

Dr. Gabriele Meoni

Innovation Officer, ESA ESRIN Frascati, Rome, Italy

Email: gabriele.meoni@esa.int

(Acknowledgement: thanks to Dr. Alessandro Sebastianelli for his contribution to this slide deck)

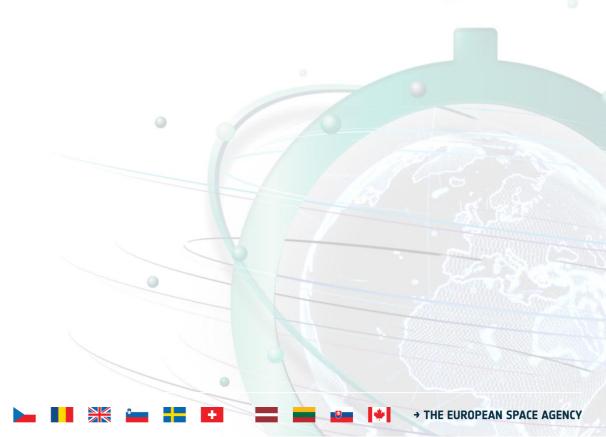
ESA UNCLASSIFIED - For ESA Official Use Only

A brief introduction of me

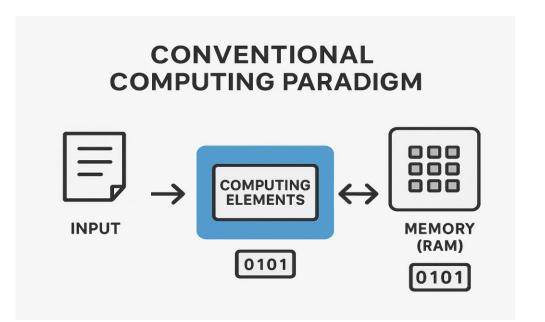
- Name: Gabriele Meoni, PhD
- Role: Innovation Officer at European Space Agency
 - Bringing transformational innovation to Earth Observation applications
 - Sections:
 - Advanced Concepts and Studies Office
 - o Ф-lab
 - IEEE GRSS Earth Science Informatics (ESI): technical committee co-chair
- Topic of interests:
 - Edge computing for space
 - Artificial Intelligence for Earth Observations
 - Quantum Computing

Contacts:

gabriele.meoni@esa.int


gabriele-meoni-53b390131

Learning objectives

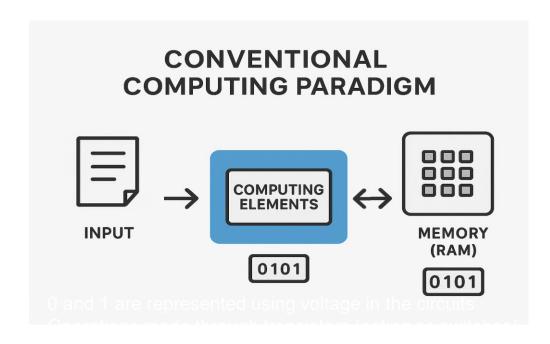

- At the end of this lesson, you will be able to:
 - Explain the concept of disruptive computing paradigms and their significance in complementing conventional computational models.
 - Analyse the foundational principles of quantum and neuromorphic computing, including basic knowledge on hardware technologies, technical challenges, and their integration with Artificial Intelligence algorithms.
 - Describe the main EO use cases for quantum and neuromorphic computing and current related research trends

- What are Disruptive Computing paradigms?
- Quantum Computing
- Neuromorphic Computing
- Conclusion

- What are Disruptive Computing paradigms?
- Quantum Computing
- Neuromorphic Computing
- Conclusion

Hardware for conventional computing

- 0 and 1 are represented using voltage in the circuits
- Operations made through transistors (acting as switches)
- Efficiently implemented in CMOS technology



Information encoding & processing

- Using binary digits (1/0) to encode information
 - Binary representation of numbers (floating point)
 - ASCII code to represent characters and NAN
- Mathematical operations: computing using base 2 operations
- Logical operations: regulated by Boolean algebra (1 conventionally represents "True", 0 represents "False")

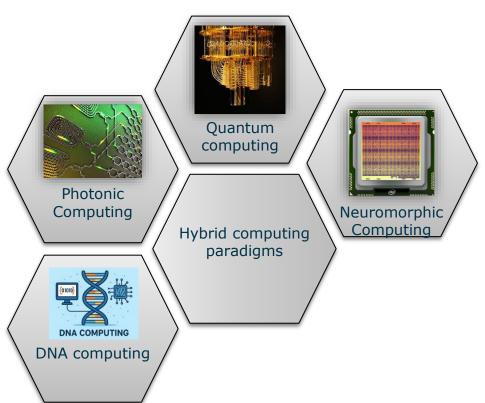
Architecture of computing systems

- Many different architectures (e.g., CPUs, GPUs, ...)
- All the architectures have common elements:
 - One or multiple computing elements to process information
 - Volatile memories (e.g., RAM) to contain intermediate results

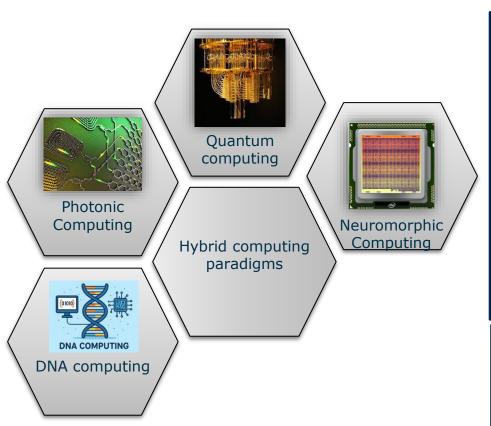
Pros

- **Based on CMOS technology**
 - Stable and reliable
 - Long heritage
 - High scalability
- It is a universal computing paradigm (Turing-complete)

Cons


- **Intrinsically limited parallelism**
 - Many modern algorithms (e.g., Dee Learning) make modern computing systems **memorybounded** (computing performances are limited by the need of moving data out of RAM)
- For some problems (e.g., prime number factorisation), existing algorithms offer a solution whose execution time scales exponentially the number of inputs

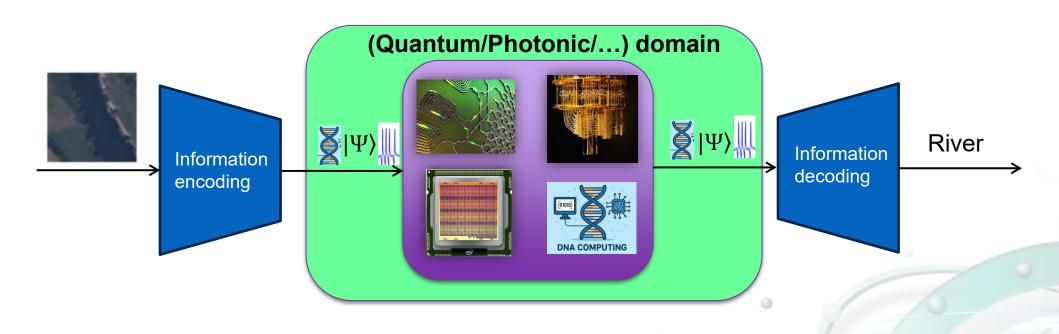
What are Disruptive Computing paradigms?



- Computing paradigms whose underlaying principles and/or hardware implementation differ from conventional computing
- We can consider mainly two categories:
 - Same underlaying principles but different hardware implementation from conventional computing (e.g., photonic computing encodes/processes information through light properties)
 - Different underlaying principles and different hardware implementation (e.g., quantum computing, neuromorphic computing, etc)
- Possible hybrid models exist
 - Neuromorphic quantum computing (using both principles)
 - Photonic quantum computing (quantum principles on photonic hardware)
 - •

Disruptive Computing paradigms: Pros vs Cons

Pros


- Might feature advantageous properties
 (e.g., high power/energy efficiency, radiation tolerance, ..)
- Might be natively highly parallel
 (e.g., DNA computing, Neuromorphic computing, etc)
- They can unlock new capabilities due to novel underlaying principles
 - E.g., Some quantum computing algorithms feature **linear** time scale for problems for which conventional computing can solve with **exponential** time scale

Cons

- Most of these paradigms are immature
 - Noisy or not scalable hardware
 - Limited complexity of algorithms that can be tested
 - Lack of scalability often prevents operational uses
 - Limited algorithmic maturity compared to conventional counterparts

Disruptive Computing paradigms: typical chain

- Encoding and decoding are critical blocks
 - Might impact theoretical efficiency and achievable performance
 - Current open research problems for various computing paradigms
- For some of these computing paradigms, dedicated sensors exist (e.g., neuromorphic sensing)
 - Allow providing information directly in the encoded domain
 - Typically allowing for better efficiency/accuracy trade-offs

- What are Disruptive Computing paradigms?
- Quantum Computing
- Neuromorphic Computing
- Conclusion

What is Quantum Computing?

Quantum Computing is a type of computations whose **operations** harness the laws of quantum **mechanics**, to **solve problems** too **complex** for classical computers.

For some problems, supercomputers are not that super. When classical computers fail, it is often due to complexity (problems with lots of variables interacting in complicated ways).

Any computational problem that can be solved by a classical computer can also be solved by a quantum computer (QC). Conversely, any problem that can be solved by a QC can also be solved by a classical computer, at least in principle given enough time.

According to IBM there are four areas where quantum computing would seem to be able to make significant unique contribution.

Mathemathical Models

Mathematical models structures. data Particularly tied to machine learning (ML) constructs and efforts to factor, rank, or even classify symmetric groups at scale. Quantum computers would seem to have a significant advantage in both speed and accuracy.

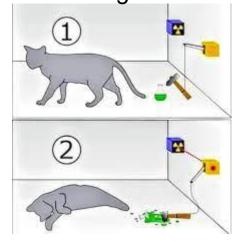
Complex problems where quantum computing **could perform the role of accelerator** for the parts of these complex problems that lend themselves to what only a quantum computer can do.

Other

Simulating Nature

Nature complex with interdependent components in massive numbers that make accurate weather forecasting even hours in advance relatively impossible. But QC can digest huge amounts of data over short periods of time, potentially filling data gaps in ways that don't compromise the results. This application will identify the best paths to addressing complex issues, like climate change and predicting when weather catastrophes are likely to hit.

Sampling types of population analysis, analyse large samples more quickly, potentially increasing both the speed and accuracy of the related effort


Population Analysis

Schrödinger's cat

Credit: Wikipedia

Schrödinger's cat explanation

- A cat is placed inside a sealed box along with a radioactive atom, a Geiger counter, and a vial of poison.
- If the atoms decades, the counter triggers a mechanism breaking the vial,
 releasing the poison and killing the cat
- Opening the box also breaks the vial, killing the cat

Explanation

- Until the box is closed, the cat is in the "dead (0)" or "alive (1)" states at the same time (superposition)
- Measurement: Opening the box constitutes a measurement, forcing the system to collapse into one of the two possible outcomes: the cat is either alive or dead

Quantum bits and Superposition (2/2)

Qubit

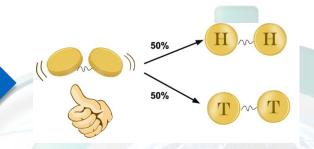
A classical bit can be in two states, it can be either zero or it can be one. A quantum bit or qubit, however, can be in a sort of zero state and in a one state at the same time. This situation is called a superposition of (quantum) states. Qubits have some very particular properties: for instance, it is not possible to make copies of qubits. This is sometimes very useful, such as when you want to keep information private, and in fact this property is used in quantum cryptography. But it is also sometimes very annoying, because if you can't copy a qubit, you can't use this copying mechanism as a way to fix errors.

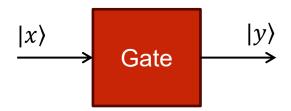
Superposition

In quantum mechanics, superposition means a system can exist in multiple states simultaneously—like a wave combining amplitudes. Every quantum state is a linear combination of other valid states.

Why this is important: For qubits, this enables parallelism: a single qubit can represent both 0 and 1 at once, allowing quantum algorithms to evaluate multiple conditions simultaneously and exponentially expand computational reach.

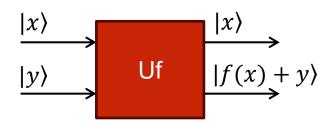
$$|\Psi\rangle = \alpha \cdot |0\rangle + \beta \cdot |1\rangle$$
 Qubit


When measured, $|\Psi\rangle$ collapses to $|0\rangle$ and $|1\rangle$ with probability $|\alpha|^2$ and $|\beta|^2$


Entanglement

Quantum entanglement is a special connection between two qubits. There are many ways of generating entanglement. One way is to bring two qubits close together, to perform an operation to entangle them and then move them apart again. When they are entangled, you can move them arbitrarily far away from each other and they will remain entangled. This entanglement will manifest itself in the outcomes of measurements on these qubits. When measured, these qubits will always yield zero or one randomly, but no matter how far away they are from each other, they will always yield the same outcome.

Quantum Gates

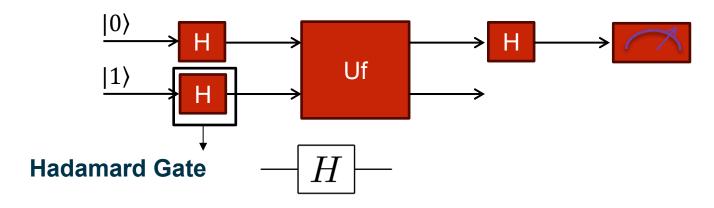

Quantum Gate:

- Modelled as linear, invertible operator with unitary eigenvalues, ensuring the preservation of quantum state norms
- There exist well-known gates acting on single qubits (e.g., Hadamard, Phase, T) and multiple qubits (e.g., CNOT, Toffoli), each performing specific transformations.
- A universal set of quantum gates—such as {H, T, CNOT}—can be composed to approximate any unitary operation on qubits
 - If a quantum computing hardware can implement a universal set of quantum gates, it is said universal quantum computer

The power of Quantum Computing(1/3)

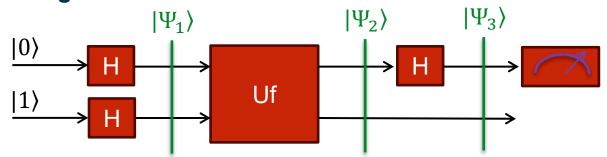
- Let's take a binary function f(x). **Problem**: f(0) = f(1)?
- Conventional computing requires to test f(0) and f(1)
- What about quantum computing?
- **Quantum Oracle**

Invertible blocks such as: $U_f(|x\rangle|y\rangle) = |x\rangle|y + f(x)\rangle$



The power of Quantum Computing (2/3)

Deustch's algorithm

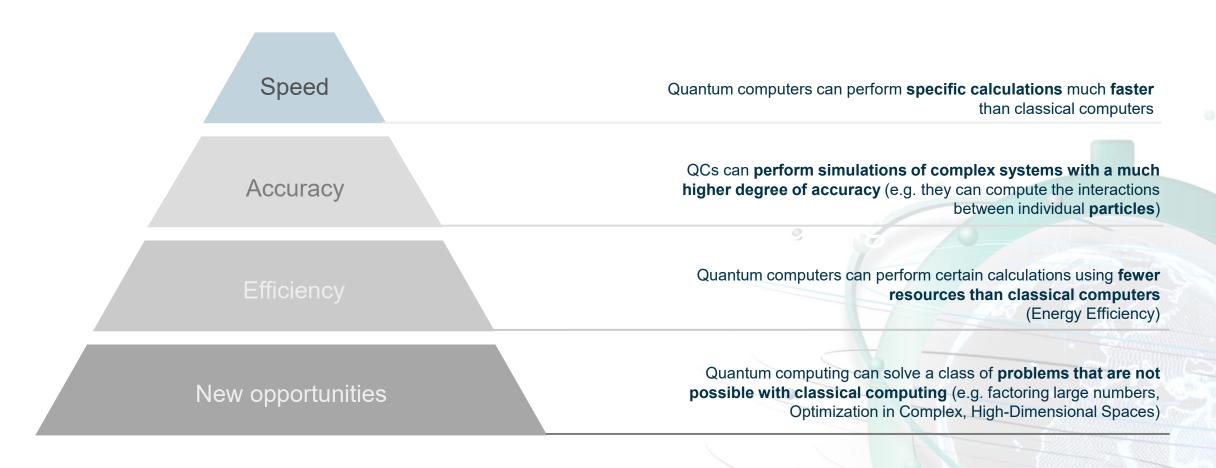

Single qubit gate described by the matrix $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

$$|0\rangle$$
 — H —

Starting from the single state qubit $|0\rangle$, the Hadamard gate returns the superposition of two states, namely the so-called *plus* state $|+\rangle$, i.e.

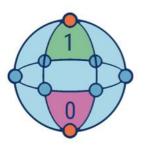
$$H|0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle = |+\rangle$$

Deustch's algorithm

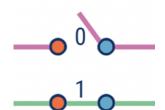

- $|\Psi_1\rangle = H|0\rangle \otimes H|1\rangle = |+\rangle |-\rangle$
- $|\Psi_2\rangle = U_f(|+\rangle|-\rangle) = \frac{1}{\sqrt{2}} \cdot (U_f(|1\rangle|-\rangle+|0\rangle|-\rangle) = \frac{1}{\sqrt{2}} \cdot (|1\rangle(|-\rangle+f(|1\rangle)) + |0\rangle(|-\rangle+f(|0\rangle)) = \frac{1}{\sqrt{2}} \cdot (|1\rangle(|-\rangle+f(|0\rangle)) + |0\rangle(|-\rangle+f(|0\rangle)) = \frac{1}{\sqrt{2}} \cdot (|1\rangle(|-\rangle+f(|0\rangle)) + |0\rangle(|-\rangle+f(|0\rangle)) + |0\rangle(|-\rangle+f(|0\rangle)) = \frac{1}{\sqrt{2}} \cdot (|1\rangle(|-\rangle+f(|0\rangle)) + |0\rangle(|-\rangle+f(|0\rangle)) + |0\rangle(|-\rangle+f(|0\rangle)) = \frac{1}{\sqrt{2}} \cdot (|1\rangle(|-\rangle+f(|0\rangle)) + |0\rangle(|-\rangle+f(|0\rangle)) + |0\rangle(|0\rangle+f(|0\rangle)) + |0\rangle(|0\rangle+f(|0\rangle)) + |0\rangle+f(|0\rangle+f(|0\rangle+f(|0\rangle)) + |0\rangle+f(|0\rangle+f(|0\rangle+f(|0\rangle+f(|0\rangle+f(|0\rangle+f(|0\rangle+f(|0\rangle+f(|0\rangle+f(|0\rangle+f(|0\rangle+f(|0\rangle+f(|0\rangle+f(|0\rangle+f(|0\rangle+f(|0\rangle+f(|0\rangle+f$ $=\frac{1}{\sqrt{2}}\cdot((-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle).$
 - If $f(|1\rangle) = f(|0\rangle), |\Psi_2\rangle = \pm |+\rangle |-\rangle$
 - If $f(|1\rangle) \neq f(|0\rangle), |\Psi_2\rangle = \pm |-\rangle |-\rangle$
- $|\Psi_3\rangle = (H \otimes \mathbf{I})|\Psi_2\rangle =$ $|0\rangle|-\rangle$, If $f(|1\rangle) = f(|0\rangle)$ $|1\rangle|-\rangle$, If $f(|1\rangle) \neq f(|0\rangle)$

In a single step, you can identify whether $f(|1\rangle) = f(|0\rangle)$ by looking at the output of the circuit (0, f is constant, 1 f is not constant)

Expected Advantages of Quantum Computing



Most relevant Quantum Advantages that will impact EO.

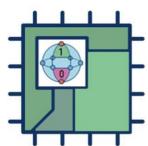

Differences between Quantum and Conventional Computing

Quantum Computing

Calculates with qubits, which can represent 0 and 1 at the same time

Calculates with transistors, which can represent either 0 or

Conventional Computing

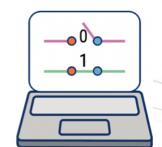


Power increases exponentially in proportion to the number of qubits

Power increases in a 1:1

relationship with the number of

transistors



Quantum Computers have high error rates and need to be kept ultracold

Well suited for tasks like optimization problems, data analysis and simulations

Conventional Computers have low error rates and can operate at room temperature

Most everyday processing is best handled by conventional computers

Quantum Computing hardware

- QC is in the Near-Intermediate-Scale Quantum (NISQ) era:
 - The number of qubits in a quantum computer is limited depending on technology
 - Qubits are sensitive to noise that:
 - Limits the coherence time (time for which phase of qubit is conserved)
 - o Limits the relaxation time (time for which the qubit goes from $|1\rangle$ to $|0\rangle$.
 - Such noise sensitive qubits are called physical qubits
 - Noise correction techniques exist (e.g., surface codes):
 - They encode the information on multiple qubits to detect and correct errors without measuring the quantum state
 - The result is a logical qubit
 - A surface code capable to correct up to 2 simultaneous errors requires 25 physical qubits!
 - There is no an established technology for quantum hardware. Many solutions exist with different trade-offs between noise resistance, scalability, etc.

Pault-tolerant quantum computation
Algorithms on multiple logical qubits
Operations on single logical qubit

Logical memory with longer lifetime than physical qubits
OND measurements (and control) for error corrections
Algorithms on multiple physical qubits
Operations on single physical qubits
Time

Credit: au, J.W.Z., Lim, K.H., Shrotriya, H. et al. NISQ computing: where are we and where do we go?. AAPPS Bull. **32**, 27 (2022). https://doi.org/10.1007/s43673-022-00058-z Download citation

Quantum Computing hardware technologies

Superconducting Qubits

Mature fabrication, fast gates Challenges: cooling, scaling coherence

Neutral Atoms

Scalable arrays, flexible connectivity Challenges: control precision

Spin Qubits (Semiconductor)

Silicon compatibility, small footprint Challenges: uniformity, noise

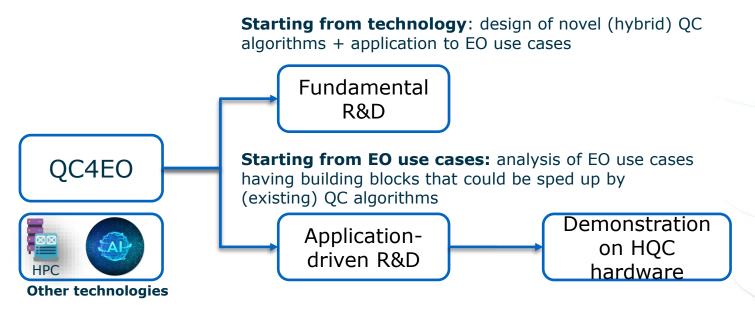
Trapped Ions

High fidelity, long coherence Challenges: slow gate speeds, scaling

Photonic Qubits

Room-temperature operation, telecom-ready Challenges: photon loss, error correction

Topological quantum computers


Intrinsically noise resistant, potentially scalable Challenges: first prototyping under experimentation

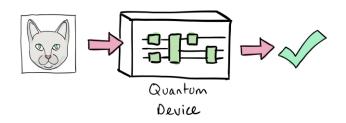
QC4EO: the Φ-lab's approach

- Earth Observation (EO) imagery is typically complex (large imagery, with complex features)
- Research on QC4EO is still at its infancy:
 - Limited QC algorithms availability
 - Existing algorithms cannot be deployed on QC hardware due to its limitation
- Because of that, the Φ-lab's approach is as follows:

Fundamental algorithms: quantum diffusion models, noise filtering, ...

Use cases: rapid fluid dynamics computation for DTE, SAR Raw data processing, Multiple View Geometry, Mission Planning

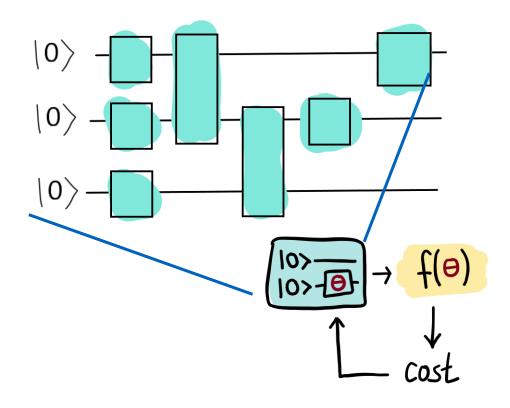
- What are Disruptive Computing paradigms?
- Quantum Computing
 - Quantum Computing: fundamental R&D
 - Quantum Computing: application-driven R&D
- Neuromorphic Computing
- Conclusion


Quantum Machine Learning

Quantum machine learning is a research area that explores the interplay of ideas from quantum computing and machine learning.

Why Quantum Machine Learning

- Aiming to enhance AI algorithms leveraging quantum properties (e.g., superposition, entanglement)
- As shown before, such properties might lead to quantum speed up compared to conventional ML algorithms

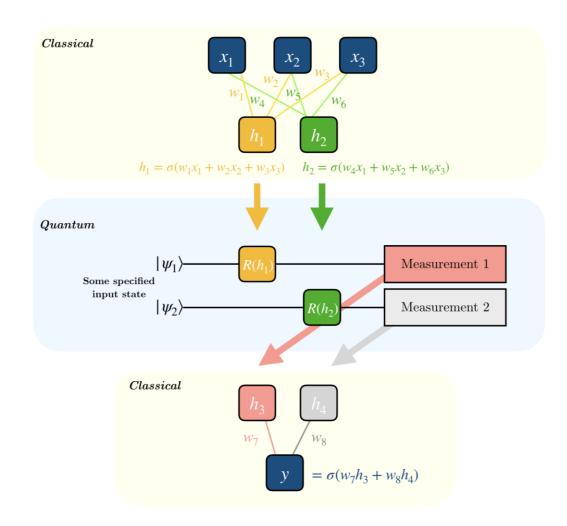


Using QC like neural networks

In the modern viewpoint, quantum computers can be used and trained like neural networks. We can systematically adapt the physical control parameters, such as an electromagnetic field strength or a laser pulse frequency, to solve a problem.

For example, a trained circuit can be used to classify the content of images, by encoding the image into the physical state of the device and taking measurements.

Variational Quantum Circuits



Variational or parametrized quantum circuits are quantum algorithms that depend on free parameters. Like standard quantum circuits, they consist of three ingredients:

- 1. Preparation of a fixed initial state (e.g., the vacuum state or the zero state).
- 2. A quantum circuit $U(\theta)$, parameterized by a set of free parameters θ .
- 3. Measurement of an observable the output.

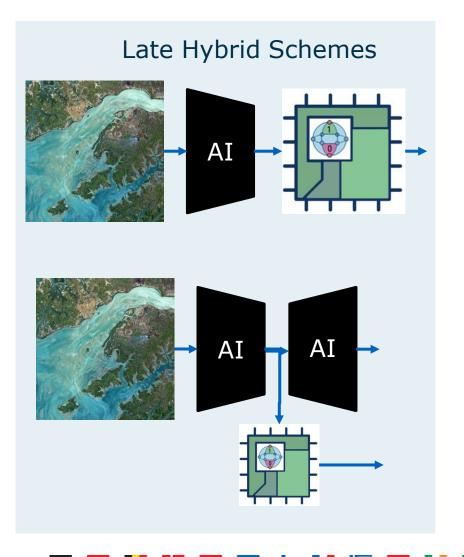
Variational circuits are trained by a classical optimization algorithm that makes queries to the quantum device. The optimization is usually an iterative scheme that searches out better candidates for the parameters θ with every step.

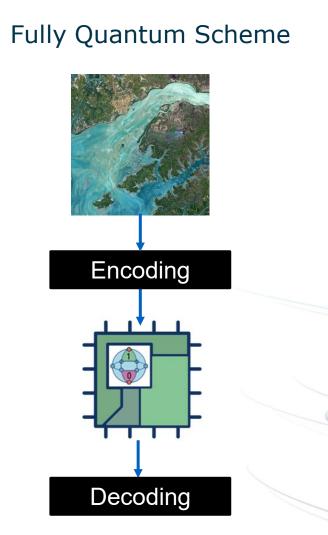
Hybrid quantum-classical Neural Networks

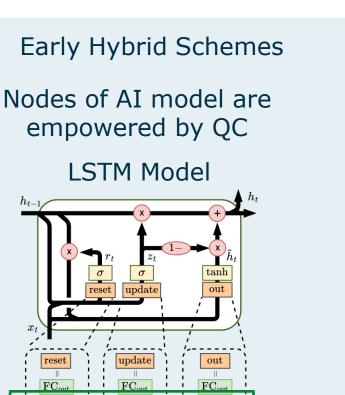
To create a quantum-classical neural network, one can implement a hidden layer for our neural network using a parameterized quantum circuit or variational circuit.

The outputs from our neural network's previous layer will be collected and used as the inputs for our parameterized circuit. The measurement statistics of our quantum circuit can then be collected and used as inputs for the following layer.

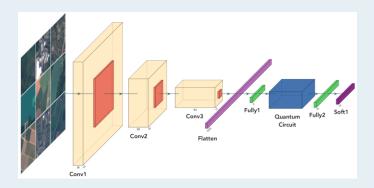
This approach allows to overpass some limitations of QC and allows also to work with complex and heavy data, that at the moment are difficult to feed into a QC.


Moreover, all the classical training algorithm can be applied without any particular modification.

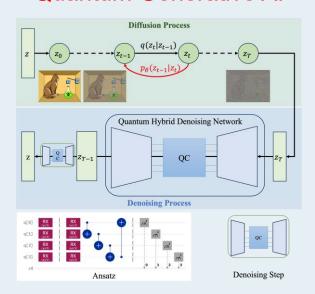

https://qiskit.org/textbook/ch-machine-learning/machine-learning-qiskit-pytorch.html

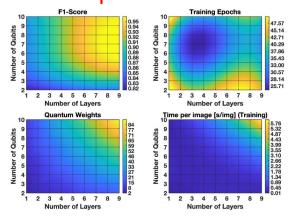

Quantum Machine Learning for EO

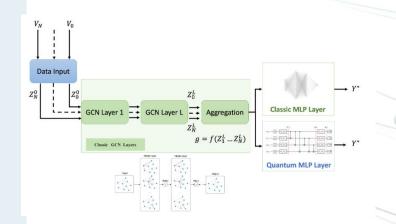
Quantum machine learning is a research area that explores the interplay of ideas from quantum computing and machine learning. We adopted this vision and applied it to Earth Observation.

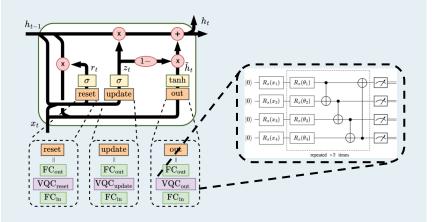


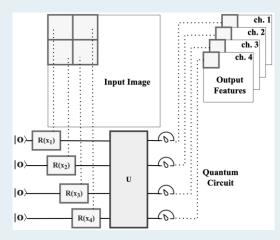
 $\overline{
m VQC_{update}}$


Some fundamental algorithms under study


Hybrid Quantum Classifiers


Quantum Generative AI


Quantum Hyperparameters Optimization


Quanvolutional Neural Network

Quantum Recurrent Neural Networks

Quantum Graph Neural Network

Current research trends

- The number of papers on Quantum Machine Learning for Earth Observation is growing exponentially (up to 32 papers in 2024)
- Multiple sensors and EO Task are currently investigated

Main findings:

- the vast majority of current papers simulate quantum computing on conventional computers (noise free) overestimating performances
- The vast majority works on simplified tasks (e.g., subsampled datasets) making difficult to support the fact there is a quantum advantage for Al

Source: A. Sebastianelli et al. "Quantum Machine Learning for Earth Observation: A Review and Future Prospects" (under review)

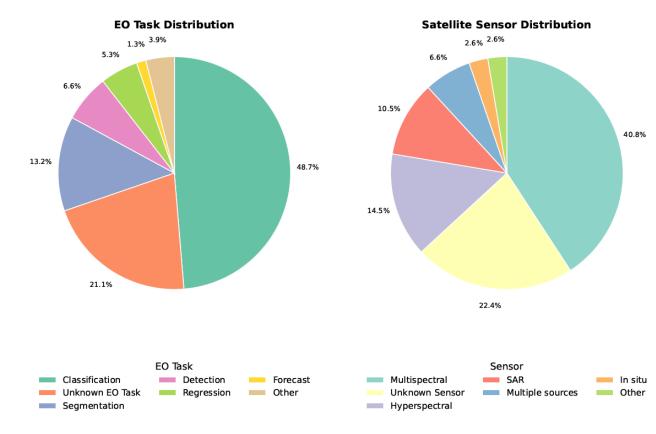
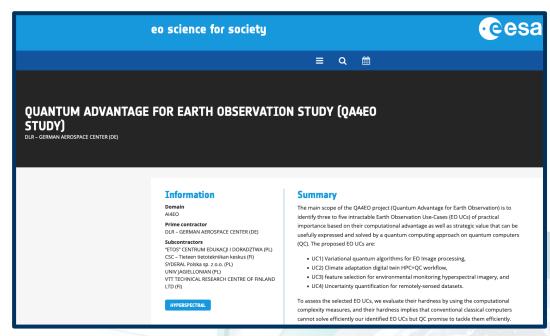
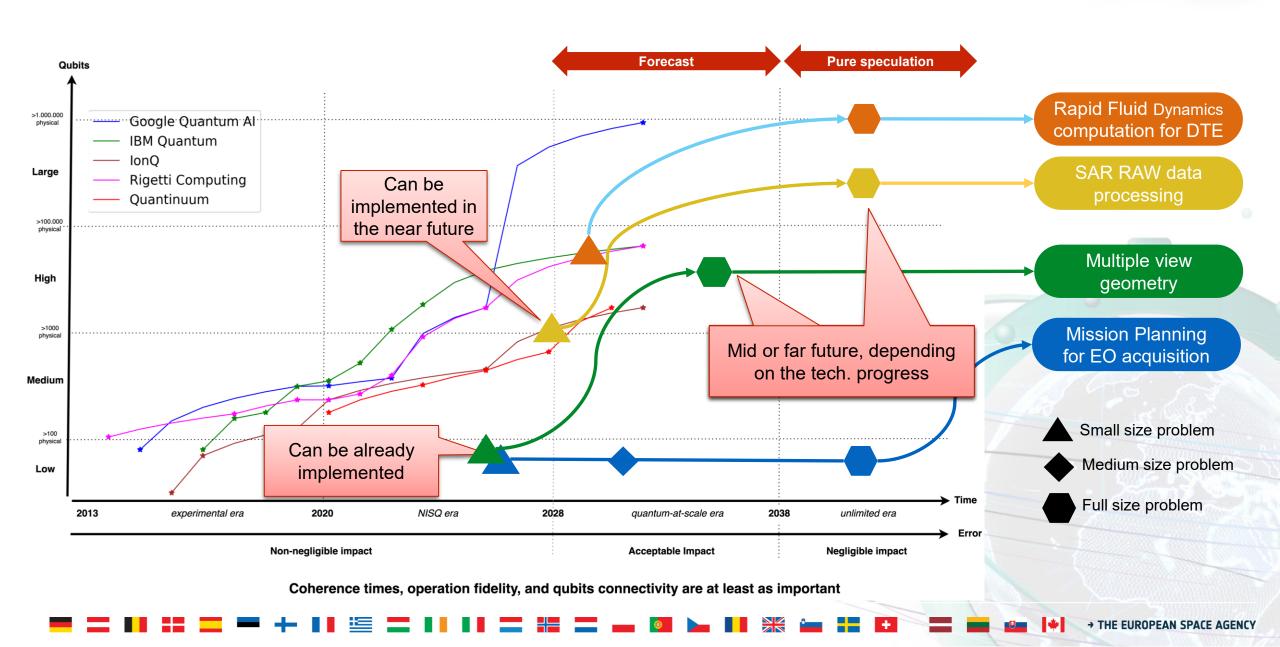


Figure 6. Distribution of QML applications across EO sensor modalities (left) and task types (right).


- What are Disruptive Computing paradigms?
- Quantum Computing
 - Quantum Computing: fundamental R&D
 - Quantum Computing: application-driven R&D
- Neuromorphic Computing
- Conclusion

Quantum computing studies

https://eo4society.esa.int/projects/qc4eo-study/

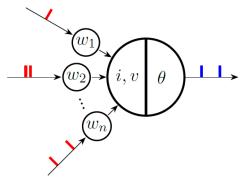

https://eo4society.esa.int/projects/qa4eo-study/

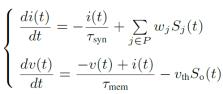
- Studies investigating use cases for Quantum Computing.
- Considering applications whose algorithms whose building blocks are computationally expensive and might be accelerated by Quantum Computing

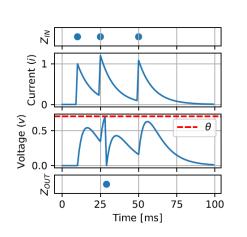
PROPOSED QUANTUM SOLUTION	BOTTLNECKS OF THE CONSIDERED CLASSICAL SOLUTION	SHORT DESCRIPTION	USE CASE
Quantum clustering: quantum k-medoids, quantum kernel density	Keypoints extraction: combinatorial optimization problem of exponential complexity	Analyzing satellite images of a specific area captured from various perspectives	Multiple-view Geometry on Optical Images
Two different approaches have been studied: quantum optimization and quantum machine learning	Acquisition planning is a combinatorial optimization problem of exponential complexity, currently solved with deterministic or heuristic methods	Finding an optimal acquisition plan of a satellite constellation given user requests	Mission Planning for EO applications
Quantum Range Doppler Algorithm	Frequency-based methods (Range Doppler): polylogarithmic complexity of Fourier transformation	Image generation of an area of interest from the raw signal received by the SAR system	SAR Raw Data Processing
Utilizing quantum algorithms, such as HHL (Harrow-Hassidim-Lloyd) and Quantum Singular Value Transformation (QSVT), to improve computational efficiency in solving linear systems related to fluid dynamics.	Large data requirements and short computation time steps make classical fluid dynamics simulations computationally expensive.	Rapid computation of fluid dynamics for Digital Twin Earth applications.	Climate adaptation digital twin HPC+QC workflow

Possible roadmap for QC4EO

- What are Disruptive Computing paradigms?
- Quantum Computing
- Neuromorphic Computing
- Conclusion

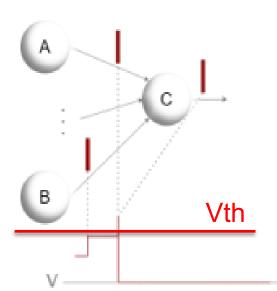



Neuromorphic computing



- Neuromorphic Computing (NC) is a massively parallel and asynchronous computing paradigm.
- In its more modern connotate, neuromorphic computing encodes and processes information through **spikes**, mimicking the brain's working principles.
 - Brain is really energy efficiency (about 20 W)
 - Spikes can be encoded and transmitted with very few memory (reducing memory bottleneck problem)
- NC can be combined with AI algorithms, implementing Spiking Neural Networks (SNNs).

- There are numerous spiking neuron models with different trade-offs between fidelity to nature emulation and computational complexity
- Nowadays, the most used model is the "Leaky Integrated and Fire" (LIF) model



(a) LIF spiking neuron.
 (b) Neuron internal states.
 Source: Lunghi. P. et all "Energy efficiency analysis of SpikingNeuralNetworks for space
 Applications", Astrodynamics (in press)

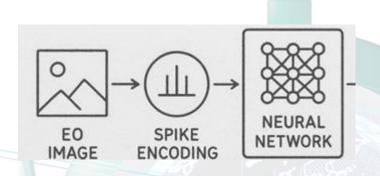
- Neurons are made of two parts (synapses and membrane). Synapses link a neuron to other neurons
- The **synaptic current** i(t) is obtained by integrating the weighted (w_j) train of synaptic binary spikes $S_j(t)$
- The membrane voltage potential v(t) is obtained as in a RC filter (integrating i(t))
- When $v(t) > v_{th}$, v(t) is reset and a spike is emitted

Spiking Neural Networks (SNNs)

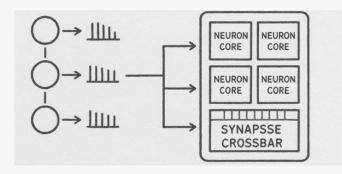
- 1. Neuron C accumulates spikes from neurons A and B
- 2. When a spike is detected, voltage (V) of neuron C grows
- 3. When V passes a threshold (Vth), neuron C emits a spike, and V is reset

Advantages

- Computation is **sparse** and triggered locally by events
- 2. Neuromorphic hardware can leverage these features and ensure energy-efficiency and rapidity


Limitations

- 1. Immature computing paradigm
 - SNNs are difficult to train due to non-differentiability of LIF neurons equations


Spike encoding

- Spike encoding encodes information (e.g., EO images) into spikes
- Multiple spike encoding
 - Frequency-based (more active pixel = higher frequency rate) – more robust/less efficient
 - Latency-based (more active pixels fire before technically, it is possible to have neurons firing only one) – less robust/more efficient
 - Others...

Digital Chips

- Multiple digital cores working asynchronously
- Spikes are routed through cores via a synaptic crossbar
- Higher scalability but requires time discretization of SNNs

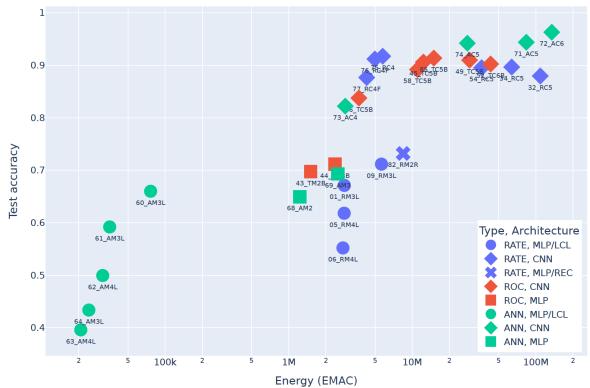
Analog/Mixed signals chip

- Synaptic operations are obtained through analog chips
- Do not require time discretization of SNNs and very energy efficient
- More complex design flows and limited scalability (limitations to SNN models size)

Why neuromorphic computing (1/5)?

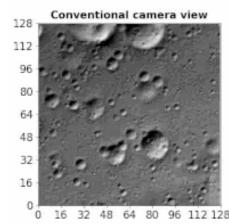
Due to its potential energy-efficiency, NC looks promising for onboard processing applications

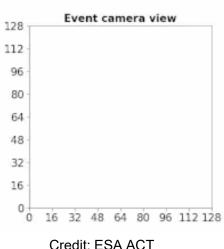
• Satellites (especially small satellites) have limited energy and power-budgets


 Yes, but... energy efficiency depends on sparsity that depends on the encoding used and the inputs

 EO optical images are a static input => sparsity depends on the encoding used.

Why neuromorphic computing (2/5)?


 Is there an advantage in using neuromorphic computing for onboard processing of EO static imagery?



Source: Lunghi. P. et all "Energy efficiency analysis of SpikingNeuralNetworks for space Applications", Astrodynamics (in press)

- Multiple SSNs were compared on EuroSat RGB (land use/land cover classification) in terms of energy (estimated) and accuracy with standard deep learning models
- SNNs do NOT exhibit advantageous trade-offs w.r.t. conventional deep learning models for land use/land cover classifications

Neuromorphic sensing

 Each pixel produce a **spike** when it detects a significative variation of the corresponding input brightness

- Neuromorphic cameras are:
 - Event-based, asynchronous
 - Sparse
 - Much faster than normal cameras
 - High dynamic/range
- Their output is already encoded in the spike domain

Studying red-sprites

Credit: ESA

 Red sprites are specific thunderstorm events of 14km-26km size forming above clouds

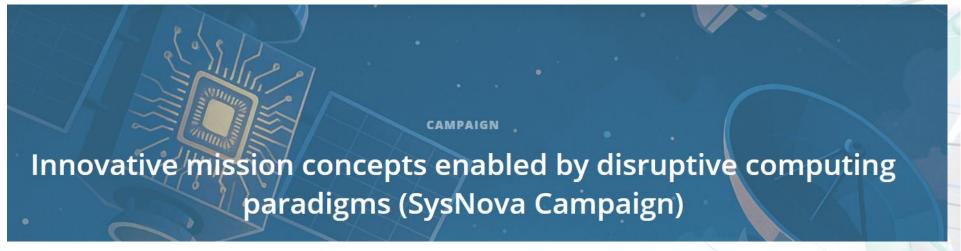
- THOR-DAVIS project: using event-based cameras to monitor red sprites
 - Fast acquisitions
 - Producing data only when an event happens

Space situational-awareness

NEU4SST project: preliminary concept study of neuromorphic sensing and computing to track near-Earth objects (e.g., space debris)

Preliminary results show that full neuromorphic systems can detect fast moving objects and easily tracking using SNNs

- What are Disruptive Computing paradigms?
- Quantum Computing
- Neuromorphic Computing
- Conclusion



There are numerous emerging computing paradigms

 Many of these paradigms are still in their infancy, showing immaturity both from the hardware and algorithmic points of view

- Despite that, these paradigms might be beneficial for specific EO applications, even if further research is needed to demonstrate clear advantages
- Further research is needed

- ESA launched a SysNova campaign focusing on the exploration of Disruptive Computing paradigms for EO (and other) missions
- **Deadline**: 30° September

Visiting Professor

Visiting Researchers (Industrial and Scientific)

ESA Research Fellowships

ESA Co-funded PhD

ESA Early Graduate Traineeships (EGT), Internships, National trainee

Join ESA Φ-lab through CIN

The Collaborative Innovation Network (CIN) by ESA Φ-lab, provides to leading researchers and University Professors the opportunity to join ESA Φ-lab and be actively involved in accelerating the future of Earth Observation with ESA.

The ESA Φ-lab CIN aims to:

- Establish a global network through which researchers and innovators can JOIN ESA Φ-LAB
- Promote knowledge sharing and develop groundbreaking EO solutions

Check the open calls

Follow CIN on Linkedin

Don't miss our spotlight session at Big Data from Space (Day 2 – October 2nd at 17:50)

