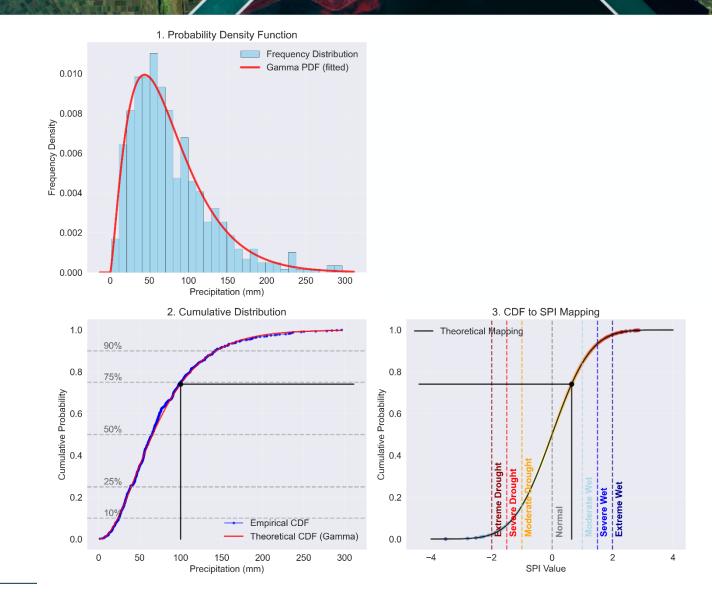


- Variability of precipitation is much higher than that of other variables, (e.g., T and ET_pot)
- Precipitation and other variables are stationary (i.e., they have no temporal trend)

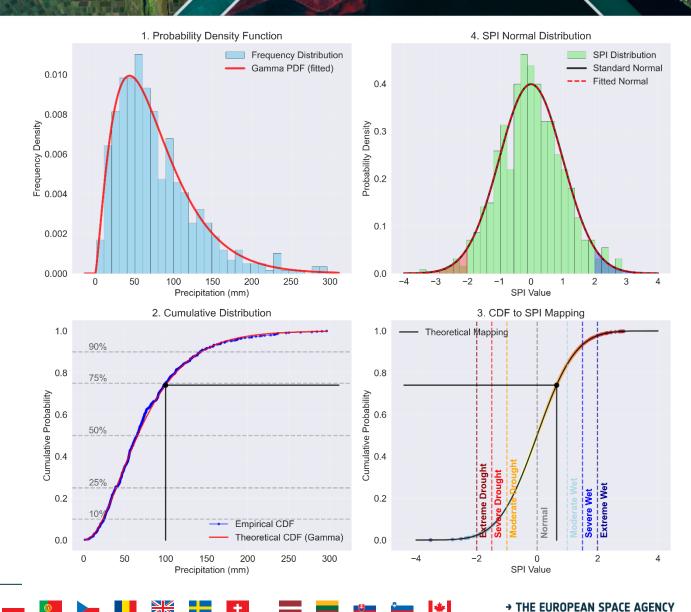




- Variability of precipitation is much higher than that of other variables, (e.g., T and ET_pot)
- Precipitation and other variables are stationary (i.e., they have no temporal trend)

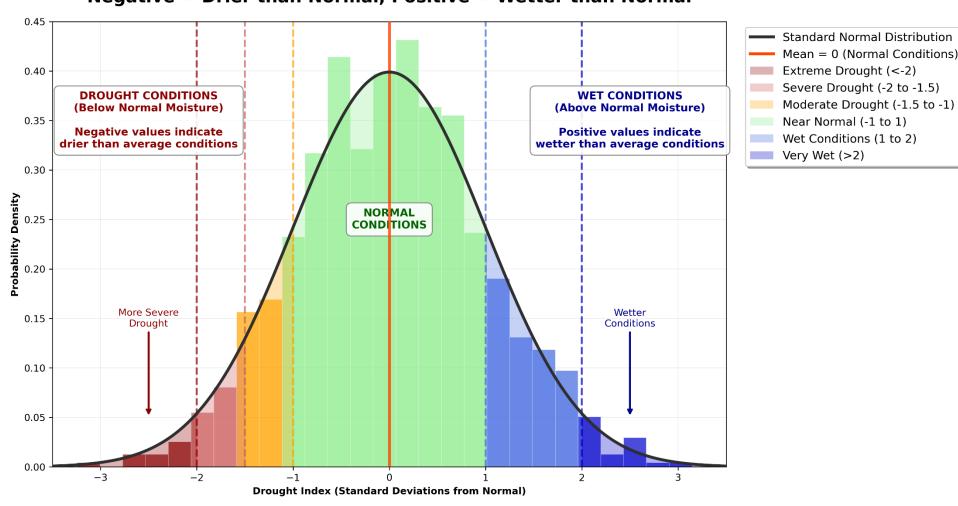


- Variability of precipitation is much higher than that of other variables, (e.g., T and ET_pot)
- Precipitation and other variables are stationary (i.e., they have no temporal trend)



What does drought index say?

Understanding Drought Index Values: Negative = Drier than Normal, Positive = Wetter than Normal



Standardized Precipitation Index

- Can be computed at multiple time aggregates (1, 2, 3, 12 months etc.) representing different process time scales
- Short aggregation period= short-term effect (flash droughts);
- Long-aggregation period= long-term effect(hydrological drought)

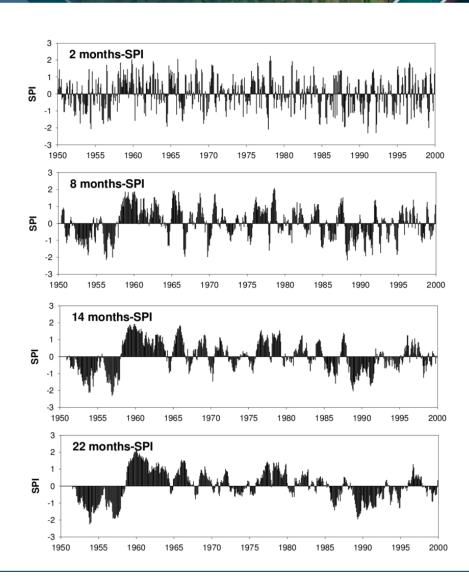


Table 1. SPI values

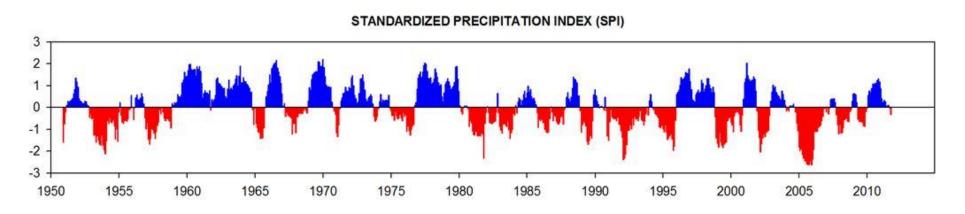
2.0+	extremely wet
1.5 to 1.99	very wet
1.0 to 1.49	moderately wet
99 to .99	near normal
-1.0 to -1.49	moderately dry
-1.5 to -1.99	severely dry
-2 and less	extremely dry

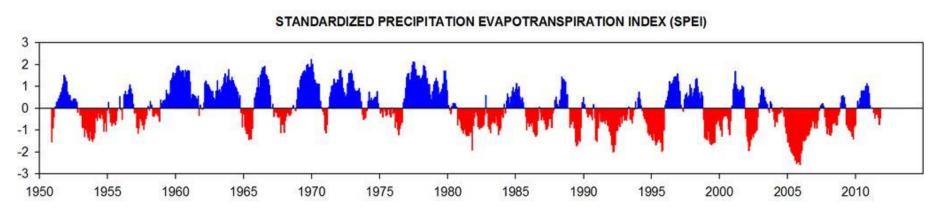
[Vicente-Serrano, 2005]

Standardized Precipitation Evapotranspiration Index

Climatic water balance (precipitation minus evapotranspiration)

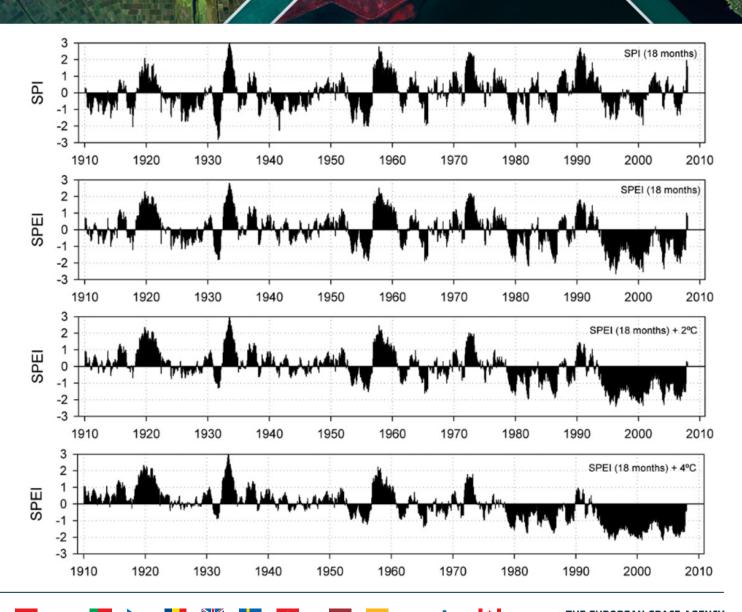
> Includes the impact of (rising) temperature





Impact of temperature under 2 ° C and 4 ° C global warming scenario

progressive temperature
 increase between 1910 to 2007

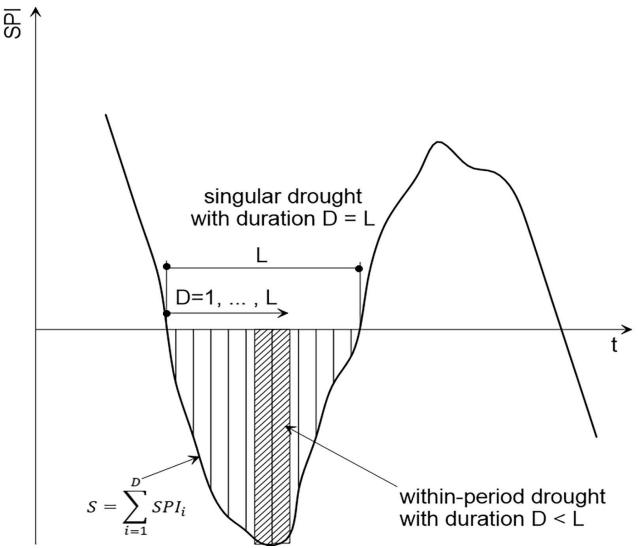


[Vicente-Serrano, 2010]

Drought duration (D): Number of consecutive days with index <0

Drought severity (S): The accumulation of negative index (e.g. SPI) values preceded and followed by positive SPI values is called severity.

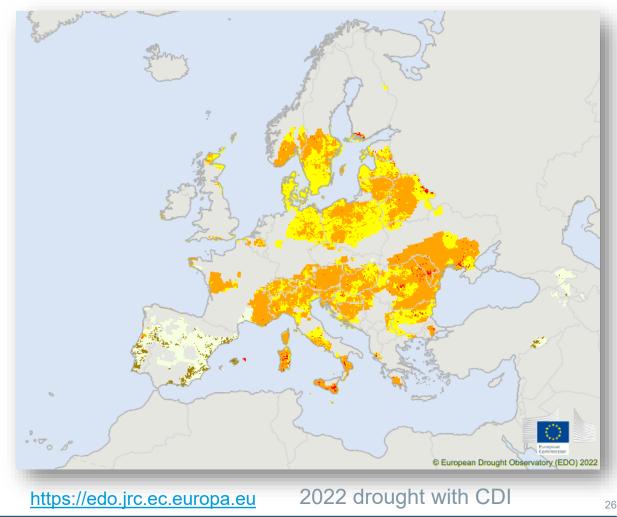
Drought intensity (I): The intensity is obtained by dividing the severity to the drought duration



European Drought Observatory (EDO)

Drought indicators:

- **Soil Moisture Anomaly (SMA)**
- **Standardized Precipitation Index (SPI)**
- **Anomaly of Vegetation Condition (FAPAR** Anomaly)
- Low-Flow Index (LFI)
- Combined Drought Indicator (CDI): Integrates information on anomalies of precipitation, soil moisture and satellite-measured vegetation condition into a single index that is used to monitor both the onset of agricultural drought and its evolution in time and space.

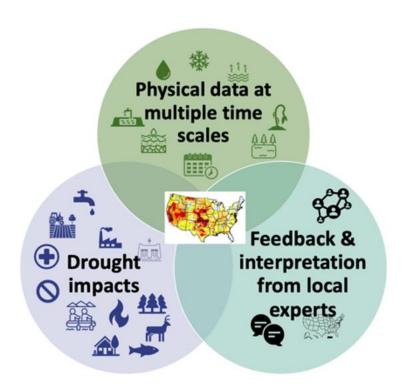


ESA Land Training Course 2025 – Bueechi, Luintel

→ THE EUROPEAN SPACE AGENCY

Drought Monitoring Systems

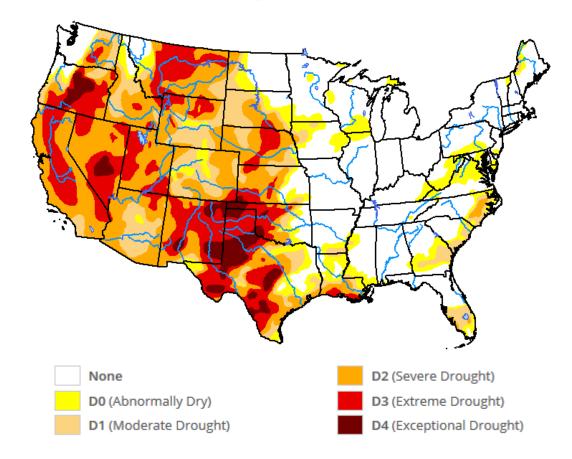
United States Drought Monitor



https://droughtmonitor.unl.edu/CurrentMap.aspx

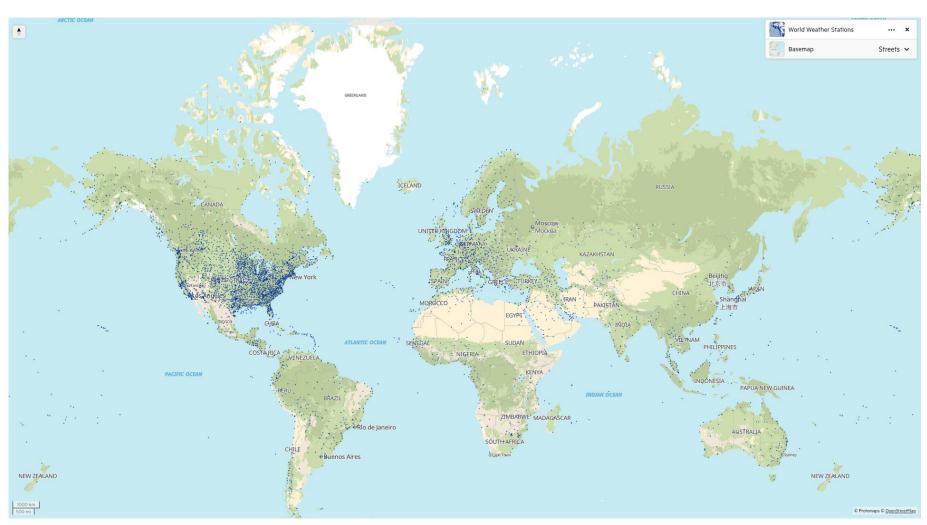
Map released: April 28, 2022

Data valid: April 26, 2022



Why Earth Observation?

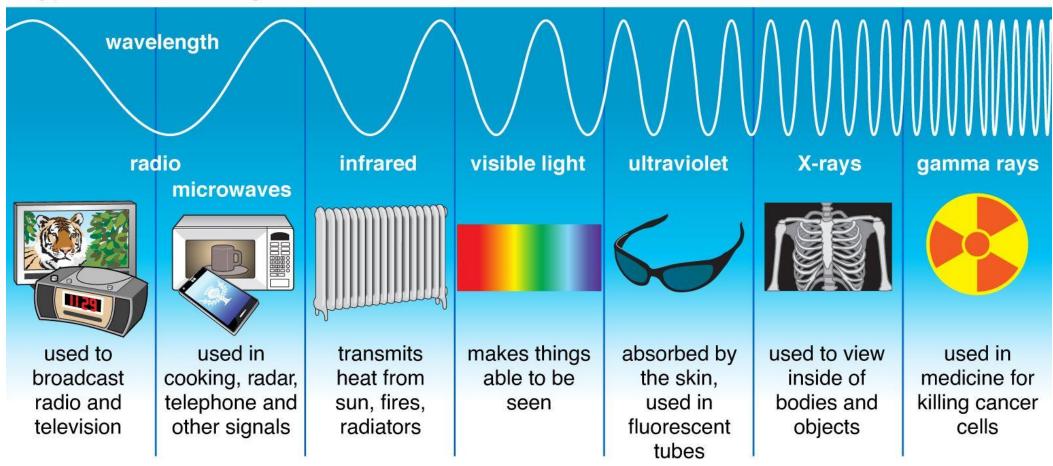
- Large area coverage
- Continuous data
 - Space
 - Time
- Beyond climate variables
 - Vegetation
- Near-real time



https://koordinates.com/layer/13361-world-weather-stations/

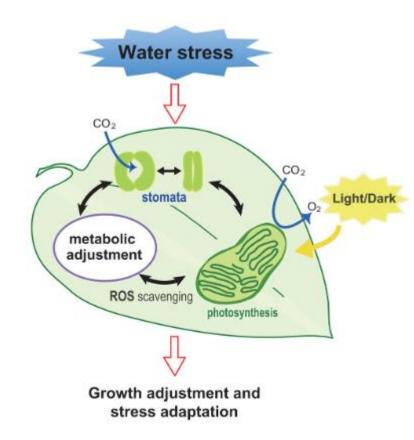
Electromagnetic radiation

Types of Electromagnetic Radiation

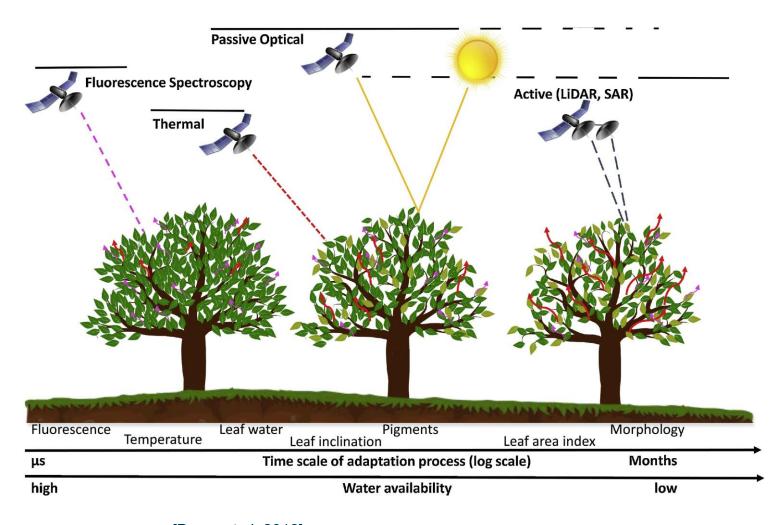


© Encyclopædia Britannica, Inc.

A plant's reaction to water stress



* Removal of Reactive Oxygen Species (ROS) released by changed metabolism [Osakabe et al. 2014]

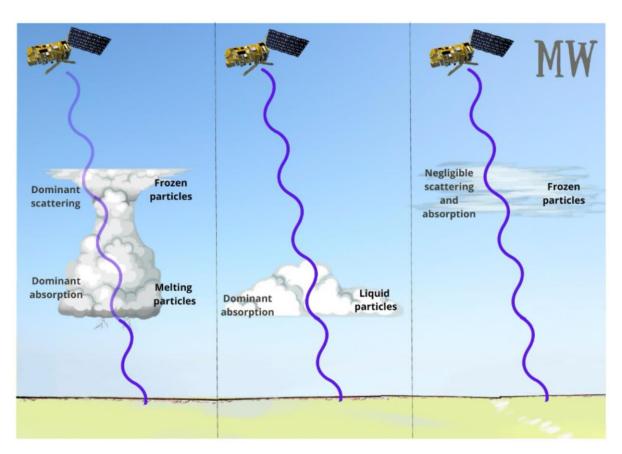


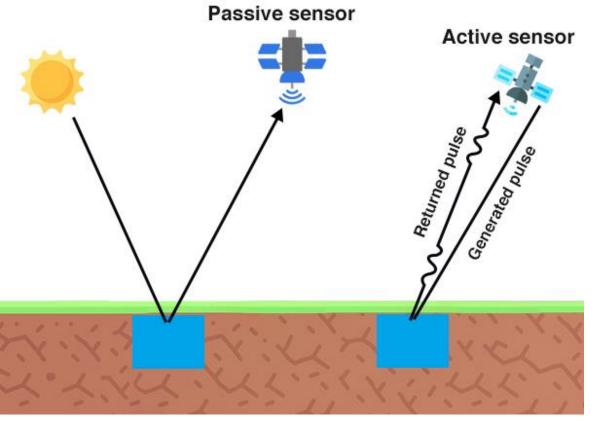
[Damn et al. 2018]

Why Microwave Sensors?

All weather – cloud penetration

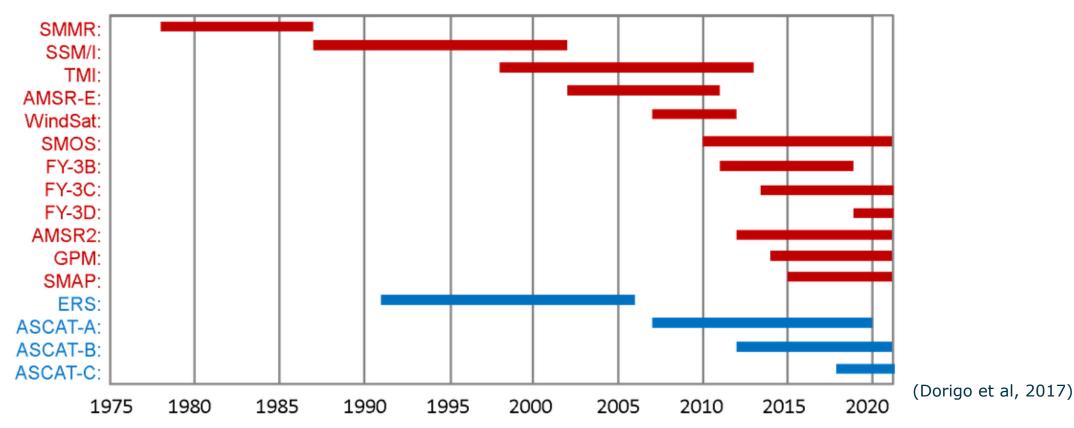
How it works?





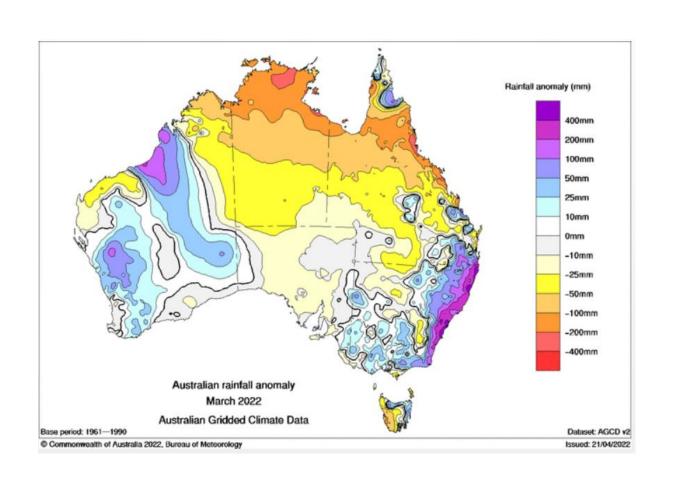
Satellite soil moisture for drought monitoring

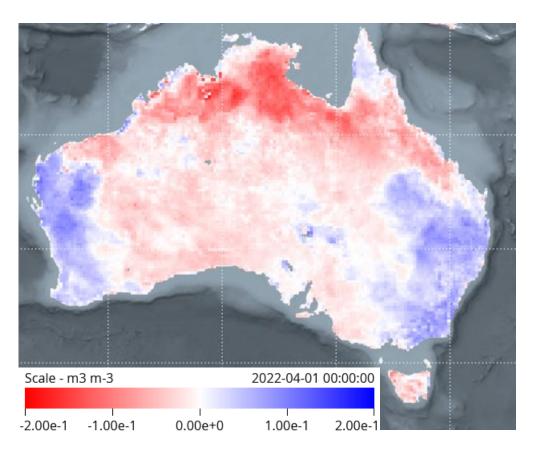
- ESA CCI SM data generated merging SM data from different sensors
- Use of multiple satellite missions allows for a more robust assessment over longer time periods (>45 years)
- Z-scores can in principle be computed for any dataset of sufficient length



Satellite soil moisture-based drought monitoring

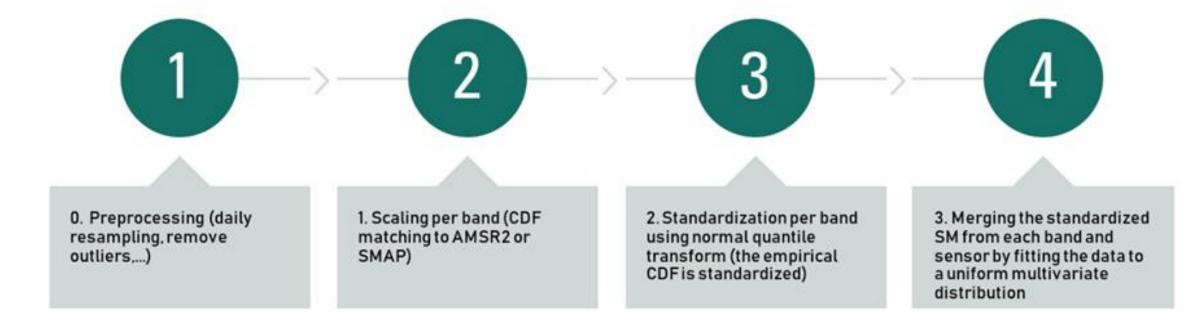
Anomalies in precipitation and multi-satellite ESA CCI SM for March 2022



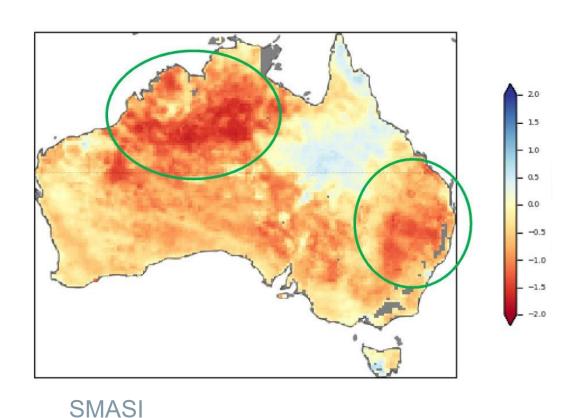


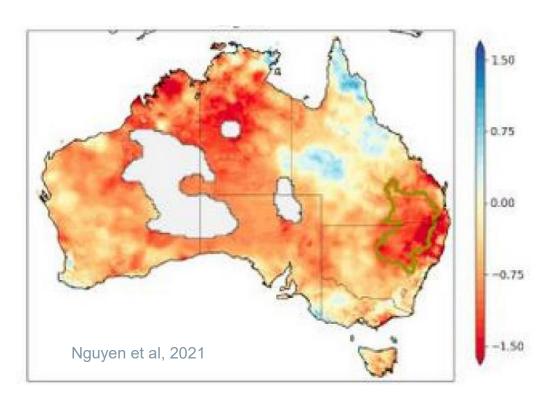
SMASI - A drought index for soil moisture

- Soil Moisture Anomaly Standardized Index (SMASI)
 - Merged standardized anomaly of soil moisture products from multiple satellite sensors as in ESA
 CCI soil moisture product (AMSR2, GPM, SMAP, SMOS, ASCAT)
 - 30-day moving window



SMASI vs ESI 2019 Australia drought

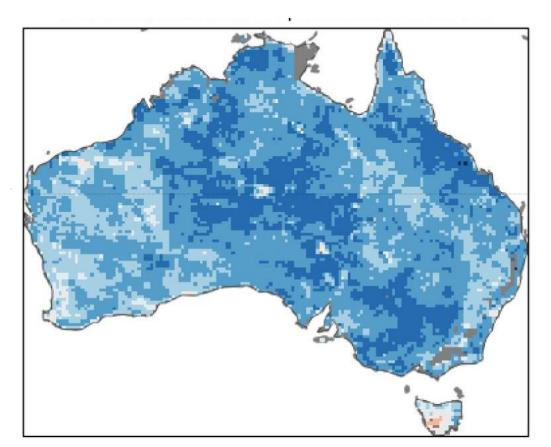




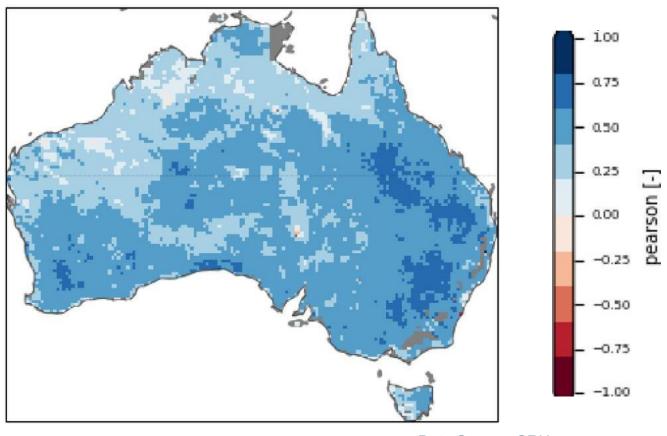
Evaporative stress index (ESI)

2019 December monthly mean follows spatial pattern ESI based on ground observation

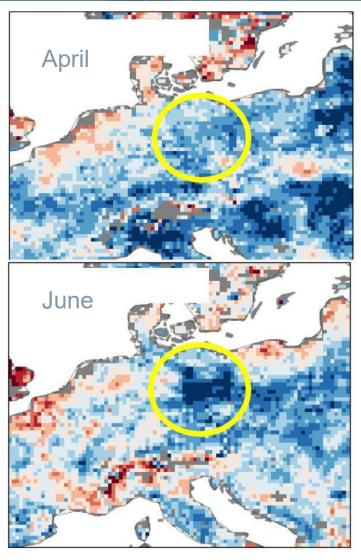
Correlation between SMASI and scPDSI

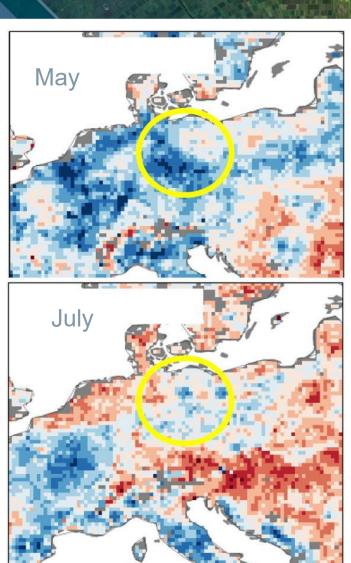


Correlation between SMASI and SPEI



Ability to detect small scale rapid change in moisture





Rapid change from wet to dry in 2013 in Europe

Spring 2013: sufficient precipitation leads to high soil water, especially in May, SMASI > 0

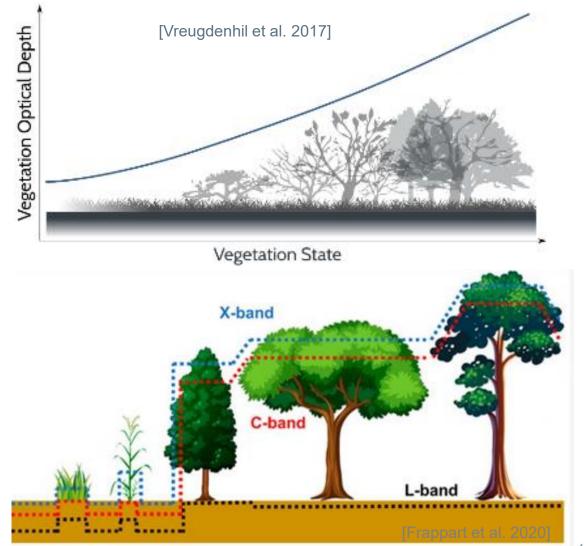
June 2013: heavy precipitation leading to massive flooding in the Elbe area, SMASI > 1

July 2013: rapid decrease of soil moisture also detected with SMASI (short-term event).

Porcu, Federico et. al. (2019). *Data record on extreme events by CAL and by hazard.*

Microwave remote sensing for vegetation dynamics

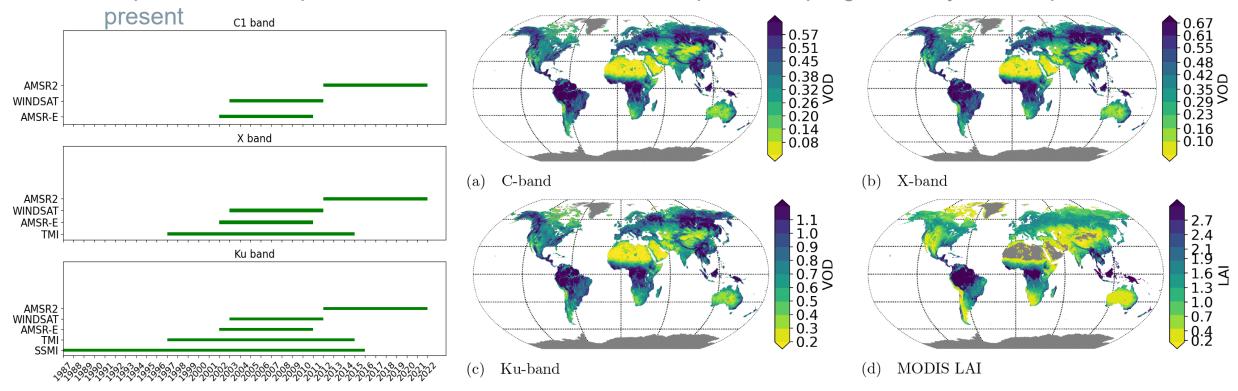
- Vegetation Optical Depth (VOD) quantifies the attenuation of (microwave) radiation by vegetation.
 - Related to vegetation water content and biomass
 - Signal depends on wavelength
 - Typically retrieved from Ku-, X-, C-, and Lband (increasing wavelength)
- Retrieval algorithms seek to separate vegetation signal from soil signal, e.g.,
 - TU Wien method for radar observations
 - Land Parameter Retrieval Model (VU/NASA/VanderSat/Planet) for radiometer data



VODCA - The VOD Climate Archive

Long-term, harmonized VOD, derived from multiple radiometer datasets (Zotta et al, 2024; 10.48436/t74ty-tcx62)

o Separate VODCA products for C-, X-, Ku-band 0.25° spatial sampling and daily time step 1987-to

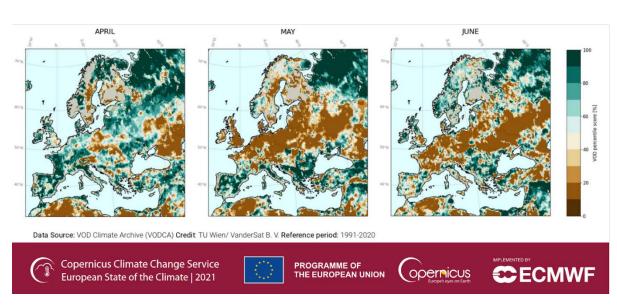


[Moesinger et al. 2020; 10.5194/essd-12-177-202]

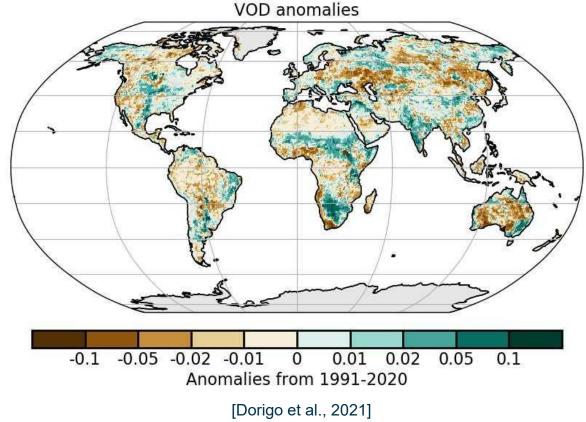
VODCA - State of the Climate

C3S European State of the Climate 2021

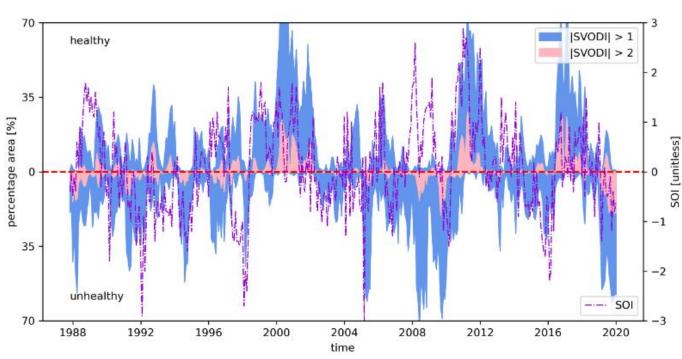
Impact of late spring frost on vegetation



NOAA/BAMS State of the Climate 2021

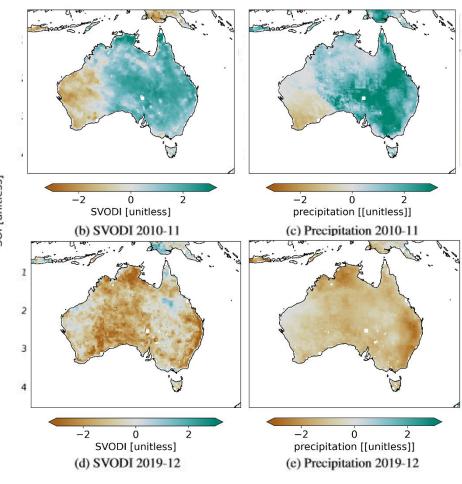


SVODI-Standardized VOD Index



Fraction of percentage area of |SVODI| > 1 > 2 for central Australia along with Southern Oscillation Index

[Moesinger et al., 2022; 10.5194/bg-2021-360]



SVODI and standardized precipitation anomalies for 2010-11 and 2019-12

- Drought is drier than long-term average condition
- > Drought is usually expressed as negative standardized values
- > Earth observation helps continuous drought monitoring at large spatial scale
- Microwave sensors can observe earth surface at all weather
- Merged satellite soil moisture products such as ESA CCI soil moisture product and related drought index such as SMASI provide long term data for drought monitoring
- Vegetation condition monitoring using VOD and SVODI monitor vegetation response to drought

Climate change threatens food security

Accurate crop models reduce crop yield losses and their impacts on society

Earth observation and machine learning are ideal tools for crop modelling

Climate change threatens food security

eesa

 Increasing intensity and frequencies of drought and heatwaves

Large crop yield losses in recent years

Arid countries with generally lower crop yields more affected

Reduce impacts of crop yield losses on society

- Different ways to adjust:
 - Reduce losses
 - Early detect stressors like pests and droughts
 - Improve fertilization / irrigation
 - Use "better crops"
 - Improve efficiency
 - Better guide import and export / operate stocks
 - -> reduce food waste!

Crop yield forecasting

- Crop yield forecasts...
 - ... facilitate decision-making
 - Operate stocks
 - Surplus of crops for export
 - How much import is required?
 - ... allow farmers to adjust practices
 - Optimize use of fertilizers / irrigation
 - Choose optimal crop to plant

Why Earth observation?

Key information on crop health and growing conditions

Available throughout the season

Global and near-real-time

High spatial and temporal detail

Vast amount of data freely available

Why machine learning?

Increasing availability of high-performance hardware – Supercomputers

Easy accessibility of software

E.g. Tensorflow, Scikit-learn

Easy to use

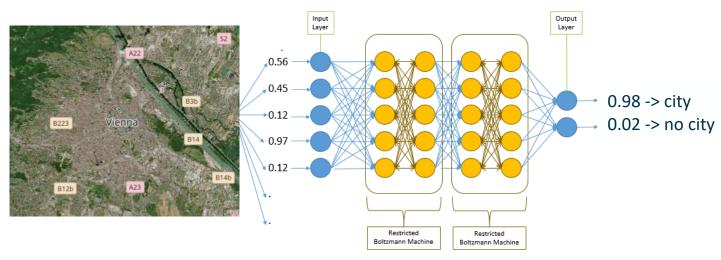
Accessibility for many people while physical

models are only for specialists

Often faster and less computationally expensive than physical models

Learns from data

Tuwien.at



Machine learning and Earth observation

ML and EO are a perfect fit

Very flexibel models meet vast amount of diverse data

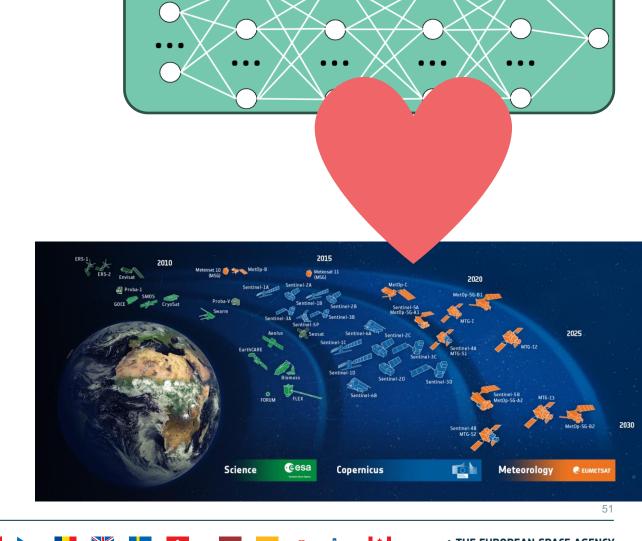
Combining: multispectral, thermal, microwave data

All providing key information about crops

Multispectral show state of the crops

Microwave detects water content in vegetation and soils

Thermal data for evaporation and temperature



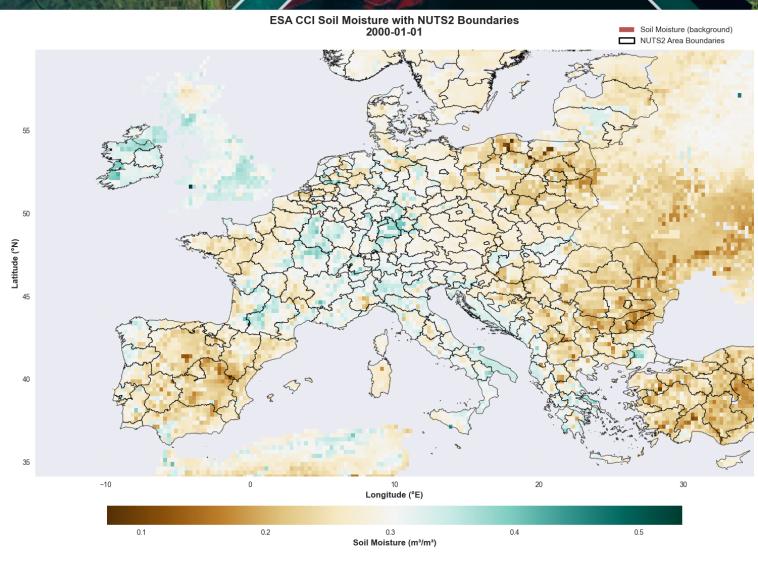
Crop yield forecasting - how to?

Requirements:

Crop yield data

Reasonable predictors

Basic knowledge about ML models



Crop yield data

Location / area

Can be at subfield, field, regional, and national level

Crop yield

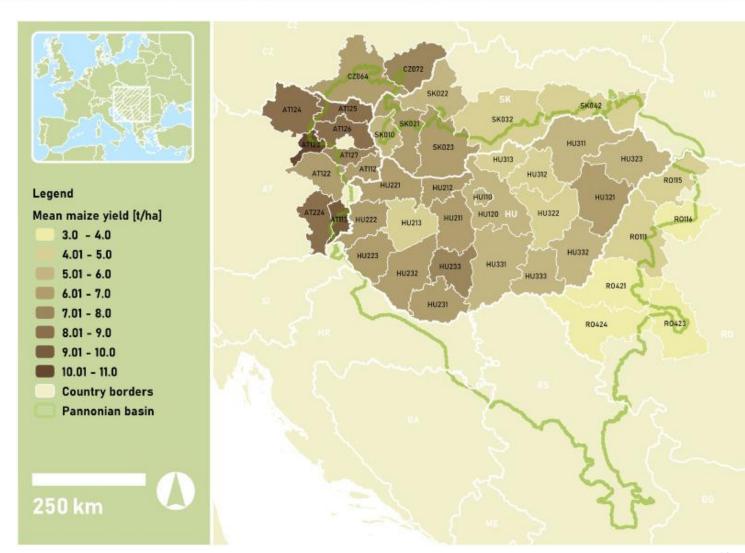
Usually tonnes / ha

Crop type

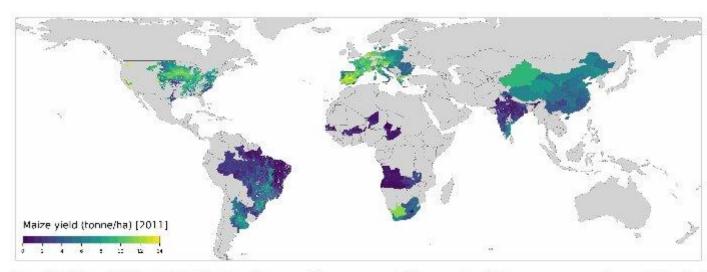
E.g. maize, winter wheat, spring barley, soybean

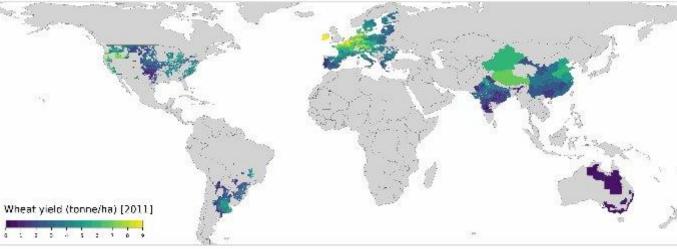
Year

Phenology / sowing and harvest date



- National statistical offices
- Farmers
- CYBench
 - https://cybench.agml.org
- Eurostat
 - https://agri4cast.jrc.ec.europa.eu/
- FAOstat
 - https://www.fao.org/faostat/en/#data
- USDA
 - https://quickstats.nass.usda.gov/





Cybench.agml.org

Predictors

Ideally:

Longterm and consistent

Providing key information on crop growth

Examples:

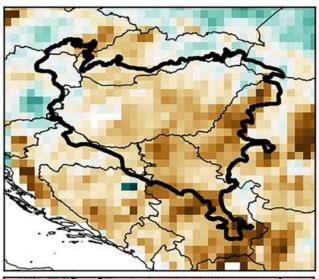
Earth observation

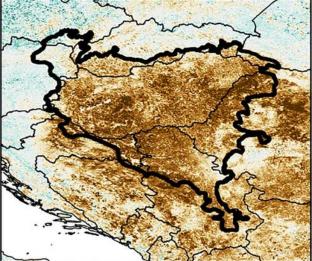
Copernicus, ESA CCI, CGLS, Landsat, MODIS...

Reanalysis (e.g. AgERA5)

In-situ data

Seasonal weather forecasts





Crocetti et al., 2020

Data preparation

Spatial resampling

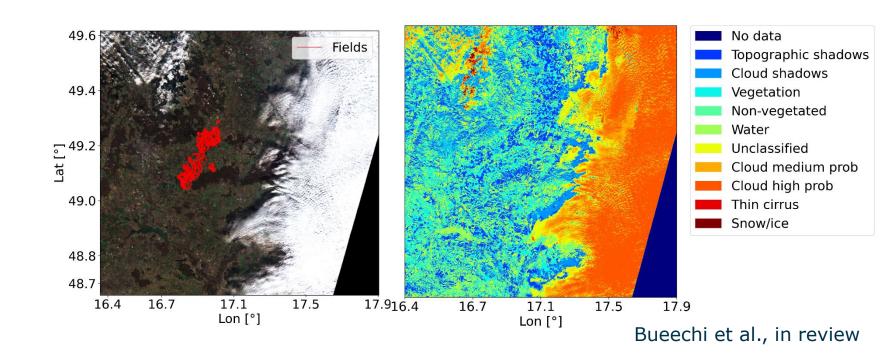
Extract data for region

Cloud filtering

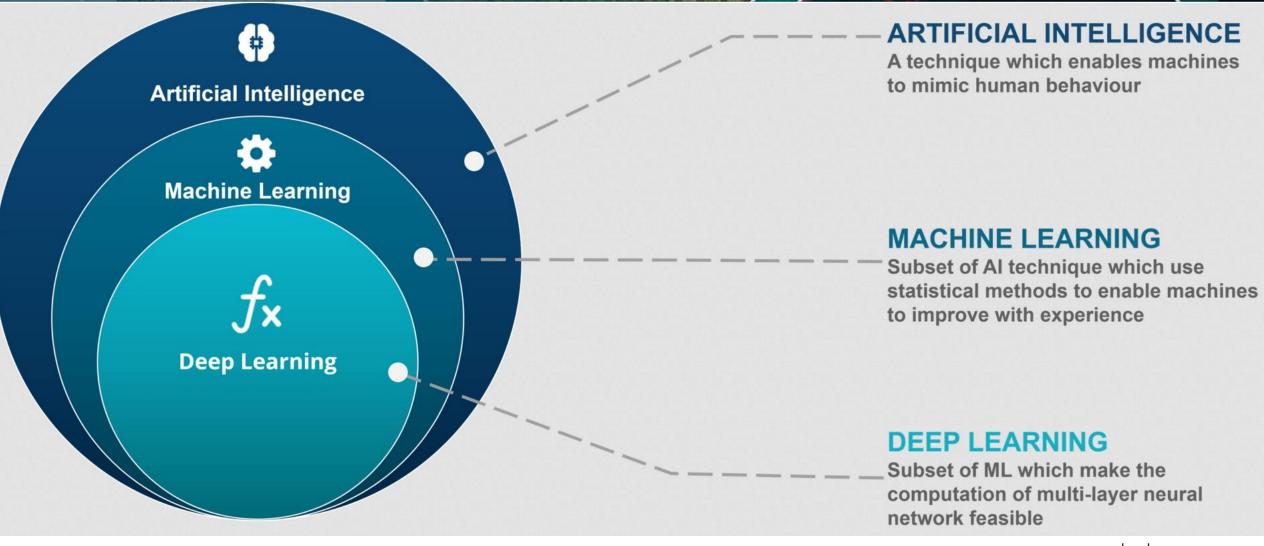
Outlier removal

Calculate requried indices

Temporal resampling



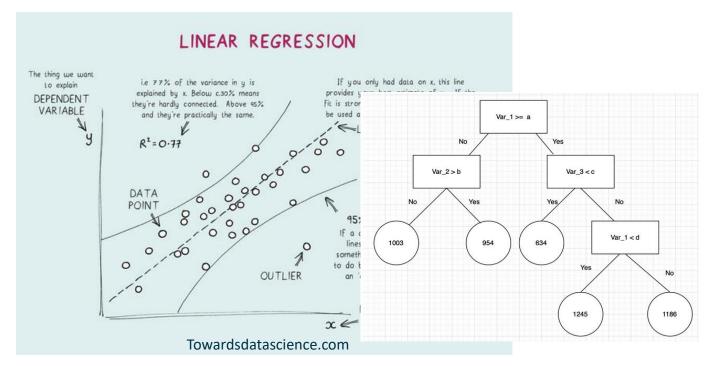
Machine Learning – what is it?

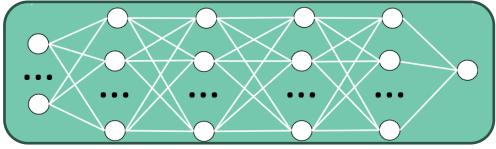


Machine learning models

Classical approaches:

- Linear regression
- Tree based algorithms
- Artificial Neural Networks
- ..





Machine learning models

Classical approaches

DO NOT CONSIDER Spatial and temporal dependencies

Such dependencies are very typical in Earth science

Machine learning models

Deep learning approaches for time-series forecasting

Recurrent / Convolutional Neural Networks

Transformers

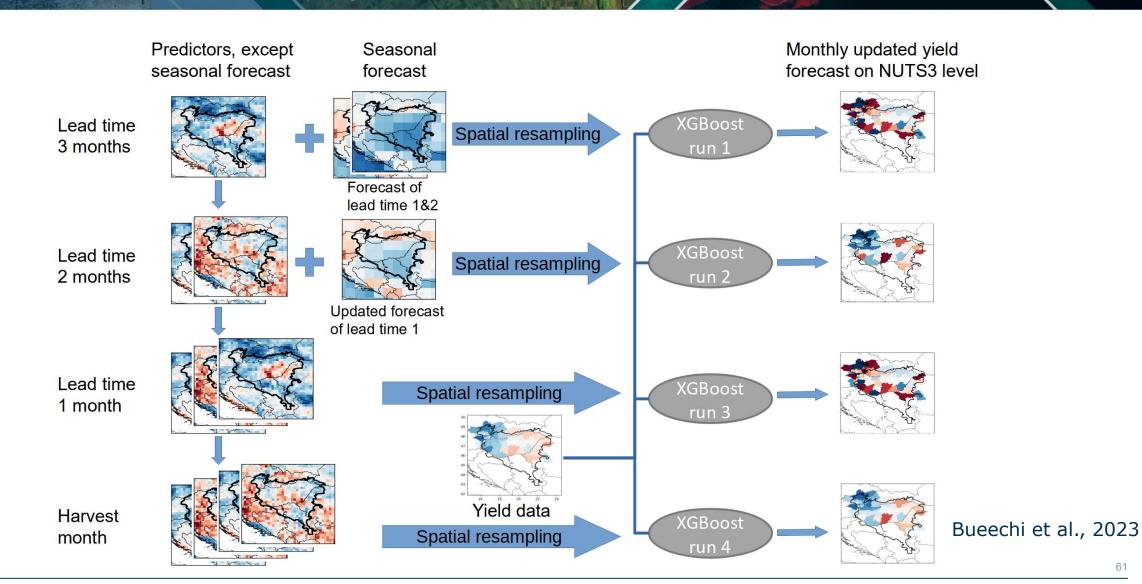
Other novel DL approaches

Physics informed Al

Makes use of prior human knowledge about dependency of target and predictor variables

Transfer learning

Method to train and use the model in different (related) domains



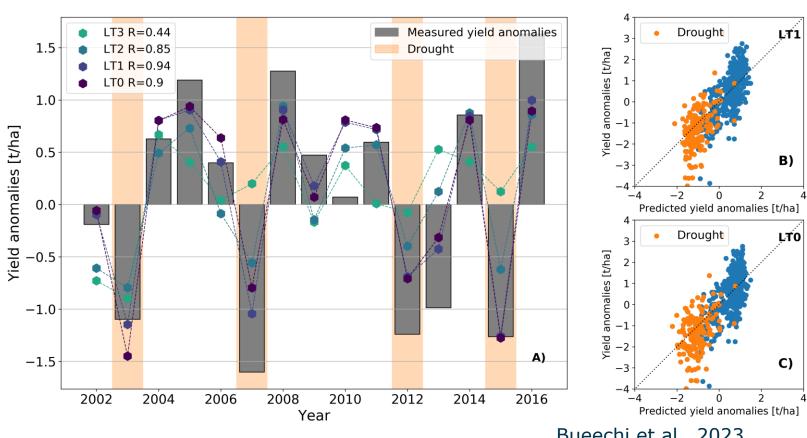
Regional forecasts

Monthly updated crop yield forecasts for different crops

Reliable forecasts from 2 months before harvest

Losses in drought years early detected, but..

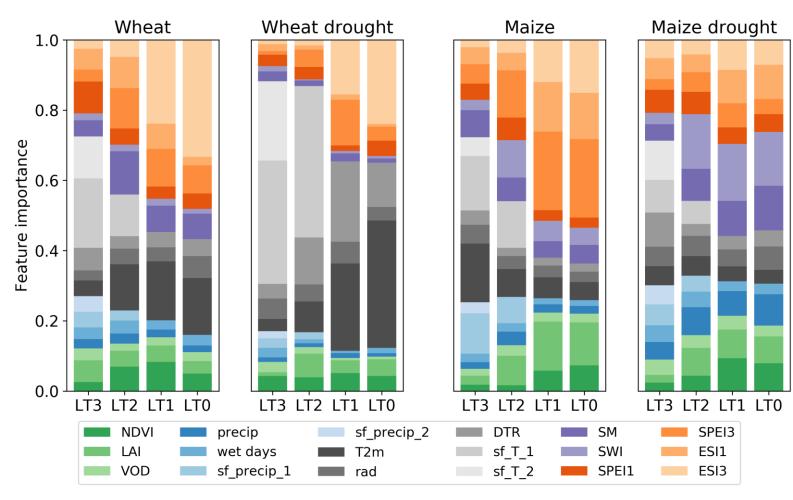
...extremes are underestimated



ML models usually too complicated to understand

- Regression weights can be analysed
- Decision trees have weights, but usually to complex to understand
- Neural Networks are usually black boxes (too complex)

Feature importance shows impact of features on model performance



Bueechi et al., 2023

Machine learning for crop yield forecasting

Works well with sufficient data for training

What can we do when we do not have much data from a certain region / scale?

Transfer learning

esa

Trains and applies the model in different domains

Reduces need of specific input data

Improves models in data scarce scenarios

Pexels.com

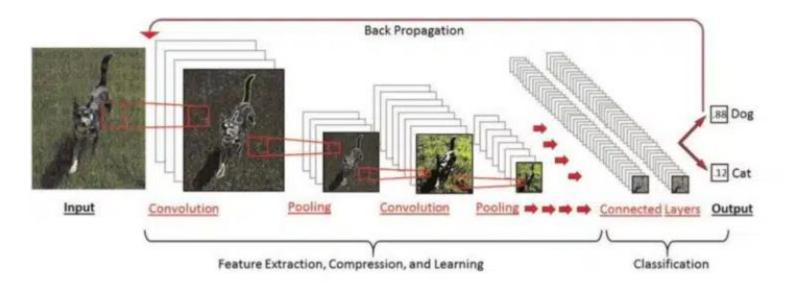
Comes from image classification

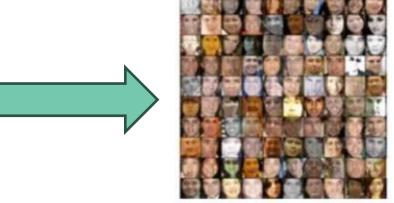
Model learns to make sense of pictures

Detect structures, edges that make image characteristic

From animal classification to face recognition

Needs only some fine-tune data





Land Training Course 2025 – Bueechi, Luintel

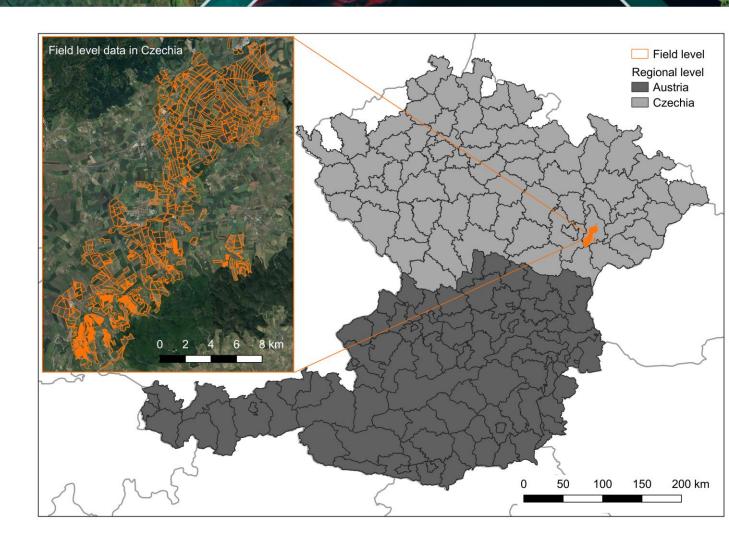
From regional to field level

Crop yield data in Europe often available at regional level

Field-level data harder to obtain

In this study, we trained the model at regional scale and tested it at field scale

Data from Czechia and Austria



Land Training Course 2025 – Bueechi, Luintel

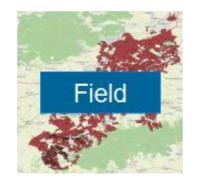
From regional to field level

reg2reg

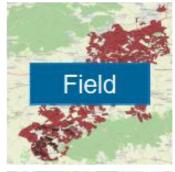
Regional

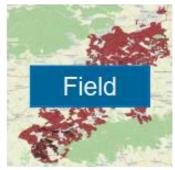
reg2fld

fld2fld

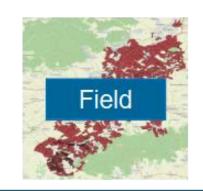


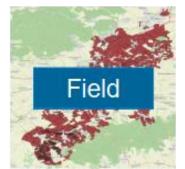
Reg2fld_ft





Regional

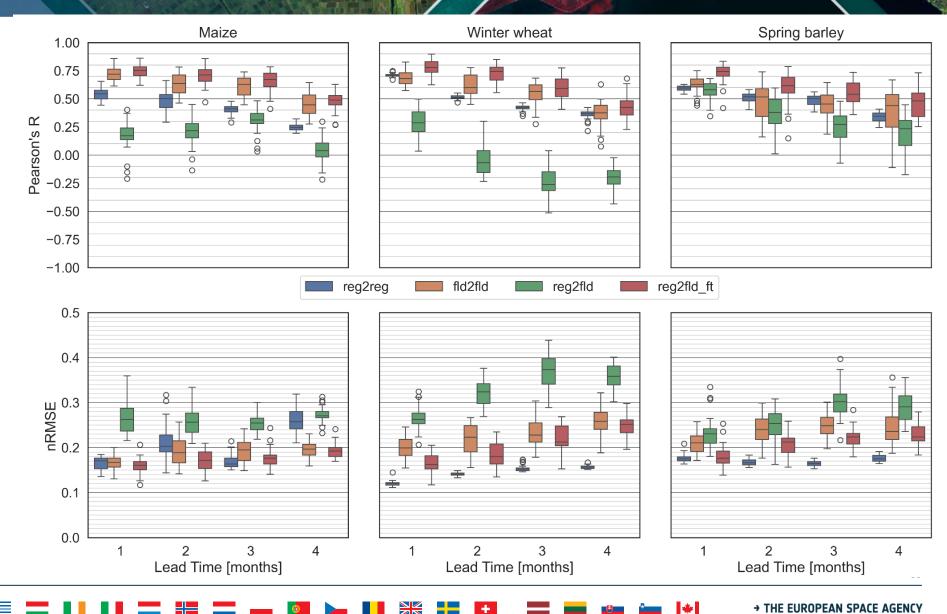




Highest performance by finetuned model

Good performance from 3 months before harvest

Without finetuning no useful results



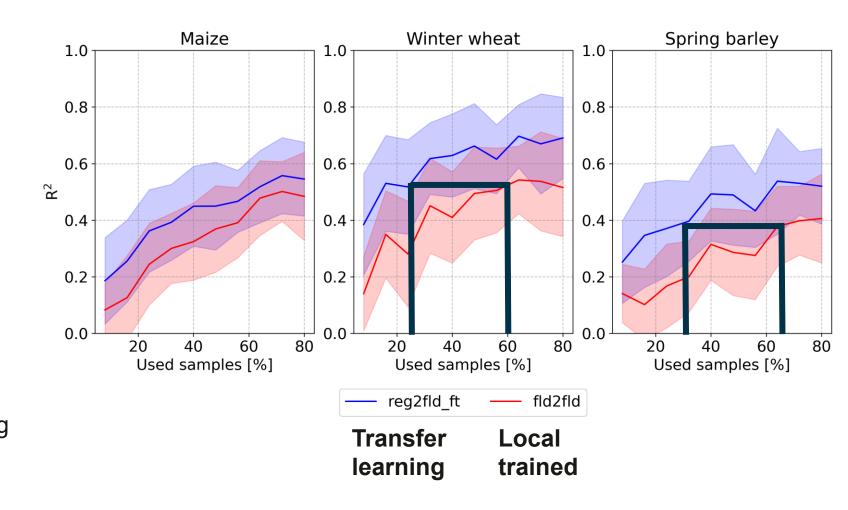
From regional to field level

Transfer learning outperforms field-trained model

Significantly higher performance for all setups

Needs >50% less data for same performance

Performance gain dependent on samples of original training (maize ~300, winter wheat~1000)



Field-scale forecast conclusion

Good results achieved for field-scale crop yield forecasts 3 months before harvest

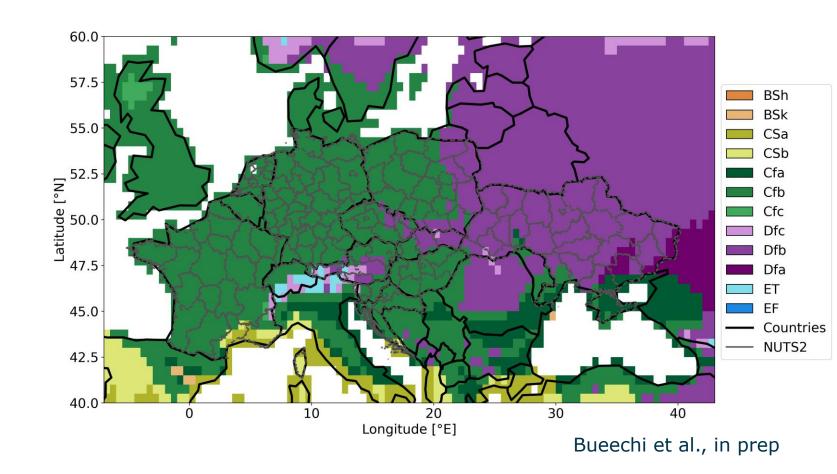
Transfer learning outperforms purely field-trained models for crop yield forecasting

Transfer learning needs <50% field data to achieve skill of field-trained model

Crop yield modelling in Ukraine as major crop producer impacted by war

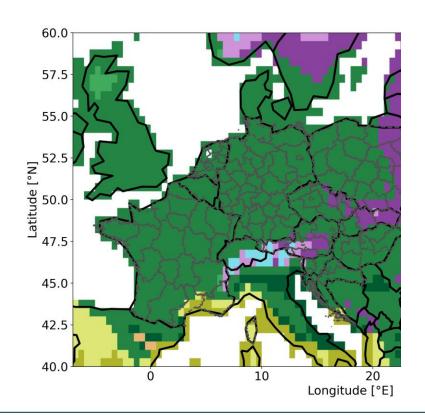
Problem: not much data in Ukraine itself, but much from central Europe

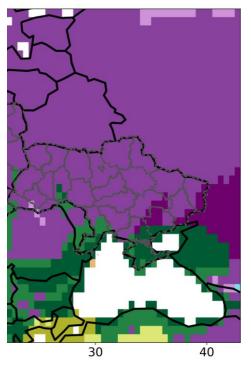
!Different climate!



Transfer learning for crop yield modelling in Ukraine

Train in central Europe, fine-tune and test in Ukraine





Crop models implemented for 3 crops

Different model setups tested

XGB -> Extreme Gradient Boosting

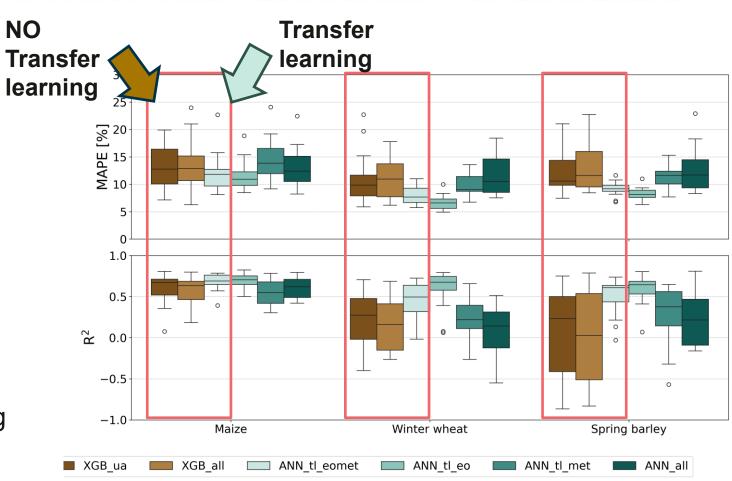
- only UA data
- incl. Central European (CE) data

ANN with transfer learning

trained in CE - finetuned in Ukraine

Best results obtained with transfer learning

XGB performance decreases with CE data



Crop yield forecasting helps to ensure food security in a changing climate

EO and ML are a perfect fit to establish such forecasts

Optimally use vast amount of EO data

Learn complex relationships between predictors and target

Issues with crop yield data scarcity can be diminished with transfer learning