

Big Data Foundations for Earth Observation - Scouts and Direction of New ESA Missions

Jean-Pascal Lejault Scout project manager (ESA)

SCO-HO-ESA-PM-0070

26th September 2025

ESA UNCLASSIFIED – For ESA Official Use Only

What are Scouts?

Scout framework

- New category of research missions in Earth Observation since 2019, inspired by New Space
 - science-driven: prove new disruptive concepts and timely deliver innovative science
 - <u>not</u> in-orbit demonstrator, <u>not</u> commercially-driven
 - **short turnaround** (3 years), **small budget** for implementation (35 M€ e.c. 2024)
- ESA pulls the science innovation, using its many years of expertise
 - Identification of technologies to be further matured for science
 - ESA brings its technical expertise on key technological areas as needed
- Higher level of risks accepted
- Industry builds on the New Space paradigm to implement
 - Use of COTS + industrial know-how and processes
- Key steps:
 - Bottom-up approach to define a mission concept → consolidation phase
 - Top-down approach to deliver innovative science as a service → implementation phase
 - → Scout framework: quick innovative science + NewSpace

Step 1: Consolidation phase

- Objectives:
 - identify new potential Scout candidate missions (up to 4)
 - prepare each candidate for implementation within cost and schedule
 - consolidate the mission concept and the baseline system architecture
 - consolidate the mission requirements, perform the preliminary flow-down to system requirements
 - → demonstrate the feasibility of the system to deliver science
 - consolidate an end-to-end mission performance simulator
 - ad hoc developments to ensure readiness of critical technologies
 - consolidate the overall development approach
- Budget: 700 k€ e.c. 2024 for each candidate mission, 9 months
- → **Down-selection** of 2 missions for implementation based on
 - Independent scientific assessment (with ranking)
 - programmatic assessment

Step 2: Implementation phase

- Boundary conditions
 - a **low-cost approach** (35 M€ e.c. 2024 for the phase B/C/D/E1)
 - a rapid development cycle (3 years)
- More pro-active role of industry (→ service contract with limited oversight from ESA)
- Fully funded end-to-end service contract
 - Contractor → procure, develop, validate, launch, operate and complete the <u>entire</u> system (ground segment, space segment, launch services and operations)
 - Key Performance Gate Reviews (KPGR) foreseen at key stages → to raise confidence that the service will be delivered as expected.
- Which service?
 - delivery of innovative science products (up to Level 2)
 - specified in the Mission Requirements Document (MRD), proposed by industry, countersigned by ESA and the Science Advisory Group at kick-off
 - free and open data policy

Very lean approach

- Lean ESA project team
 - Very flexible, solution-oriented mindset → constant adaptation to actual progress
 - Few experts involved in ESA → focus on specific critical areas
 - Foster cooperation and transparency with industry → "same boat approach"
- Lean reviews
 - Project-level reviews only (no independent reviewers)
- Lean documentation
 - Solely driven by industry needs
 - → no additional document for the sole benefit of ESA
- Lean standards
 - ESA proposes a thorough tailoring to fit within the Scout framework and the New Space approach
 - Industry invited to further tailor, using proven industrial expertise and know-how
 - → alignment of expectations at the very beginning

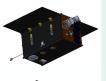
Opportunities for commercialisation

Scaling-up

- It is easy to add recurring satellites to a Scout mission at a low-cost (not to be paid by ESA)
 - to replace satellites nearing end-of-life
 - to improve the science return once the concept is demonstrated (e.g. improve coverage or reduce revisit time)
 - to **expand the science products to commercial applications** (e.g. Green transition and sustainability regulations)
- Commercial applications, though not at the heart of the selection of Scout missions, are relevant
 - To address commercial needs which can be built on the science service
 - An incremental approach (Minimum Viable Product) is very suitable:
 - Start with "basic" commercial service directly derived from the science products
 - Add one recurring satellite to expand the commercial service
 - Then add more recurring satellites as the commercial service further grows
 - → Financial risks can be minimized

The Scout family at a glance

The current family


Nov 25

Launch Q4 2027

Launch Q3 2028

More Scout missions to come soon

- April 2025: down-selection of 4 new mission candidates
 - HiBiDiS (Hyperspectral Biodiversity Scout Mission), led by Sitael (Italy)
 - NAIAD (Near-coast And Inland Aquatic impact Data), led by SSTL (UK)
 - SIRIUS (Space Based Infrared Imager for Urban Sustainability), led by TAS (Spain)
 - **SOVA-S**, led by OHB (Czech Republic)
- January 2026: completion of the consolidation studies (9 months)
- February March 2026: independent scientific assessment and ranking
- May June 2026: Selection of up to 2 new Scout missions for implementation
- July December 2026 (6 months): proposal preparation, submission, evaluation, negotiations
- January 2027: Implementation phase kick-off
- January 2030: Final Acceptance Review (KO + 3 years)

HydroGNSS, the first Scout to be launched

HydroGNSS: Environmental test campaign

PFM: Vega-C Vibe -> destack/rebuild/Thermal -> TVAC -> F9 changes -> Antenna pattern -> EMC -> F9 Vibe

FM2: F9 Vibe -----> Thermal -> TVAC -> F9 changes -----> Antenna pattern --> EMC

Credits: SSTL

HydroGNSS: good memories

HydroGNSS: last mile till launch

- June 2025:
 - Successful completion of the environmental test
 campaign for both satellites
- July 2025: successful Final Acceptance Review
- September 2025: shipment to SpaceX facilities
- 10th 30th November 2025: launch
- May 2026: In-Orbit Commissioning Review (launch + 6 months)

Godspeed HydroGNSS!

Conclusion

Conclusion

- Scout framework:
 - blending New Space & ESA EO science mission expertise
 - more proactive role given to Industry, lean approach with limited oversight from ESA
 - quick turnaround, small budget while delivering valuable and innovative science as a service
 - offers key opportunities for Industry in Europe, including commercialisation
 - Commercial applications can be incrementally derived from the science products at a low cost
 - → minimise risks as initial development is fully funded and supported by ESA experts
 - → maximise return on investment
- Scout family expands very quickly:
 - HydroGNSS: first Scout mission, to be launched very soon (Nov 2025)
 - Other 2 current missions being implemented: NanoMagSat and TANGO, both on track
 - And 2 more to join the family next year!

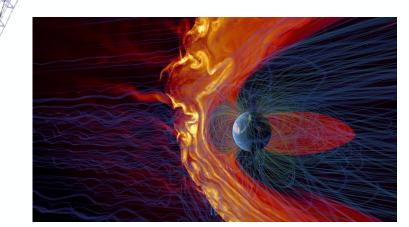
Visit https://www.esa.int/Applications/Observing_the_Earth/FutureEO/Scouts_ESA_s_agile_research_missions

Thank you for your attention

Backup slides

HydroGNSS

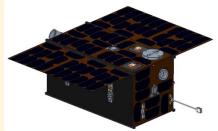
- Industrial team: SSTL, Sapienza University, IEEC, FMI, NOC, NGI, IFAR-CNR, Tor Vergata, TU Wien
- Aim: improve our knowledge of the Earth water cycle
- Technique: GNSS reflectometry
- Constellation of two small satellites
- Sun synchronous orbit, ~550 km altitude
- Launch: Nov 2025
- Service (science data) for up to 4.5 years
 - soil moisture, inundation / wetlands
 - soil freeze / thaw (notably over permafrost)
 - above-ground biomass
- Innovations: new signals never acquired before
 - dual-polarization
 - dual frequency
 - coherent and incoherent channels

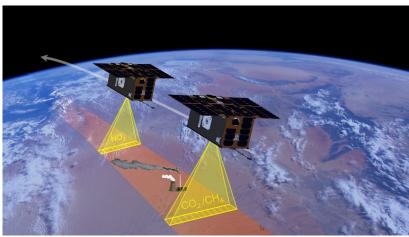


NanoMagSat (Scout-3)

- Industrial consortium: Open Cosmos (Prime Contractor), CEA-Léti, University of Oslo, COMET, DTU, IPGP
- measure the Earth's Magnetic field & the ionospheric environment
- maintain the European leadership in Earth magnetic field monitoring (monitored from space since 1999)
- provide crucial scientific data with applications in many fields: geophysics (Earth core), space weather hazard assessment, precise navigation, reference models used in smartphones, directional drilling for oil and gas
- improve temporal resolution (factor 4) thanks to a constellation sampling at all local times (faster than Swarm)
- 3 x 16U satellites at ~550 km altitude, mass ~32 kg, power ~50 W (EOL)
- 2 satellites at 60 deg inclination (90 deg offset in RAAN), 1 in prograde polar orbit (→ Swarm-B)
- Innovation: state-of-the-art compact payload, higher temporal resolution
 - 1 Miniaturised Absolute Magnetometer
 - 1 High Frequency Magnetometer (2 kHz)
 - 1 multi-Needle Langmuir Probe
 - 2 dual-frequency GNSS receivers
- Implementation kick-off in Q4 2024, launch in Q4 2027

Credit: Open Cosmos


TANGO



- industrial consortium: ISISpace (Prime Contractor), TNO, KNMI, SRON
- measure and monitor CH₄, CO₂ and NO₂ emitted by large industrial sites
- complement Copernicus Sentinel-5P mission and CO2M mission
- help verify the Paris Agreement
- 2 16U satellites in a tandem: Carbon & Nitro
- payload: imaging spectrometer
 - reflective push broom
 - TANGO-Carbon: SWIR1 spectral band
 - TANGO-Nitro: visible spectral range
- roll and pitch agility
- forward motion compensation
- Innovation: tandem measurements, plume estimation
- Implementation kick-off Q3 2025, launch Q3 2028

Credit: ISISpace