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A brief introduction of me 

• Name: Gabriele Meoni, PhD

• Role: Innovation Officer at European Space Agency

▪ Bringing transformational innovation to Earth 

Observation applications

▪ Sections: 

o Advanced Concepts and Studies Office

o Φ-lab

▪ IEEE GRSS Earth Science Informatics (ESI): 

technical committee co-chair 

• Topic of interests: 

▪ Edge computing for space

▪ Artificial Intelligence for Earth Observations

▪ Quantum Computing

Contacts: 

gabriele-meoni-53b390131

gabriele.meoni@esa.int

mailto:gabriele.meoni@esa.int
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Learning objectives

• At the end of this lesson, you will be able to:

▪ Describe the concept of edge computing and its main applications in EO missions 

▪ Describe the main hardware devices for edge computing in space 

▪ Discuss the main technical challenges and describe related research trends 
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Outline

• Edge computing & edge computing in space

• Applications of Artificial Intelligence in space

• A brief introduction to hardware for payload data processing

• Technical challenges/research trends

• Conclusions
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Cloud

Sensors

• Cloud computing model

▪ Sending nodes producing data 

▪ Cloud: distributed computing infrastructure

     for data processing (e.g., data centres, 

     servers)

▪ One limitation: large amount of raw data 

     distributed on the network. Limited scalability 

     for highly growing networks

• Edge computing model

▪ (Pre-)processing data at the edge of the 

     network, i.e., close to the sensors

▪ Transmitting only “pre-filtered” data to the 

     cloud 

▪ Sensors are equipped through “edge” processors (or servers) 

Edge

 processors

What is edge computing?
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What about space? The bent-pipe approach (1/2)

Image source: https://github.com/aidotse/PASEOS.

(Battery and temperature estimates not realistic)

Sentinel-2: orbital period: 100.6 min

• Bent-pipe

▪ Satellites receive a «command» when close to 

the ground station. 

▪ Satellite transmit data to the ground

▪ Data are processed on the ground segment

and then transferred to the end users

Which limitations do you

think the bent-pipe 

approach has?

What about space? The bent-pipe approach (1/2)
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• Bent pipe: designed to transmit vast

amount of data to end users

• Limitations: Not optimised for:

▪ fast download of actionable

information to the end users

Sensors

CloudHow can we improve this

via edge computing?

What about space? The bent-pipe approach (2/2)
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Edge computing in space: processing data directly on board

• Artificial Intelligence (AI) algorithms process EO

     data on board satellites to extract actionable 

     information (e.g., fire alert + map) [1]

• Actionable information can be transmitted to

end users quickly through a communication relay

satellite 

• Why AI: 

▪ State-of-the-art for many EO applications

▪ AI hardware is versatile and reconfigurable

• Advantages

▪ Higher autonomy and responsiviness

▪ Easy reconfigurability

▪ Data efficient (e.g., possibility to remove

unwanted data)

• N.B. It complements bent-pipe (not-replace!)

Edge computing in space
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• 3CS: integration of AI, novel computing paradigms

(cloud computing, edge computing, etc), 

computing hardware inside space infrastructure

to enhance its autonomy, agility and reconfigurability.

• Multiple in-orbit space assets connected (even

non-EO satellites)

• To create a clear technological vision, highlight 

novel business models and understand the value of 3CS in the next 10 years, 

ESA Φ-lab is now running 3 parallel projects

Courtesy: Letter to DG from 10 New Space Companies

Cognitive Cloud Computing in Space (3CS)
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• Satellites are composed by main 2 elements:

▪ Platform

o Responsible for main satellite functions 

     (e.g., Power distribution, Attitude & Orbital Control, …)

o The main computing element is called 

     Onboard Computer (OBC)

▪ One or more Payloads

o Responsible for scientific/commercial purposes of the 

mission (e.g., EO data acquisition, processing,…)

o The main computing element is called 

     Payload Data Handling Unit (PDHU)

Edge computing 

relevant to both

We limit our 

exploration to 

edge computing for 

 payload data 

processing

Edge Computing in Space: where
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• Fast delivery of actionable insights is promising

for civil-security applications (disaster monotoring and early

warning, maritime surveillance applications) 

Volcanic eruption

Maritime surveillances

Credits: Dr Roberto Del Prete

Low-latency early-alert systems
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• Clouds:

▪ 50% (or more) data are covered by clouds

▪ Optical images suffer of cloud-occlusion 

• By using AI on board satellites, you can:

▪ detect cloudy images and discarding them 

     before transmitting

▪ Saving bandwidth for useful images

▪ Demonstrated by Ф-Sat-1 mission 

▪ You can extend this paradigm to corrupted or non-wanted images.

Credit: ESA

Payload Data reduction/filtering 
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• In-orbit cloud computing (e.g., space-based data centres)

• Satellite platforms as service

▪ Satellite heterogeneous constellations

▪ You can task one/multiple satellites acquisitions

▪ Data are processed in-orbit as apps in the cloud

▪ Information extracted from data can be used to task

     future acquisitions

• Convenience compared to on ground data centres still not clear

Payload Data reduction/filtering 
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TIP                                                         CUE
Satellite 1
Sensor 1 (typically high

Swath width – low 

resolution) [6]

Satellite 2
Sensor 2 

complementary to 

sensor 1

Satellite 1 

acquisition

Satellite 1 
Onboard data 

processing

Satellite 2
acquisition 

planning

Satellite 2 

acquisition

Satellite 2 

Onboard data 

processing
Tipping

Novel acquisition systems (Tip & Cue)
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• Computing power/performance:

▪ Typically measured through:

o General Indicators: FLOPS or specific benchmarks (e.g., DHRYSTONE)

o Application-specific indicators: latency (s), throughput (e.g., Frames Per Seconds)

▪ Why important: some applications require fast responses  => fast in-orbit processing

• Energy-efficiency: 

▪ Typically measured through:

o General Indicators: [J], Energy-per-operation

o Application-specific indicators: Energy/inference

Metrics to evaluate hardware for payload data processing (1/4)
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• Energy-efficiency: 

▪ Why important:

o Limited energy availability 

o Thermal constraints: energy dissipated as heat might lead to increase satellite 

internal temperature 

o  Question: what is the difference between power consumption and energy 

consumption? 

o 𝐸 = 𝑃 ∙ ∆𝑇

Metrics to evaluate hardware for payload data processing (2/4)
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• Radiation:

▪ Three main phenomena:

o Single Event Effects: incoming charged particles induce glitches in digital 

electronics which might induce (temporary) faults (which can be solved by 

resetting the system)

o Total Ionization Dose: accumulated charge due trapping of incoming incoming 

particles. In the long term, it permanently switches on/off transistors leading to 

permanent failure (typically measured in RAD)

o Single Event Latch-ups: high-energy impacting particles triggers positive 

feedback effects causing permanent failures 

▪ Why important: decreasing systems reliability

Metrics to evaluate hardware for payload data processing (3/4)
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• Cost:

▪ Typically measured in: €

▪ Cost can be divided into two components: 

o 𝐶_𝑁𝑅𝐸 (Non-recurring engineering cost). Non depending on the number on 

number of pieces produced (𝑁)

o 𝐶_𝑅𝐸 (Recurring engineering cost). 𝐶_𝑅𝐸 𝛼 𝑁 

• Size, mass:

▪ Typically measured in: m3, kg

▪ Why important: impacting design, costs

Metrics to evaluate hardware for payload 

data processing (4/4)
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• How do they work 

▪ Fixed hardware executing a software

• General Purpose (same hardware for all the applications)

▪ Flexible (new software => new application)

▪ Low-performance/ low energy efficiency (hardware not optimized for any application) 

▪ Low-development time (just need to develop the software) (𝐶𝑁𝑅𝐸 low, 𝐶𝑅𝐸 low )

▪ Radiation tolerance depending on design and technology

• Typically used in CubeSats or satellites with very limited processing capabilities 

Microcontrollers
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• FPGAs including Programmable hardware: 

▪ Programmable logic and connections

▪ Algorithms are mapped in hardware

o The designer writes the description of the hardware creating a specific hardware for 

an application

• System on a Chip FPGAS (SoC FPGAs) - FPGAs coupled with processors 

▪ Some algorithms are more performant when implemented in software 

▪ FPGAs are convenient for parallel data-flow algorithms 

Field Programmable Gate Arrays (1/2)
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• Limited flexibility (new application = hardware redesign)

• High-performance – Pretty energy-efficient 

▪ Typically used for applications requiring high-data-rate processing (e.g., DNN inference, SAR data 

processing/focusing)

• High development time: need to design an entire hardware 

     (𝐶𝑁𝑅𝐸 : high, 𝐶𝑅𝐸: higher than microcontrollers)

• Radiation tolerance depending on design and technology

• High-level-Synthesis: possibility to synthesize hardware from

     Python or other high-level languages

     (faster implementation, lower performance)
OPS-SAT (PDHU): MitySOM-

5CSX SoM (Copyright: ESA)

Field Programmable Gate Arrays (2/2)
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• Graphics Processing Units (GPUs):

▪ Fixed and massively parallel hardware optimized for data-flow processing (e.g., computer 
vision algorithms/Deep Learning)

▪ High flexibility (more than FPGAs less than micro-controllers)

▪ High-performance (comparable to FPGAs for some applications)

▪ Poor energy-efficiency  due to large hardware

▪ Development time: often comparable to CPUs 

▪ 𝐶_𝑁𝑅𝐸 low, 𝐶_𝑅𝐸 high (comparable or a bit lower than FPGAs)

▪ Radiation tolerance:  bad (it can be improved in rad-hard GPUs)

 

▪ GPUs might be interesting to enable High Performance Computing of different apps, 
including training

Edge Graphics Processing Units
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• Application specific circuits designed to optimize AI inference: 

▪ Limited flexibility (High flexibility but limited to AI algorithms)

▪ High energy-efficiency & Performance (trade-offs comparable to FPGAs)

o Hardware optimized for AI inference

▪ Low to medium development time: depending on the development flow

o 𝐶𝑁𝑅𝐸 : low/average

o 𝐶𝑅𝐸 : low/average

o Radiation tolerance: low/average (commercial devices)

• Typically used for AI inference on nano/micro-satellites

Commercial AI Chips
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Power Constraints

● Limited power budget
● Depends on orbit & 

satellite design

Mission-specific Constraints

Thermal Management

● Restrict the time for 
processing 

● Depends on orbit & 
satellite design

Radiation Effects

● Damages and systems 
restart

● Corrupted data

Communication constraints

● Limited communication 
bandwidth 

● Limited line of sight 

Limited dataset availability
• New onboard sensory
• Not representative datasets 

(e.g., raw data, domain gap)

Technical Challenges
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• Domain gap problem

▪ AI models are trained on a source dataset

▪ In their operational scenario (i.e., on board) AI models work on a target 

dataset featuring a “domain shift” compared to the source dataset 

• What can cause a domain shift in EO?

▪ Different operational conditions (e.g., acquisition time)

Credits: Rens Van Der Linden

Limited dataset representativeness: domain 

gap problem



30
30
30

• What can cause a domain shift in EO?

▪ Different operational conditions (e.g., acquisition time)

▪ Not sufficient comprehensive training set (e.g., containing limited geographical areas, 

limited samples in a time series)

Limited dataset representativeness: domain 

gap problem
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• What can cause a domain shift in EO?

▪ Unavailability of target data at training time (for instance, when the target sensor is new)

▪ Sensor degradation and noise drifting

Simulated Φsat-2 

   acquisition – L1 level  

Real Φsat-2 

Acquisition – L1 level  

Source domain Target domain

Credit: Giorgia Guerrisi

Striped noise

Limited dataset representativeness: domain 

gap problem
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• What can cause a domain shift in EO?

▪ Lack of fidelity in reproducing onboard data processing chains

• Onboard AI demonstrators are 

typically made using high-end   

processing levels (e.g., L1C)

• However, reproducing the on-ground

processing chains on board is 

typically unfeasible

Reproducing onboard processing chains require raw data, which are often unavailable, even 

for sensors for which higher level products are publicly released (e.g., Sentinel-2) 

Limited dataset representativeness: domain 

gap problem
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1. Data download, fine-tuning, and models retraining 

• Currently adopted in most of EO missions leveraging new sensors 

• Simple approach but leads to longer in-orbit commissioning or operational missions 

overhead and poor automation 

2. In-orbit domain-gap adaptation techniques 

• Techniques currently experimented on satellite imagery aim at performing continual 

domain gap assessment and adaptation via model fine-tuning 

• Might require additional hardware (e.g., GPUs) to speed up computation

3. Using Foundation Models (FMs) on board 

• Being pre-trained on massive amount of data, FMs could be more resilient to domain 

shifts 

• FMs are computationally expensive. Onboard deployment is tricky.

Domain gap mitigation strategies
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• Energy availability fixes the maximum area that can be 

     acquired and processed on board within an orbital period

• Image pre-processing

▪ Data used on the ground are high-end post-processed

▪ Same level of post-processing is often not achievable on board

     due to power limitations

▪ Pre-processing creates significant latency (even higher than AI inference!)

     that is critical for some applications (e.g., natural disasters)

• Idea: Can AI process directly raw data (with minimal pre-processing)? 

• Case study: thermal anomaly (i.e., volcanic eruption/wildfire) patch classification on    

    Sentinel-2 raw data

Energy 
Constraints Mission-specific 

Constraints

Thermal 
Management Radiation 

Effects

Communication 
constraints

Limited dataset 
availability

Energy constraints
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• Sentinel-2 is a multispectral pushbroom sensor:

▪ Multispectral – 13 bands in the Visible, Near-Infrared, SWIR ranges

▪ Pushbroom: 

▪ Satellite acquire by «sweeping» over a certain area along track

▪ An acquisition stops after 3.6 s. 

▪ The area acquired of a single detector in 3.6 s is called Granule

▪ Parallaxis between bands in a detector make bands acquire different 

area

           (Bands are not registered)

How Sentinel-2 raw data look like (1/2)?
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• Lack of bands registration

• In addition, no radiometric processing (except for bans equalisation) 

3-bands
1 detector

How Sentinel-2 raw data look like (2/2)?
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• There are several coregistration techniques (based on computer vision or mechanical model)

• Computer vision-based bands displacement correction

▪ Most of them use computer vision techniques to extract and match keypoints

▪ The average key-points distance provide the registration shift to be matches

• In addition to displacement, some registration corrects errors in rotation, warping, etc.

Classical bands co-registration techniques
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• THRaWS (Thermal Hotspots in Raw Sentinel-2 data) dataset:

▪ 135 granules containing volcanic eruptions and wildfires

▪ 11 granules with no thermal hotspots

▪ Bands B8A, B11, B12

• PyRawS (Python for Raw Sentinel-2 data)

PyRaws

(https://github.com/ESA-PhiLab/PyRawS)

Download 

THRawS 

Classical bands co-registration techniques
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Applying fixed 

precalculated 

shift (not perfect)

General purpose

  embedded

 AI processor

Thermal anomaly

No anomaly

Onboard END2END processing techniques
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False 

negative

Some qualitative results
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• Testing set-up:  

▪ Onboard processor: Raspberry PI 4 (4 GB)

▪ AI board: CogniSat-XE1 board:

o Flight-heritage: flying on Ubotica CogniSat-6

• Results:  

▪ Latency: 1.8 s < 3.6 s (Real time processing)

▪ Power consumption:

o Average: 5.5 W

o Peak: 6.4 W

In collaboration with Ubotica Technologies,TU Delft, and University Federico II 

Energy results
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• Edge computing for space is attracting the interest of research 

community

• Numerous technical challenges are still existing 

• Further research and technology development is needed to make 

systems based on edge computing in space operational

Conclusion
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Visiting Professor

Visiting Researchers (Industrial and Scientific)

ESA Research Fellowships

ESA Co-funded PhD

ESA Early Graduate Traineeships (EGT), Internships, National trainee 

Working with us is very easy



Join ESA Φ-lab through CIN 

The Collaborative Innovation Network (CIN) by ESA Φ-lab, provides to leading researchers and University 

Professors the opportunity to join ESA Φ-lab and be actively involved in accelerating the future of Earth 

Observation with ESA.

The ESA Φ-lab CIN aims to:

Establish a global network through which researchers and innovators can JOIN ESA Φ-LAB

Promote knowledge sharing and develop groundbreaking EO solutions

Check the open calls Follow CIN on Linkedin
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What to go deeper into Φ-lab disruptive innovation?

Don’t miss our spotlight session at Big Data from Space 
(Day 2 – October 2nd at 17:50)
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