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SAR Imaging using Coherent Modes  
of Diversity: SAR Polarimetry,  

Interferometry and Tomography 

2.1. Introduction  

Spectral and spatial diversity measurements, Synthetic Aperture Radar 
(SAR) imaging uses modes to focus 2D images of electromagnetic 
reflectivity of environments. Even though this information is very useful for 
detecting objects or to evaluate some of their geophysical properties, it has 
some limitations for further applications or characterizations. In fact, very 
diverse objects, such as a vehicle or a forest parcel, may provide responses 
with a similar energetic level. As a result their differentiation must 
necessarily involve additional information, among which polarization 
diversity is often considered. Classic SAR imaging uses a system of 
antennas polarized in the same way, and so measures 2D scalar information. 
The use of antennas with different polarizations allows the measurement, for 
each image pixel, of a multi-variate polarimetric quantity which provides 
information on the intrinsic geophysical properties of the imaged objects. 
Another significant limitation of SAR imaging comes from the natural 
ambiguity linked to the 2D mapping of 3D environments. This dimension 
reduction causes a direct loss of height related information because of height 
and, in particular, mixes the contributions from scatterers located at different 
altitudes. The solution usually considered uses additional spatial diversity to 
determine, for each 2D SAR image pixel, either the elevation position of the 
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main scatterer, or the vertical distribution of the imaged reflectivity, for 
tomographic applications. It should be noted that SAR interferometry 
(InSAR) requires the coherent combination of ܰ = 2 SAR measurements, 
compared with ܰ ≥ 3 for tomography and 2 ≤  ܰ ≤ 4 for polarimetric 
measurements. These different measurement modes, which can be combined 
with each other, are illustrated in Figure 2.1. The use of wave polarization or 
the measurement of an object’s position through interferometry are widely 
known techniques used since the post-war period in the field of optics. 
During the 1950s and 1960s, a group of researchers [DES 51, KEN 49,  
SIN 48, SIN 50] developed the theoretical tools necessary to handle coherent 
multi-variate data, using wave polarization to differentiate radar obstacles or 
to identify them from their unique polarimetric behaviors. In the 1970s, 
Huyen [HUY 70] deeply modified the approach of polarimetric data 
processing by combining a rigorous mathematical analysis with a 
phenomenological interpretation of electromagnetic scattering mechanisms, 
paving the way for sophisticated techniques such as the ones presented in 
this chapter. SAR interferometry, which can determine the elevation position 
of the different SAR image pixels, appeared in the 1970s–1980s [GRA 74] 
with airborne applications [ZEB 86], and then satellite applications  
with SEASAT-A measurements [GOL 88]. The introduction of a  
nearly uninterrupted series of satellite missions adapted to the InSAR mode 
since the ERS-1 launch in 1991 has resulted in a boom in SAR 
interferometry techniques, which have now reached a nearly industrial level 
of maturity and which provide, through differential SAR interferometry  
[FER 01a, FER 07, MAS 93, ZEB 94], a technique with unique 
performances. SAR tomography was born at the beginning of the 2000s 
[REI 01] and has made it possible to image a scene in 3D by combining 
several inSAR images [FER 15, GIN 05, HUA 11a, NAN 09, TEB 10]. To 
date, its application is limited to airborne data, but adjustments are currently 
being studied to extend this approach to satellite measurements.  

The information gain brought by the use of coherent diversity modes is 
shown in Figure 2.1. 

This chapter first presents a detailed introduction to SAR polarimetry, its 
formalism, the mathematical tools that it uses, and the phenomenological 
interpretation of responses that it fosters. It is then shown that the 
generalization of speckle filtering in both multidimensional cases requires 
the use of the covariance matrix concept and that filtering, while it helps to 
significantly reduce the variance of the estimated values, results in a serious 
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limitation of the possible interpretations. Polarimetric decomposition 
techniques, which aim to differentiate and estimate one or several prevailing 
scattering are introduced as a mechanism. Examples of applications of these 
concepts to automatically classify scenes or to further scattering mechanisms 
are given. We discuss another diversity mode, SAR interferometry, or 
InSAR, based on the use of measurements made from slightly different 
positions, and which, through interferometry, uses the link between the 
phase variations observed in different measurements and the scene 
topography. After describing SAR data processing chain used to build digital 
elevation models (DEM), we present an introduction to 3D imaging of 
volumetric environments through SAR tomography, and some applications 
mixing space and polarization diversities. 

       
                a)                                   b)                                     c)                                   d) 

Figure 2.1. Illustration of coherent diversity modes for data acquired in L-band by the 
DLR/ESAR sensor on the Oberpfaffenhofen site in Germany: a) SAR intensity at VV 
polarization, b) RGB=|HH-VV|, HV, |HH+VV|, c) interferometric coherence for the VV 
channel, d) color-coded images of optimal polarimetric interferometric coherences 
= ܤܩܴ) ,|௢௣௧భߛ|  ,|௢௣௧మߛ|  (௢௣௧య|; defined in section 2.3ߛ|

2.2. SAR polarimetry 

2.2.1. Introduction to radar polarimetry: formalism, descriptors 
and polarimetric operators  

2.2.1.1. Wave polarization  

2.2.1.1.1. Polarization ellipse  

We consider a progressive electromagnetic (EM) wave model, adapted to 
the representation of the electric field transmitted by a radar located at the 
center of a 3D coordinate system, taking the general form of a modulated 
quasi-spherical wave, whose expression is, in complex notations and in 

spherical coordinates, ܧሬԦ(࢘, (ݐ = ,ߠ)ሬԦ଴ܧ(ݐ)ݑ ߶) eೕ(ഘ೎೟షഉ೎ೝ)௥ , with ࢘ = ,ݎ) ,ߠ ߶), 
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a position in space shown in Figure 2.2(a), ௖݂, the carrier frequency ߱௖ ߨ2= ௖݂ =  ௖, and ℑ, the wave propagation velocity. As discussed in Chapterߢݒ
1 of this volume, the modulating signal (ݐ)ݑ represents the base band 
waveform transmitted by the radar and has a spectrum, ܷ(݂), which covers a 
spectral range with a bandwidth ܤ௙. That signal may be directly defined in 
the time domain, as in the case of simple unmodulated pulses or chirp-like 
pulses linearly modulated in frequency, or generated in the spectral domain, 
like continuous wave signals, CW. For a non-dispersive environment, i.e. 
when the electrical, ߳, and magnetic, ߤ, permittivities of the environment do 
not change on the covered spectral band, the propagation characteristics of 
that wave are identical to those of a monochromatic EM signal, and the 
transmitted signal is not distorted during the propagation. The angular 
dependence of ܧሬԦ଴, i.e. with respect to the ߠ and ߶ coordinates, represents the 
potentially anisotropic gain of the antenna that transmitted the electrical 
field. As was presented in Chapter 1, such a wave can be locally 
approximated by a plane wave, that is a wave propagating according to a 
direction orthogonal to a plane with a normal ࣄෝ, and whose electrical field is 
given by ܧሬԦ(࢘, (ݐ = .ሬԦ଴ܧ ሬԦ଴ such asܧ with ,(࢘.ෝࣄఠ೎௧ି఑೎)ሬԦ଴e௝ܧ ෝࣄ = 0 and with 
components that vary according to the position ࢘ considered. That 
approximation is given by is illustrated in Figure 2.2, with a size ܦ virtual 
object illuminated by a spherical wave at a ݎ଴ distance from the transmitter, 
which is large compared to the size of the object. The spherical wave front 
can be locally approximated by a plane wave defined by the tangent plane to 
the ݎ଴ radius sphere, and propagating in the direction orthogonal to that 
plane. The validity of that approximation, which considers that the field has 
constant amplitudes and phases on the tangent plane, around the central 
position of the object, is generally evaluated by means of an empirical 
criterion, called far-field criterion, given by ݎ଴ > మ ವమഊ೎ , with ݎ଴, ܦ ≫  the sphere radius including the measured object [KNO 74]. This criterion ,ܦ ௖, andߣ
corresponds to an arbitrary phase walk error, |߂߶| = మഏഊ೎݀߂ < ഏఴ, where ݀߂ 
corresponds, as is shown in Figure 2.2(b), to the error term on the distance 
actually traveled by a spherical wave, during its approximation by a plane 
wave. When that criterion is verified, the object EM radiation can be 
approximated with high precision by its response to a plane wave. On  
Figure 2.2(c), it can be noted that the tangent plane definition varies with the 
position ݎ to which the approximation is applied. The wave polarization is 
generally defined by means of a direct orthonormal coordinate system, (ෝ࢞, ෝ࢟, ොࢠ ,ො), with, locallyࢠ = ො࢘ and ෝ࢞ = ෡ࣘ .  
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                         a)                                   b)                                       c)                                    

Figure 2.2. a) Representation of the EM field of a spherical wave at the  
coordinates (ݎ, ,ߠ ߶), b) local approximation of a spherical wave by a  

plane wave, c) decomposition of a spherical wave in a sum of plane waves 

The electrical field expression of a plane wave is then given, in complex, ܧሬԦ(ݖ, ,ݖ)ሬሬሬԦℛܧ ,or real ,(ݐ  :notation by ,(ݐ

,ݖ)ሬԦܧ (ݐ = ቎ܧ௫e௝(ఠ೎௧ି఑೎௭ାఈ)ܧ௬e௝(ఠ೎௧ି఑೎௭ାఈ)0 ቏; 

,ݖ)ሬԦℛܧ (ݐ = ቎ܧ଴ೣܿݏ݋ (߱௖ݐ − ݖ௖ߢ + ௫ߜ + ݐ௖߱) ݏ݋଴೤ܿܧ(ߦ − ݖ௖ߢ + ௬ߜ + 0(ߦ ቏ [2.1]  

where ܧ௤ = ଴௤ܧ ,଴௤݁௝ఋ೜ܧ ∈ ℝ, and ߙ represents an absolute phase shift that 
is dependent on the arbitrary position of the space–time coordinate system 
used. The plane wave polarization establishes the type of trajectory followed 
by its electrical field over time, or similarly, through space. Two examples of 
trajectories are described in Figure 2.3, which correspond to a horizontal, 
with ܧ଴௬ = 0, or circular, with ܧ଴௫ = ௬ߜ଴௬ and หܧ − ௫หߜ = ഏమ, polarization. It 
should be noted that the components of ܧሬԦℛ(ݖ,  verify the equation of an (ݐ
ellipse, given by: ቀಶℛೣ(೥,೟)ಶబೣ ቁଶ − 2 ாℛೣ(௭,௧)ாℛೣ(௭,௧)ாబೣாబ೤ ௬ߜ൫ݏ݋ܿ − ௫൯ߜ + ቀಶℛ೤(೥,೟)ಶబ೤ ቁଶ =  sin (ߜ௬ −   ௫) [2.2]ߜ

The evaluation of [2.2] at an arbitrary abscissa ݖ଴ helps to assess the 
elliptical trajectory or polarization ellipse, followed by ܧሬԦℛ(ݖ,  in the plane (ݐ
orthogonal to the propagation axis, as shown in Figure 2.4(a). A polarization 
ellipse, and so the polarization of a plane wave, can be described by means 
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of three actual parameters represented in Figure 2.4(b) [KOS 86, LUE 95, 
LUE 96]: 

– ellipse amplitude, ܣ = ටܧ଴ଶೣ + ଴೤ଶܧ , which is fixed by the electrical 

field amplitude; 

– ellipticity, ߬, defined by |݊݅ݏ 2 ߬| = ଶ ಶబೣಶబ೤ಶబೣమ శಶబ೤మ ห݊݅ݏ൫ߜ௬ −  ௫൯ห, which setsߜ

the ellipse opening. When ߬ = 0, the ellipse degenerates into a segment and 
the polarization is linear, whereas |߬| = ഏర indicates a circular polarization. In 
a general case, 0 < ߬ < గସ, and the polarization is elliptic. The sign of ߬ is 
arbitrarily determined by the rotation direction of the field covering the 
ellipse over time, with ߬ ≥ 0 for a “left hand” polarization and ߬ ≤ 0 for a 
“right hand” polarisation. The ellipticity definition domain is then ߬ ∈ቂ− గସ , గସቃ; 

– ellipse orientation calculated with respect to the axis ෝ࢞, ߶, linked to the 
field components by tan 2߶ = ଶ ಶబೣಶబ೤ಶబೣమ శಶబ೤మ cos൫ߜ௬ − ߶ ௫൯, withߜ ∈ ቂ− గଶ , గଶቃ. 

 
 

 

Figure 2.3. Examples of spatial trajectories described by the electrical  
field of a wave with: a) horizontal, b) circular polarization 
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The three types of polarization that can be encountered are: 

– linear polarization, characterized by ߜ௬ − ௫ߜ = 0 + ⟹ ߨ ݇ ߬ = 0 and 
by its orientation ߶; 

– circular polarization, with ߜ௬ − ௫ߜ = గଶ + ,ߨ ݇ ଴௫ܧ = ଴௬ܧ  ⟹ ߬ = ± గସ; 

– elliptical polarization, for which ߬ and ߶ take any values. 

It should be noted that there are numerous other ways to configure the 
polarization ellipse. The angular variables presented here are widely used in 
radar or optical polarimetry due to their close link with the elementary 
transformations of a plane wave, which have an immediate physical 
interpretation.  

 

 
Figure 2.4. a) elliptical trajectory described by the  

electrical field at the coordinate zo, b) representation and  
configuration of the polarization ellipse 
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2.2.1.1.2. Jones vector 

Definitions and formalism SU(2) 

The Jones vector, ࡱ ∈ ℂଶ×ଵ, is determined from the electrical field 
complex envelope as: 

۳ = e௝ఈ ൥ܧ଴௫e௝ఋೣܧ଴௬e௝ఋ೤൩ = e௝కܣ ଵඥଵା|ఘ|మ ൤1ߩ൨ with ߩ = ாబ೤ாబೣ e௝(ఋ೤ିఋೣ) [2.3]  

where ߩ is the polarization ratio, which specifies a polarization state. A 
linear polarization is characterized by ߩ ∈ ℝ, whereas for a circular 
polarization, ߩ =  ±݆. The Jones vector and the polarization ratio can also be 
derived from the polarization ellipse parameters as [KOS 86, LEE 08]: ۳ = e௝ఈܣ ൤ܿݏ݋ ߶ ݏ݋ܿ ߬ − ݆ ݊݅ݏ ߶ ݊݅ݏ ݊݅ݏ߬ ߶ ݏ݋ܿ ߬ + ݆ ݏ݋ܿ ߶ ݊݅ݏ ߬൨ and ߩ = ௧௔௡ థା௝ ௧௔௡ ఛଵି௝ ௧௔௡ థ ௧௔௡ ఛ [2.4]  

Jones vectors for the most commonly used polarization states are given in 
Table 2.1. 

Polarization Unit Jones vector  ࣘ [rad] 
࣎ 

[rad] 

Horizontal (H) ࢛௛ = ቂ10ቃ 0 0 

Vertical (V) ࢛௩ = ቂ01ቃ 
2
π  0 

Linear +45° ࢛ାସହ = 1√2 ቂ11ቃ 
4
π  0 

Linear -45° ࢛ିସହ = 1√2 ቂ 1−1ቃ 
4
π−  0 

Left circular ࢛௟ = 1√2 ൤1݆൨ ⎥⎦
⎤

⎢⎣
⎡−

22
ππ

 
4
π  

Right circular ࢛௥ = 1√2 ൤ 1−݆൨ ⎥⎦
⎤

⎢⎣
⎡−

22
ππ  

4
π−  

Table 2.1. Parameters of commonly used polarization states 

The expression of [2.4] makes it possible to formulate a Jones vector by 
means of matrix operators derived from the special complex unit matrix 
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group (2 × 2) ܷܵ(2) [CLO 86a, CLO 92, CLO 09], which is the basis for 
the modern polarimetric formalism: ۳ = e௝ఈܣ ൤ܿݏ݋ ߶ − ݊݅ݏ ݊݅ݏ߶ ߶ ݏ݋ܿ ߶ ൨ ቂ ݏ݋ܿ ݊݅ݏ ݆߬ ߬ቃ = ܠ(ߙ)ଶ܃(߬)ଶ܃(߶)ଶ܃ܣ ,߶)ଶ܃≡ ߬,   [2.5] (ߙ

with ࢞ = ࢛ு = [1 0]். A (2 × 2) matrix ࢁଶ ∈ ܷܵ(2) verifies ࢁଶࢁଶு =  ࡵ
and |ࢁଶ| = +1, with ࡵ the identity matrix, ࢁଶு =  ଶ∗், the transpose andࢁ
conjugate matrix ࢁଶ, and |ࢁଶ| its determinant. The basis of ܷܵ(2) adapted 
to the description of a Jones vector given by [2.4] and [2.5] is: ܃ଶ(߶) = ൤ܿݏ݋ ߶ − ݊݅ݏ ݊݅ݏ߶ ߶ ݏ݋ܿ ߶ ൨, ܃ଶ(߬) = ൤ ݏ݋ܿ ߬ ݆ ݊݅ݏ ݊݅ݏ ݆߬ ߬ ݏ݋ܿ ߬ ൨,  

(ߙ)ଶ܃ = ൤eା௝ఈ 00 eି௝ఈ൨ [2.6]  

SU(2) matrices can be associated with rotations in complex spaces, and 
the expression of any Jones vector using the one associated with a horizontal 
polarization x, as shown in [2.5], has a highly physical interpretation: an 
arbitrary polarization wave can be considered as a horizontal polarization 
wave, phase shifted by an angle ߙ, with a polarization ellipse open by an 
angle ߬ and orientated by an angle ߶ with respect to the horizontal.  

Change of polarization basis 

One of the main characteristics of radar polarimetry, linked to the 
multidimensional nature of polarization information, lies in the fact that the 
object response acquired in a polarization basis can be expressed in any basis 
by means of a simple mathematical transformation, that is without having to 
measure that response with a set of antennas with different polarization 
properties. A polarization orthonormal basis is composed of two unitary 
Jones vectors, ࢛ and ࢛ୄ, verifying ࢛ு࢛ୄ = 0 and ࢛ு࢛ = ࢛ுୄ࢛ୄ = 1. These 
normalized orthogonality conditions do not allow us to uniquely determine ࢛ୄ from ࢛. To address this indeterminacy, we then use the formalism ܷܵ(2) 
to define a basis from the same transformation of the two elements of the 
reference polarization basis (࢛௛, ࢛௩): ܝ = ,߶)ଶ܃ ߬, ୄܝ ୦ andܝ(ߙ = ,߶)ଶ܃  ߬, ௩ܝ(ߙ = ,ୄ߶)ଶ܃ ߬ୄ,   ௛ [2.7]ܝ(ୄߙ
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Thus, the two Jones vectors, defining a polarization orthogonal basis, can 
be associated with polarization ellipses with parameters verifying ߶ୄ = ߶ +గଶ, ߬ୄ = ୄߙ ,߬− =  From the expression of a vector its coordinates in an .ߙ−
arbitrary basis, (఼ࢇ,ࢇ)ࡱ = ࢇࢇܧ +  and using [2.7], we can define of ,ୄࢇୄࢇܧ
matrix operator associated with a change of polarization basis as: ࡱ(࢛,఼࢛) = (೓,࢛ೡ࢛)ࡱ(఼࢛,ܝ)→ଶ(࢛೓,࢛ೡ)܃ = ଶି܃ ଵ(߶, ߬,   [2.8] (೓,࢛ೡ࢛)ࡱ(ߙ

We can thus extend the principle of this change to any-two-orthonomal 
basis, (ࢇ, ,࢈) and (ୄࢇ (఼࢈,࢈)ࡱ as ,(ୄ࢈ ଵି(఼ࢇ,ࢇ)→ଶ൫࢛ಹ,࢛ೇ൯ࢁ(఼࢈,࢈)→ଶ(࢛ಹ,ೠೇ)ࢁ =  .[LUE 95] (఼ࢇ,ࢇ)ࡱ 

2.2.1.2. Polarimetric radar response of an object 

2.2.1.2.1. Radar measurements with full polarimetric diversity 

Receiving polarization diversity  

The synoptic representation of a radar acquisition involving a diversity of 
received polarizations is given in Figure 2.5(a). An electrical field with a 
polarization state ்ࡱ ∝ ࢛ is transmitted, and the observed scene response  
is simultaneously measured by means of two receiving channels, 
corresponding to the two elements of the polarization basis (࢛, ோࡱ ,(ୄ࢛ ࢛(࢛,࢛)ܧ= +  where (࢛ୄ,࢛) indicates an incident polarization ,ୄ࢛(࢛,఼࢛)ܧ
colinear to ࢛ and a scattered polarization aligned with ࢛ୄ. The selection of a 
polarization state during the transmission and reception of signals is 
provided by the antenna system used. In comparison with a radar system 
operating over a single polarization channel, a radar having a diversity of 
polarization at the reception is either more complex and hence more costly, 
as two receiving channels are needed, or results into a reduction of 
performance with a single channel at the reception and a commutation 
between the two diversely polarized antennas. This option implies a 
doubling of the Pulse Repetition Frequency (PRF) system, defined as the 
inverse of the period at which radar signals are transmitted and measured. 
Most of the radar systems having a diversity of polarization use two 
receiving channels. 

Full polarization diversity 

While the use of a receiving polarimetric diversity helps to better 
characterize an environment response or to detect particular objects, that 
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type of measurement is limited by the use of a single transmitting 
polarization state. Thus, we can give the example of a vertical dipole, which 
is extremely difficult to detect with radars, transmitting horizontal polarized 
waves. A fully polarimetric radar measurement, requires the transmission of 
two signals over orthogonal polarization states.  ்ࡱ ∝ ܝ → ۳Rܝ = ܝ(ܝ,ܝ)ܧ + ்ࡱ andୄܝ(ܝ,఼ܝ)ܧ ∝ ࢛ୄ → ۳R఼ܝ = ܝ(఼ܝ,ܝ)ܧ +   [2.9] ୄܝ(఼ܝ,఼ܝ)ܧ

The full polarimetric information is generally represented under the form 
of a polarimetric scattering matrix, ࡿ ∈ ℂଶ×ଶ, obtained from Jones vectors 
measured for orthogonal transmitted polarization states: 

܁ = ቂ۳Rܝ, ۳R఼ܝ ቃ = ቈ (࢛,࢛)ܧ (఼࢛,࢛)ܧ(࢛,఼࢛)ܧ ቉(఼࢛,఼࢛)ܧ ≡ ൤ ଵܵଵ ଵܵଶܵଶଵ ܵଶଶ൨ [2.10]  

The diagonal elements of the scattering matrix, measured for similar 
receiving and transmitting polarization states, are called co-polar elements, 
or co-pols, whereas the off-diagonal elements represent terms measured  
in cross-polarization, or cross-pol. As shown in Figure 2.5(b), a fully 
polarimetric information measurement requires a doubling of the transmitted 
information, and so of the PRF, which can result, as was shown in Chapter 1 
of this volume, in an increase of the azimuth ambiguity phenomena and a 
significant decrease of the range swath. 

  
a)                                                  b) 

Figure 2.5. Synoptic representation of a radar measurement:  
a) with polarization diversity, b) with full polarization diversity 

Transmitter : X
Receiver :       X & Y

Transmitter : X & Y
Receiver :       X & Y
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2.2.1.2.2. Polarimetric scattering matrix and target vector  

Polarimetric scattering matrix 

From the expression of the scattering matrix given in [2.10] and the Jones 
vector decomposition on a polarization basis, we see that the polarimetric 
scattering matrix associated with an object measured in an arbitrary basis (࢛, ࢛ୄ) makes it possible to calculate the object response for an arbitrary 
polarization state, expressed in the basis (࢛, ࢛ୄ): ۳௦ = ۳௜܁  = ൤ ଵܵଵ ଵܵଶܵଶଵ ܵଶଶ൨ ۳௜ [2.11]  

with ࡱ௜, a Jones vector associated with an arbitrary polarization state. Thus, 
for a ࡿ matrix measured in the basis (࢛௛, ࢛௩), that is from two measurements 
for ࡱ௜ = ࢛௛ = ቂ10ቃ and then ࡱ௜ = ࢛௩ = ቂ01ቃ, the object’s response to a left 
circular polarization can be obtained, without any additional measurement, 
like ࡱ௦ ∝ ௦ࡱ ௅, or for a linear incident polarization orientated at +45° like࢛ࡿ ∝   .ାସହ࢛ࡿ

Back scatter alignment convention, reciprocity and relative scattering 
matrix  

Two conventions for the representation of fully polarimetric information, 
based on the use of a Cartesian coordinate system and as a reference for  
defining the electrical field amplitudes and phases according to each axis, 
can be found in the literature. The Forward Scatter Alignment (FSA) 
convention, illustrated in Figure 2.6, is generally used in electromagnetism 
and considers a Cartesian coordinate system with an axis ̂ݖ aligned with the 
direction of propagation of the considered plane wave. During a monostatic 
measurement, that is when the radar transmitting and receiving systems are 
co-localized, the coordinate systems used to represent the transmitted and 
received signals have ̂ݖ axes orientated in opposite directions. The 
community of users of monostatic radar polarimetry generally prefers to use 
the Back Scatter Alignment (BSA) convention, which considers the same 
coordinate system to represent the transmitted and received waves. The 
scattering matrices expressed according to the FSA or BSA convention are 
linked by a diagonal transformation matrix, as shown in [2.12]. 
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                              a)                                                          b) 

 
                 c) 

Figure 2.6. Geometrical configurations of the representation conventions:  
a) general FSA, b) bi-static BSA, c) monostatic BSA 

As nearly all the environments measured by radars have a reciprocal EM 
behavior, that is to say that their response remains unchanged when the 
transmitting and receiving antennas are switched, we see that the scattering 
matrix, measured in a monostatic configuration and expressed according to 
the BSA convention, shows a symmetry property illustrated in [2.12]  
[CLO 09, LEE 08, LUE 95]: ܁ ஻ௌ஺ = ቂ−1 00 1ቃ = ஻ௌ஺܁  ிௌ஺܁ = ൤ ଵܵଵ ଵܵଶଵܵଶ ܵଶଶ൨ = ஻ௌ஺் ࡿ  [2.12]  

As shown in [2.13], the scattering matrix can be characterized, in a 
monostatic configuration, by three complex values or similarly by six real 
numbers. This structure can be slightly simplified by noting that the 
polarimetric properties, that is the polarization ellipse parameters and the 
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amplitude, associated with the scattered Jones vector, ࡱ௦, remain  
invariant by multiplication by an arbitrary phase term, e௝క . We can therefore, 
without losing any polarimetric information or any amplitude modification 
of the scattered signal, use a relative scattering matrix, ࡿ௥௘௟, obtained 
through the factorization of an arbitrary phase term, as shown in the example 
below: ܁ = ൤ ଵܵଵ ଵܵଶଵܵଶ ܵଶଶ൨ = e௝థభభ܁௥௘௟ [2.13] 

with ࡿ௥௘௟ = ቈ | ଵܵଵ| | ଵܵଶ|e௝(థభమିథభభ)| ଵܵଶ|e௝(థభమିథభభ) |ܵଶଶ|e௝(థమమିథభభ)቉   

The scattering matrix and its relative version have the same trace value 
defined as (ࡿ)݊ܽ݌ݏ = | ଵܵଵ|ଶ + 2| ଵܵଶ|ଶ + |ܵଶଶ|ଶ, which represents the total 
power of the wave scattered by a target for a unitary Jones vector incident 
wave. Figure 2.7 shows an example of SAR images acquired with a full 
polarization diversity on the site of the San Francisco Bay in L-band. 

 

Figure 2.7. Polarimetric images of the San Francisco Bay  
acquired in L-band by the JPL/AirSAR sensor 

Polarimetric target vector  

If the scattering matrix contains, for a given configuration, all the 
polarimetric information of a target response, its representation under the 
form of a matrix (2 × 2) is not well adapted to the manipulations required 
by modern multi-dimensional signal processing. A formulation, called  
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target vector, whose two most used versions in practice are defined from the 
scattering matrix measured in the H–V basis, as [CLO 92, CLO 96]: ܓ = ௉ܓ = ଵ√ଶ [ܵ௛௛ + ܵ௩௩ ܵ௛௛ − ܵ௩௩ 2 ܵ௛௩]்,  ܓ௅ = ൣܵ௛௛ √2ܵ௛௩ ܵ௩௩൧்

 [2.14]  

The target vector ࢑௅ corresponds to the lexicographic sorting of the 
scattering matrix elements, whereas ࢑௉ results from a different linear 
combination, involving the matrix basis of the Pauli spinors. Those two 
target vectors are equivalent, as they are linked by a non-singular and unitary 
linear transformation, ࢑௉ = (࢑)݊ܽ݌ݏ ௅→௉࢑௅, so thatࡼ = (࢑௅)݊ܽ݌ݏ (࢞)݊ܽ݌ݏ with here ,(ࡿ)݊ܽ݌ݏ= = ∑ ௜|ଶ௜ݔ| . 

Change of polarimetric basis  

We consider here a fully polarimetric acquisition carried out in the H–V 
basis, and the relationship [2.10] recalled here, ࡱ(࢛೓,࢛ೡ)௦ = ௜(೓,࢛ೡ࢛)ࡱ(೓,࢛ೡ࢛)ࡿ  , 
that we wish to express in the basis (࢛, ࢛ୄ), as ࡱ(࢛,఼࢛)௦ = ௜ (఼࢛,࢛)ࡱ (఼࢛,࢛)ࡿ  . 
The expression of the Jones vector of the incident wave is, according to 
௜(఼࢛,࢛)ࡱ ,[2.8] = ௜(೓,࢛ೡ࢛)ࡱ(఼࢛,࢛)→ଶ(࢛೓,࢛ೡ)ࢁ , with ࢁଶ(࢛೓,࢛ೡ)→(࢛,఼࢛) = ଶିࢁ ଵ(߶, ߬,  ,(ߙ
whose parameters are obtained by means of the expression of ࢛ in the (࢛௛, ࢛௩) basis. The application of the same reasoning for ࡱ(࢛,఼࢛)௦  requires, 
because the incident wave and the scattered wave propagate in opposite 
directions, the application of a complex conjugate on the ܷܵ(2) operator. By 
using the unitary matrix property, ࢁଶࢁଶு =  we can summarize the action ,ࡵ
of polarimetric basis change on the expression of the scattering matrix as: (఼ܝ,ܝ)܁ = ∗(఼࢛,࢛)→(౬ܝ,౞ܝ)ଶ܃  ଵି(఼࢛,࢛)→(౬ܝ,౞ܝ)ଶ܃(౬ܝ,౞ܝ)܁ ,߶)ଶ்ࢁ= ߬, ,߶)ଶ܃(౬ܝ,౞ܝ)܁(ߙ ߬,   [2.15] (ߙ

The transformation indicated in [2.15] is called consimilarity and can be 
extended to a change between any two polarization bases. The application of 
a basis change onto a target vector can easily be obtained from [2.15] and is 
expressed in the form of a special unitary (3 × 3) transformation: (఼ܝ,ܝ)ܓ = ,߶ଷ்(2܃ 2߬,   [2.16] (౬ܝ,౞ܝ)ܓ(ߙ2
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where the ܷܵ(3) matrix is formed from matrices with an action 
corresponding to the one of the different ܷܵ(2) elements: 

(߶)ଷ்ࢁ = ൥1 0 00 ݏ݋ܿ 2߶ ݊݅ݏ 2߶0 − ݊݅ݏ 2߶ ݏ݋ܿ 2߶൩ , (߬)ଷ்ࢁ =
൥ ݏ݋ܿ 2߬ 0 ݆ ݊݅ݏ 2߬0 1 0݆ ݊݅ݏ 2 ߬ 0 ݏ݋ܿ 2߬ ൩, ࢁଷ்(ߙ) = ൥ ݏ݋ܿ ߙ2 ݆ ݊݅ݏ ߙ2 0 ݆ ݊݅ݏ ߙ2 ݏ݋ܿ ߙ2 00 0 1 ൩ [2.17]  

It may be noted here that, although the ܷܵ(3) matrices detailed in [2.17] 
have an action similar to those of ܷܵ(2) given in [2.6], there is no particular 
link between those two groups for numerous reasons [CLO 92, FER 00]. 
One of the consequences of the structure differences between ܷܵ(2) and ܷܵ(3) can be observed in [2.17] with an ambiguity brought by the factor 2 
multiplying each angular variable. 

2.2.1.2.3. Phenomenological interpretation  

One of the main benefits of radar polarimetry lies in its capacity to 
discriminate and estimate some of the geophysical characteristics of 
environments through the analysis of scattering mechanisms. The values 
taken by polarimetric indicators, constructed  from the elements of ࡿ or  
of ࢑, over simple targets, may be linked, through a phenomenological 
interpretation of canonical scattering mechanisms, to properties of the 
objects observed, like their shape, their orientation [HUY 70], etc. 

Canonical scattering mechanisms  

We consider here ideal metallic elementary targets illustrated in  
Figure 2.8, which are measured at a normal incidence and with a carrier 
frequency adapted to their size. 

The simplified forms of the corresponding scattering matrices are 
summarized in Table 2.2. 

We note in Table 2.2 that the fully polarimetric responses of the chosen 
targets may have specific forms or properties depending on the polarimetric 
basis used, which can be used to label a pixel of a polarimetric SAR image 
according to the canonical mechanism that is the closest to it. The studies 
carried out by [SIN 48, SIN 50, KEN 49, HUY 70], concern the 
interpretation of scattering mechanisms from ࡿ and define polarimetric 
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invariants or specific polarization states of a target in order to relate them 
with some of its physical characteristics. This type of approach can be very 
easily illustrated by means of the target vectors ࢑ and ࢑௅, which correspond 
to different linear combinations, so-called Pauli or lexicographic 
combinations, of the scattering matrix elements explained in [2.14]. Despite 
the fact that, as was shown before, those two vectorial representations, which 
match through a non-singular transformation, are strictly equivalent, ࢑ offers 
a more direct interpretation of the observed scattering mechanism nature, 
from the modulus of its elements. In fact, as can be noted in Table 2.2, 
canonical scattering mechanisms associated with a surface, characterized by 
a simple reflection of the wave, and those measured on a dihedral, leading to 
a double interaction between the wave and the target, only differ, in an 
extremely simplified configuration and for a null azimuthal orientation, by a 
phase shift between the copolar channels. Thus, for a wave–matter 
interaction of the simple reflection type, |[࢑]ଵ| ∝ |ܵ௛௛ + ܵ௩௩| ≫|[࢑]ଶ|, |[࢑]ଷ|, for a double bounce |[࢑]ଶ| ∝ |ܵ௛௛ − ܵ௩௩| ≫ |[࢑]ଵ|, |[࢑]ଷ| and 
for a scattering by orientated anisotropic particles, |[࢑]ଷ| ∝ |ܵ௛௩| ≠ 0. This 
interpretation is illustrated in Figure 2.9. We note in Table 2.2 the influence 
of the azimutal orientation angle, ߶, which can be estimated, in circular 
polarization, from phase terms. 

 
                        a)                                b)                                 c) 

 
                          d)                               e)                               f) 

Figure 2.8. Canonical targets: a) trihedral, b) horizontal dipole,  
c) orientated dipole, d) horizontal dihedral, e) left helix, f) right helix 
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2.2.2. Characterization of the polarimetric response of 
environments: polarimetric decompositions  

2.2.2.1. Polarimetric speckle filtering 

2.2.2.1.1. Multivariate speckle filtering using incoherent averaging: 
polarimetric covariance matrix 

Statistics of polarimetric values 

As laid out in Chapter 1 of this volume, SAR images are generally 
affected by the speckle effect due to the coherent integration of numerous 
independent contributions during the SAR imaging process, which  
gives them a random nature. Over homogeneous regions, this physical 
phenomenon can be modeled in the form of a product, ݏ(݈) =  represents the average intensity of ܫ ,is a realization of the SAR image (݈)ݏ where ,(݈)ߟܫ√
the signal measured in the homogeneous region and ߟ(݈) is a complex noise 
term, with independent real and imaginary parts, and which follows a 
centered Gaussian distribution with unit variance, ߟ ∼ ℂࣨ(0,1). The 
significance of the speckle effect, that is the estimated reflectivity variance, 
can be particularly reduced by summing independent realizations of second 
order moments, selected in a more or less extended spatial neighborhood. If 
we consider a multivariate polarimetric measurement, ࢜ ∈ ℂ௤, that can be 
assimilated in a Jones vector, ࡱ and ݍ = 2, or to a target vector, ࢑, ࢑௅ and ݍ = 3, then the marginal statistics, that is of a single channel ݒ௜, or the joint 
statistics of the elements of the measured vector, are given, assuming a 
homogeneous region, by [GOO 76, LEE 94a]: ݒ௜ ∼ ℂࣨ(0, ௜ܫ ,(௜ܫ = E(|ݒ௜|ଶ) and ࢜ ∼ ℂࣨ(૙, with ઱ (ࢳ = E(࢜࢜ு) ∈  ℂ௤×௤ [2.18]  

where [(࡭)ܧ]௜௝ =  the expectation of the random ,(ݔ)ܧ ௜௝൯, with[࡭]൫ܧ
variable ݔ, and ࢳ, the covariance matrix of ࢜, a centered random vector, with [ࢳ]௜௝ =  We generally represent the different types of polarimetric .(∗௝ݒ௜ݒ)ܧ
covariance matrix by means of specific names: ࡶ =  is called the (ுࡱࡱ)ܧ
wave coherence matrix, whereas ࡯ = ࢀ ு൯ andࡸ࢑ࡸ൫࢑ܧ =  ,are (࢑࢑ு)ܧ
respectively, the covariance and coherence matrix. We can note here the 
arbitrary nature of these names, generated by the sometimes not so  
rigorous handling of signal processing tools and notions, given by the radar 
polarimetric community. In the remainder of this manuscript, we name each 
of those covariance matrix types by specifying the kind of vector that 
generated it.  
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Similarly, in case of scalar or single-channel SAR data, we consider the 
reduction of the speckle effect is obtained through the measurement of ܮ 
independent realizations of a measured vector, {࢜(݈)}௟ୀଵ௅ . The complex 
Gaussian distribution of a realization ࢜(݈) is given by: ݂࢜ (௟)(࢜(݈)) = ଵగ೜|ࢳ| eି࢜ࡴ(௟)ࢳషభ࢜(௟) = ଵగ೜|ࢳ| eିtr൫ࢳషభ࢜(௟)࢜ಹ(௟)൯ [2.19]  

with tr(࡭), the trace of ࡭. The joint law followed by the ܮ realizations  
derived from the same distribution is then written: ݂(࢜(1), ⋯ , ((ܮ)࢜ = ∏ ݂࢜ (௟)൫࢜(݈)൯௅௟ୀଵ = ଵగ೜ಽ|ࢳ|ಽ eି௅tr൫ࢳషభࢳ෡൯ [2.20] 

with  ઱෡ = ଵL ∑ ࢜(݈)࢜H(݈)L୪ୀଵ    

where ࢳ෡, the L-view empirical covariance matrix, is also the optimal 
estimate in the sense of maximum likelihood (ML) of ࢳ. By means of the 
variable change {࢜(1), ⋯ , {(ܮ)࢜ → ෡ࢳ = ଵ௅ ∑ ࢜(݈)࢜ு(݈)௅௟ୀଵ , may be obtained 
the Wishart law followed by ࢳ෡: 

݂൫ࢳ෡൯ = ∏ ݂࢜ (௟)൫࢜(݈)൯௅௟ୀଵ = ௅೜ಽหࢳ෡หಽష೜శభ௰෩೜షభ(௅)|ࢳ|ಽ eି௅tr൫ࢳషభࢳ෡൯ [2.21]  

where ߁෨௠(ߙ) represents the multivariate complex Gamma function [GOO 
76, LEE 94a]. We notice here that the law, outlined in [2.21], is non-
degenerated if หࢳ෡ห > 0, which requires estimating ࢳ ෡ using a number ܮ ≥  ݍ
of non-parallel samples ࢜(݈). 

General properties of covariance matrices 

Covariance matrices and their ML possess a hermitian symmetry ࢳ =  ுࢳ
and are semi-definite positive, ࢛ு࢛ࢳ = (ு࢜|ଶ࢛|)ܧ ≥ 0, ∀࢛ ∈ ℂ௤. From 
those two properties, we can deduce a general form of covariance matrices 
illustrated in the case ݍ = 3 as: 

઱ = ቎ ଵܫ ଵଶܫ ∗ଵଶܫଵଷܫ ଶܫ ∗ଵଷܫଶଷܫ ∗ଶଷܫ ଷܫ ቏ = ൦ඥܫଵ 0 00 ඥܫଶ 00 0 ඥܫଷ൪ ቎ 1 ଵଶߩ ∗ଵଶߩଵଷߩ 1 ∗ଶଷߩଶଷߩ ∗ଶଷߩ 1 ቏ ൦ඥܫଵ 0 00 ඥܫଶ 00 0 ඥܫଷ൪ [2.22]  
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where ܫ௜ =  represents the positive real intensity of the ݅௧௛ (௜|ଶݒ|)ܧ
polarization channel, and ܫ௜௝ =E(ݒ௜ݒ௝∗), with ݅ ≠ ݆, is a complex cross-
correlation term. The quantities ߩ௜௝ = ூ೔ೕඥூ೔ூೕ are normalized correlation 

coefficients, whose modulus หߩ௜௝ห ≤ 1 indicates the correlation level 
between the channels ݅ and ݆, and whose argument gives information on the 
average phase shift between those two channels. The condition for the 
matrix to be defined as positive implies, in addition to the fact that หߩ௜௝ห ≤ 1, 
cross-correlation conditions that can be intuitively illustrated as follows: if 
channels 1, 2 and 1, 3 are very correlated, that is |ߩଵଶ|, |ଵଷߩ| ≈ 1, then 
channels 2, 3 cannot be uncorrelated, |ߩଶଷ| ≉ 0. We can see in [2.22] that a 
complex covariance matrix (3 × 3) can be completely defined by means of 
three real intensities and three complex intercorrelation coefficients, i.e. a set 
of nine real parameters. A general complex covariance matrix (ݍ ×  can (ݍ
be parametered by means of ݍଶ real coefficients. In addition, we can 
characterize a covariance matrix through its decomposition into eigen-
elements, which takes the following specific form: ઱ = ܃ ு, withࢁ઩܃ = ,ଵܝൣ . . , ୯൧ and ઩ܝ = diag([ߣଵ, … ,   ௤] ) [2.23]ߣ

where the operator diag() is such that [ࢫ]௜௝ =  ௜ି௝, and where weߜ௜ߣ
arbitrarily fix without losing generality, ࢛௜ு࢛௜ = 1 and ߣ௜ ≥  ௜ାଵ. Theߣ
eigenvalues of the covariance matrix, ߣ௜, are the solutions of |ࢳ − |ࡵ௜ߣ = 0, 
and verify (ࢳ)ݎݐ = ∑ ௜௤௜ୀଵߣ  and |ࢳ| = ∏ ௜௤௜ୀଵߣ , whereas the eigenvectors 
remain unchanged by the linear transformation ࢳ, in other words, ࢛ࢳ௜ ࢁ ௜࢛௜. It can be demonstrated thatߣ= ∈  i.e. the eigenvectors of the ,(ݍ)ܷܵ
covariance matrix are orthogonal to each other, ࢛௜ு ௝࢛ =  ௜ି௝, and that theߜ
eigenvalues of Σ are positive real, ߣ௜ ≥ 0. The set of eigenvectors defines a 
vectorial space, from which we can write a covariance matrix may be 
expressed by using ݍ real coefficients, that are the eigenvalues, as: ઱ = E(࢜࢜ு) = ∑=ுࢁ઩܃ ௜࢛௜࢛௜ு௤௜ୀଵߣ  [2.24]  

The convention used to sort the eigenvalues, ߣ௜ ≥  ௜ାଵ, implies anotherߣ
interesting relationship: ࢛௜ = ೔ಹ࢛ೕୀ଴,௝ழ௜࢛ݔܽ݉݃ݎܽ ࢛ு࢛ࢳ, λ୧ = ࢛௜ு઱ܝ௜ = ܧ ቀหܝ୧ୌܞหଶቁ [2.25]  
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The expressions [2.24] and [2.25] are crucial for the interpretation of 
polarimetric data from their second order moment. The eigenvectors of a 
covariance matrix are homogeneous to data vectors, ࢜, that is to Jones or 
target vectors in the polarimetric case, for which they define a representation 
space which is not unique, but complete, i.e. any vector ࢜ ∈ ℂ௤ can be 
written as ࢜ =  ∑ ௜࢛௜௤௜ୀଵݏ . The eigenvalue ߣ௜ associated with an eigenvector ࢛௜ corresponds to the variance of the projection, ݏ௜ = ࢛௜ு࢜, of the measured 
vectors, ࢜, on that eigenvector, and is of similar intensity, with ߣ௜  An eigenvalue indicates that the measured vectors are very highly .(௜|ଶݏ|)ܧ=
aligned with the concerned eigenvector, in other words: ߣ௜ = ܧ ቀห࢛௜ு࢜หଶቁ  On the contrary, a low eigenvalue reflects the fact that the pointed .(ு࢜࢜)ܧ≈
direction, in a complex ݍ-dimensional space, is represented very little in the 
measured data, that is ቀห࢛௜ு࢜หଶቁ ≈ 0. We notice here a significant property 
of the decomposition into eigen-elements, widely used in polarimetry, which 
can be written as: ܞ =  ∑ ௜࢛௜௤௜ୀଵݏ  et λ୧ = ܧ ቀหܝ୧H࢜หଶቁ = (௜|ଶݏ|)ܧ ⇒  ∑ ௜௤௜ୀଵߣ = ൫࢜H࢜൯ܧ = E(span(࢜)) [2.26]  

where the span is taken according to its polarimetric definition, as the sum of 
the intensities received on each of the polarization channels. These various 
principles can be illustrated by means of an example using a reduced 
anthropometric vector data ࢓ =  represents the mass of an ݓ where ,்[ℎ ݓ]
individual and ℎ its size. The covariance matrix of ࢓ is given by: 

۱ = E(࢓௖ܕ௖் ) = ቈ ௪ଶߪ ௪௛ߩ௛ߪ௪ߪ௪௛ߩ௛ߪ௪ߪ ௛ଶߪ ቉ = [࢛ଵ࢛ଶ] ൤ߣଵ 00 ଶ൨ߣ ቈ࢛ଵ்࢛ଶ்቉ [2.27]  

where ࢓௖ = ࢓ −  on the ݔ ௫ represents the standard deviation ofߪ ,(࢓)ܧ
observed population and ߩ௪௛ is the correlation coefficient between the 
height and mass of the individuals. Figure 2.10 offers a graphic 
interpretation in the case of a Gaussian statistic by representing the region 
for which ࢓௖் ௖࢓ଵି࡯ ≤ 1.  
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Figure 2.10. Illustration of the joint distribution of the size, h, and the mass, 
  .of elements of a population, for unchanged marginal statistics ,ݓ 

Population of the a) “normal”, b) “clone”, c) “anarchic”, d) “unusual” type 

We note that if ߪ௪ and ߪ௛ indicate the extent of the data projection on the 
axes ݓ and ℎ respectively, the eigenvectors correspond to the axes of the 
ellipse described by the distribution, and the eigenvalues vary with  
the ellipse extent according to the specific direction considered. Four types 
of populations are represented and have similar marginal dispersions, ߪ௛,௪. 
The “normal” population possesses a preferred direction in the measurement 
space, with relatively correlated sizes and masses, with ߩ௪௛ = 0.8 and ߣଶ = ఒభହ . The “clone” labeled population has a noticeable characteristic: even 
though they are randomly distributed, the size and mass of the individuals of 
that population are perfectly correlated, ߩ௪௛ = 1 and ߣଶ = 0, in other words, 
knowing one of the two values allows to determine the second without error. 
For the third population, qualified as “anarchic”, knowing the size of an 
individual only gives very vague information on its mass. In that case, ߩ௪௛ = 0 and ߣଶ =  .ଵ, and the selection of a set of eigenvectors is arbitraryߣ

a) b) 

c) 
 

d) 
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The last case offers an “unusual” population, which does show a preferred 
direction, but has a correlation coefficient with a negative sign resulting 
from the direction taken by ࢛ଵ, ߩ௪௛ = ଶߣ ,0.8 − = ఒభହ , which indicates that 
the tallest individuals are those with the lowest mass.  

Properties of polarimetric covariance matrices 

The most used fully polarimetric data covariance matrices are defined as: ܂ = E(࢑ܓு) and ۱ = E(࢑௅ܓ௅ு), with ܂ = L→PH۾L→P۱۾  [2.28]  

where ࢀ is the coherency matrix and ࡯ the covariance matrix. We notice that 
those two representations of second order statistics share the same 
eigenvalues, as their eigenvector’s matrices are linked by the unitary 
transformation ࡼ௅→௉, and that: tr(܂) = tr(۱) = E(span(ܓ)) [2.29]  

The developed and parameterized expressions of those matrices are  
given by: 

܂ = ଵଶ E ቌ቎ |ܵ௛௛ + ܵ௩௩|ଶ (ܵ௛௛ + ܵ௩௩)(ܵ௛௛ − ܵ௩௩)∗ 2(ܵ௛௛ + ܵ௩௩)ܵ௛௩∗(ܵ௛௛ − ܵ௩௩)(ܵ௛௛ + ܵ௩௩)∗ |ܵ௛௛ − ܵ௩௩|ଶ 2(ܵ௛௛ − ܵ௩௩)ܵ௛௩∗2ܵ௛௩(ܵ௛௛ + ܵ௩௩) 2ܵ௛௩(ܵ௛௛ − ܵ௩௩) 4|ܵ௛௩|ଶ ቏ቍ
= ൥ 2A଴ C − jD G − jHC + jD B଴ − B E + jFG + jH E − jF B଴ + B൩  [2.30]  

where ܣ଴, ,଴ܤ ,ܤ ,ܥ ,ܦ ,ܧ ,ܨ ,ܩ ܪ ∈ ℝ, are the nine Huynen parameters  
[HUY 70, LEE 08], which completely describe a fully polarimetric 
covariance matrix in its most general form, and to which were linked some 
physical parameters of targets and environments by studies conducted by 
Huynen [HUY 70]. 

۱ = E ൮൦ |ܵ௛௛|ଶ √2ܵ௛௛ܵ௛௩∗ ܵ௛௛ܵ௩௩∗√2ܵ௛௩ܵ௛௛∗ 2|ܵ௛௩|ଶ √2ܵ௛௩ܵ௩௩∗ܵ௩௩ܵ௛௛∗ √2ܵ௩௩ܵ௛௩∗ |ܵ௩௩|ଶ ൪൲
= ߪ ൦ 1 ߜ√ߚ ߜ√∗ߚߛ√ߩ ߜ ߳ඥߛ√∗ߩߜߛ ߳∗ඥߜߛ ߛ ൪  [2.31]  

with ߪ, ,ߜ ߛ ∈ ℝ and ߚ, ,ߩ ߳ ∈ ℂ.  
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By applying a basis change to the target vectors used to form a 
covariance matrix, ࢑(࢛,఼࢛) = ,߶ଷ்(2ࢁ 2߬, (఼ܝ,ܝ)܂ :in any polarization basis such as ࡯ or ࢀ we can express ,(೓,࢛ೡ࢛)࢑(ߙ2 = E൫࢑(఼࢛,࢛)࢑(࢛,఼࢛)ு ൯ ,߶ଷ்(2܃ = 2߬, ଷு்ࢁ(ೡܝ,೓ܝ)܂(ߙ2 (2߶, 2߬,   [2.32] (ߙ2

The polarimetric second order representations verify the general 
properties of covariance matrices: in particular with a “dimension” of ݍଶ = 9, the statistics outlined in [2.20] and [2.21], as well as the 
interpretation of their decomposition into eigen-elements. Polarimetric data 
covariance matrices measured for environments showing some symmetry 
properties, illustrated in Figure 2.11, assume specific structures [NGH 92, 
YUE 94]: 

– reflection symmetry: an environment, composed of symmetrically 
distributed reflectors on either side of the radar incidence plane, has a 
polarmetric response with reflection symmetry, which is characterized by  
a decorrelation of co- and cross-polar channels, i.e. ܧ(ܵ௛௛ܵ௛௩∗ ) ∗௩௩ܵ௛௩ܵ)ܧ= ) = 0. This type of response is characteristic of horizontal natural 
environments and has a coherency matrix with the following form: ܂ = ൥ ܽ ܾ 0ܾ∗ ܿ 00 0 ݀൩ [2.33]  

– rotation symmetry: an environment rotation symmetry environment has 
a covariance matrix that remains rotationally invariant around the radar line 
of sight axis, that is ࢀ =  :ଷ்ିଵ(2߶)ࢁࢀଷ்(2߶)ࢁ

܂ = ൥ܽ 0 00 ܾ ݆ܿ0 ݆ܿ ܾ ൩ with ܿ ∈  ℝ [2.34]  

– azimuthal symmetry: the environment has both reflection and rotation 
symmetry properties. This type of response is specific to dense volumetric 
environments and has a covariance matrix given by: 

܂ = ൥ܽ 0 00 ܾ 00 0 ܾ൩  [2.35]  
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Filtering forms 

Some studies [LOP 92, LOP 97] proposed adaptive polarimetric filtering, 
i.e techniques that adapt to the shape of the covariance matrix and which 
process polarimetric channels differently according to their local statistics. 
Due to the risk of significant modifications to the matrix structure brought 
by an adaptive approach based on a limited number of views, this type of 
technique was then replaced by a scalar filtering of matrix-valued qualities, 
inspired by the single-channel case, which can be represented with an 
extension of the Lee filter as [LEE 94a, LEE 94b, LEE 06]: ܂ = ෡܂ + ଴ࢀ) ܾ −   ෡) [2.36]܂

where ࢀ଴ represents the covariance matrix of the pixel studied before 
filtering, whose number of equivalent views ௘ܰ௤଴ can be equal to 1 for 
initial mono-view data, or greater when using pre-filtered data. ࢀ෡ is an 
estimate of the polarimetric second order statistics, generally obtained 
through a weighted linear filtering of the form ࢀ෡ =  భಽ ∑ ࢑ு(݈)௅௟ୀଵ(݈)௜࢑ݓ . The 
scalar coefficient, 0 ≤ ܾ ≤ 1, regulates the filtering strength, according to 
the homogeneity of the L views used for the filtering. This coefficient is 
calculated from the ((݈)࢑) ݊ܽ݌ݏ statistics, as in the case of data acquired 
from a single polarization channel. 

Filtering techniques  

As in the scalar case, the main differences between filtering techniques, 
concern the selection of samples, ࢑(݈), during the estimation of the span 
local statistics. The three approaches mentioned in the single-channel case, 
the refined Lee filter [LEE 99], the Intensity-Driven Adaptive-Neighborhood 
(IDAN) filter [VAS 06], and the non-local filter  [DEL 15], discussed in 
Chapter 1 of this volume, are illustrated in Figure 2.12. Some versions of 
these filtering methods use similarity measurements between local estimates 
of covariance matrices. Such an approach generally requires the use of a 
sufficient number of samples for the compared estimates to be actually 
representative of the local multivariate statistics. It is easy to see here the 
dilemma between the statistical accuracy and the spatial localization which 
is confronted by a multi-variate filter, which is partially bypassed using the 
span, to estimate the homogeneity of a series of samples and select its  
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most representative elements. The scalar information associated with the 
span shows converging statistics for a lower number of samples than in the 
case of a covariance matrix. However, the span is partial polarimetric 
information, whose values may not faithfully represent the variations of the 
total polarimetric response. 

 
           a)                b)                c)                d) 

Figure 2.12. Comparison of speckle filters for polarimetric data, given in  
[DEL 15], on a NASA/JPL/AirSAR image in L-band ( ௖݂  =  of San Francisco (ݖܪܩ 1.3
(the two first lines: full image and detail) and on a DLR/FSAR image in S-band 
( ௖݂  =  :of Kaufbeuren in Germany (the two last lines: full image and detail) (ݖܪܩ 3.25
a) initial two view image for San Francisco and one view for Kaufbeuren, b) refined 
Lee [LEE 99], c) IDAN [VAS 06], d) non-local [DEL 15]. For a color version of this 
figure, see www.iste.co.uk/baghdadi/2.zip  
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2.2.2.2. Incoherent polarimetric decomposition techniques  

2.2.2.2.1. Necessity of polarimetric decomposition  

Deterministic and stochastic polarimetric responses  

As previously presented, the polarimetric response of an object can be 
analyzed by comparing its relative scattering matrix, ࡿ௥௘௟, with that of the 
canonical targets, such as a sphere, a dihedral… The use of 2nd order 
statistics does not represent in itself a limitation to this type of interpretation, 
since a relative scattering matrix can be rebuilt from the hermitian product of 
a target vector, that is ≡ ࢑ ⇒ ௥௘௟ࡿ ≡ ࢑࢑ு. However, the incoherent average 
operation associated with speckle filtering significantly disturbs this type of 
interpretation. In fact, the only configuration for which it is possible to 
unambiguously associate a relative scattering matrix with a coherence matrix 
represents a very specific case of statistical distribution, which is very 
unlikely in practice, with: ܓ(݈) = ܽ(݈)࢑଴ ⇒ ܂    = E(࢑࢑ு) = ࢑଴࢑଴ுܣ ≡ ௥௘௟బࡿ  [2.37]  

In such a case, the speckle effect similarly affects the different 
polarimetric channels through the scalar quantity ܽ(݈), the relative 
amplitudes and phases of the different channels remain constant, and the 
polarimetric response is said to be deterministic. Other more realistic 
configurations consider the polarimetric response as composed of a large 
number of independent contributions, ௦ܰ, which are superimposed within the 
same resolution cell, and homogeneously in a neighborhood within which 
samples are selected: ࢑(݈) = ∑ ࢑௡(݈)ேೞ௡ୀଵܧ൫࢑௡(݈)࢑௠ு (݈)൯ = ௡ି௠ቋߜ௡ࢀ ⇒ ܂   = E(࢑࢑ு) = ∑ ௡ࢀ ≢ேೞ௡ୀଵ   ௥௘௟ [2.38]ࡿ

In this case, very often encountered in practice, a covariance matrix 
cannot be linked without ambiguity to a relative scattering matrix.  

Distributed target concept  

A target is said to be distributed if its polarimetric response cannot be 
represented by a single relative scattering matrix ࡿ௥௘௟, as was shown in 
[2.38]. This property can be illustrated in a number of different ways, in 
particular through the decomposition of the polarimetric covariance  
matrix into eigen-elements, ࢀ = ுࢁࢫࢁ = ∑ ௜࢛௜࢛௜ுଷ௜ୀଵߣ . For a deterministic 
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response such as the one described in [2.37], we obtain ࢛ଵ = ࢑଴/ට࢑଴ு࢑଴, ߣଵ = ,࢑଴ு࢑଴ܣ ଶߣ = ଷߣ = 0, whereas for the general case of [2.38], we have ߣ௜ > 0, ∀݅ and the response energy is “distributed” over several orthogonal 
scattering mechanisms, ࢛௜. We can also use the concept of degrees of 
freedom (DoF), which is easily highlighted through the following covariance 
matrix factorization: 

܂ = ൦ඥ ଵܶଵ 0 00 ඥ ଶܶଶ 00 0 ඥ ଷܶଷ൪ ቎ 1 ଵଶߩ ∗ଵଶߩଵଷߩ 1 ∗ଶଷߩଶଷߩ ∗ଶଷߩ 1 ቏ ൦ඥ ଵܶଵ 0 00 ඥ ଶܶଶ 00 0 ඥ ଷܶଷ൪ [2.39]  

For a deterministic polarimetric response, sometimes called “pure”,  
we have ࢀ = ௜௝หߩଵ࢛ଵ࢛ଵு and so หߣ = 1, ଶଷߩ = ∗ଵଶߩ   ଵଷ. Theߩ
covariance matrix is then fully defined by five real values,  ࢀ ≡ { ଵܶଵ, ଶܶଶ, ଷܶଷ, (ଵଶߩ)݃ݎܽ , (ࢀ)ܨ݋ܦ and ,{(ଵଷߩ) ݃ݎܽ = (௥௘௟ࡿ)ܨ݋ܦ = 5.  
It is then possible to interpret the polarimetric scattering phenomenon 
through a more or less advanced comparison of the five  
DoF polarimetric representations with those obtained for  
canonical targets, and to deduce from it some physical properties of the 
objects measured. For a distributed matrix, ࢀ = ∑ ௜࢛௜࢛௜ுଷ௜ୀଵߣ ࢀ , ≡{ ଵܶଵ, ଶܶଶ, ଷܶଷ, ,|ଵଶߩ| ,|ଵଷߩ| ,|ଶଷߩ| (ଵଶߩ)݃ݎܽ , (ଵଷߩ)݃ݎܽ ,  and we ,{(ଶଷߩ) ݃ݎܽ
find (ࢀ)ܨ݋ܦ = 9 > (௥௘௟ࡿ)ܨ݋ܦ = 5. That profusion of DoF does not allow 
a direct interpretation of the link between the characteristics of the observed 
medium and those of the wave scattered by it. We then employ 
decomposition techniques [HUY 70, CLO 96, CLO 97]. 

Objectives of the polarimetric decomposition techniques  

The main objective of the polarimetric decomposition techniques is to 
characterize a polarimetric response by means of one or several scattering 
mechanisms. Four approaches are generally identified: 

– coherent decompositions, which express a scattering matrix, ࡿ as the 
linear combination of matrices associated with canonical scattering 
mechanisms. That type of approach is suitable for analyzing deterministic 
features and loses its appeal for the study of distributed responses; 
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– decomposition techniques based on dichotomy, whose objective is to 
represent a covariance matrix under the form of a pure term, that is to rank 
one covariance matrix, ࢀ଴, and a residue, ࢀ௥௘௠: ࢀ = ଴ࢀ +  ௥௘௠. Dichotomyࢀ
is usually performed according to physical considerations; 

– approaches using the decomposition into eigen-elements of the 
covariance matrix; 

– approaches based on a scattering model associating the covariance 
matrix with a series of arbitrary rank components. 

2.2.2.2.2. A few methods based on orthogonal scattering 
mechanisms  

Those approaches are based on the decomposition into eigen-elements of 
the covariance matrix ࢀ = ுࢁࢫࢁ = ∑ ௜࢛௜࢛௜ுଷ௜ୀଵߣ , with ߣ௜ ≥ ௜ାଵ and ௝࢛ு࢛௜ߣ  = ଶߣ when ࢀ ௜ି௝. As was previously shown, the analysis ofߜ > 0, that 
is to say in the presence of a polarimetrically distributed response, faces a 
profusion of  DoF  that is hard to interpret. Approaches aiming at extracting 
a representative mechanism from eigen-elements to the covariance matrix 
were proposed to address this issue. 

Dominant or average scattering mechanism 

The first approach, suggested by Cloude [CLO 86b], considers the 
dominant mechanism, i.e. the mechanism with the highest associated 
intensity. This decomposition is similar to a 1st order principal component 
analysis, from which a relative scattering matrix can be extracted: ܁௥௘௟ ≡ ඥߣଵ࢜ଵ =   ଵ [2.40]ܓ

The reconstructed principal target vector can be expressed up to an 
arbitrary phase term, as a function of the ࡿ௥௘௟ elements, the Huynen 
parameters of a pure target or angular variables, as: 

ଵܓ = ଵ√ଶ ൥ܵ௛௛ + ܵ௩௩ܵ௛௛ − ܵ௩௩2ܵ௛௩ ൩ = ൦ ඥ2ܣ଴ඥܤ଴ + ଴ܤ௝௔௥௚(஼ା௝஽)ඥ݁ܤ −   ௝௔௥௚(ீା௝ு)൪݁ܤ
      = ࢑ଵுܓଵ ൥ ݏ݋ܿ ݊݅ݏߙ ߙ ݏ݋ܿ ߚ ݁௝ఋ݊݅ݏ ߙ ݊݅ݏ ߚ ݁௝ఊ ൩ [2.41]  
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where ࢀ௜ represents a unitary rank matrix. Those pseudo-probabilities are 
used to rebuild a target vector representing the average scattering 
mechanism, from each of the parameterized eigenvectors: 

௜ܝ = ቎ ݏ݋ܿ ݊݅ݏ௜ߙ ௜ߙ ݏ݋ܿ ௜ߚ ݁௝ఋ೔݊݅ݏ ௜ߙ ݊݅ݏ ௜ߚ ݁௝ఊ೔ ቏ ⇒ ഥܝ  = ቎ ݏ݋ܿ ݊݅ݏതߙ തߙ ݏ݋ܿ ҧߚ ݁௝ఋഥ݊݅ݏ തߙ ݊݅ݏ ҧߚ ݁௝ఊഥ ቏ where ݔҧ = ∑ ௜ଷ௜ୀଵ݌   ௜ [2.43]ݔ

We note that despite the fact that the averaging presented in [2.43] 
depends on the formalism used to parameterize a target vector and does not 
take into account the orthogonality of the different eigen-elements, it ensures 
the adaptive consideration of the eigenvalue distribution of ࢀ, with ഥ࢛ = ࢛ଵ 
for a deterministic response and ഥ࢛ = ݂(࢛૚, ࢛૛, ࢛૜) for distributed responses. 
The representativity of this eigenanalysis can be evaluated by means of two 
parameters describing the eigenvalue distribution, the entropy, ܪ, and the 
anisotropy, ܣ, defined as [CLO 95, CLO 96]: ܪ = − ∑ ௜ଷ௜ୀଵ݌ ଷ݃݋݈  ܣ  ௜ and݌ = ௣యି௣మ௣యା௣మ  with 0 ≤ ,ܪ ܣ ≤ 1 [2.44]  

where the entropy, borrowed from information theory, is an indicator of the 
random nature of the polarimetric scattering phenomenon, with ܪ = 0 for a 
deterministic scattering, and ܪ = 1 for a fully distributed scattering with ߣ௜ = ଵଷ , ∀݅. The entropy can be understood as a measure of the reconstituted 
dominant or average mechanism representativity, or an indicator of the 
complexity of the imaged environments. The anisotropy indicates the 
significance of the third eigen-element relative to that of the second element. 
As they are expressed from the set of the relative eigenvalues of the 
covariance matrix, H and A are invariant through any transformation of the 
type ࢀᇱ = |ࡽ| ,ுࡽࢀࡽ ≠ 0, which takes into account any change of 
polarimetric basis, ࡽ = ,߶)ࢁ ߬), or of the covariance matrix representation, ࡽ =  The two key parameters of that decomposition are the entropy .࡯→ࢀࡼ
ത, the indicator of the average scattering mechanism nature, 0°ߙ and ,(ܪ) ≤ തߙ ≤ 90°, that can be interpreted by means of the scattering matrices 
given in Table 2.2. Thus, we have ߙത = ௧௥௜௛௘ௗ௥௔௟ߙ = 0° for a sphere or a 
plate, ߙത = ௗ௜௣௢௟௘_ସହߙ = 45° for randomly orientated anisotropic particles, 
and ߙത = ௗ௜௛௘ௗ௥௔௟ߙ = 90° for a canonical dihedral. The parameters ߙ௜ and ߙത 
are invariant by rotation around the radar line of sight, that is for 
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Figure 2.16. Different combinations of the ܪ and ܣ parameters (San Francisco Bay). 
For a color version of this figure, see www.iste.co.uk/baghdadi/2.zip 

  
                          a)                                                    b) 

Figure 2.17. a) Density resulting from the projection of the pizels of the San 
Francisco Bay in the (ܪ, ,ܣ ,ܪ) ത) domain, b) planeߙ   ത) segmentedߙ
in regions associated with typical scattering mechanisms. For a  
color version of this figure, see www.iste.co.uk/baghdadi/2.zip 
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The classification results of Figure 2.18 show an image labeled according 
to the arbitrary division of the plane ܪ −  ത shown in Figure 2.17. Theߙ
interpretation and/or the borders of the different classes defined in this plane 
are likely to change significantly according to the measurement conditions, 
in particular the carrier frequency used. 

 

Figure 2.18. ܪ −   ത classification of the San Francisco Bay image: a) densityߙ
of the image pixel projection in the (ܪ,  ത) domain  and color coding, b) classifiedߙ

image. For a color version of this figure, see www.iste.co.uk/baghdadi/2.zip 

2.2.2.2.3. Decompositions into canonical scattering mechanisms  

Those techniques model the polarimetric response within each pixel 
corresponding to an environment under the form ࡿ = ∑ ௠௢ௗ௜௜ࡿ , where ࡿ௠௢ௗ௜ represents the response of a specific scattering mechanism. As  
the different components of the global response represent different 
mechanisms within the medium observed, we generally consider that they 
are affected by independent speckle realizations, and so are not correlated. 
The global polarimetric covariance matrix can then be written under the 
form ࡯ = ∑ ௜(௜ࣂ)௜࡯ , where ࣂ௜ represents a set of parameters describing the 
associated contribution. The estimation of the different parameters, 
especially of the power of each term, makes it possible to detect and identify 
some characteristic components of complex environments. The Freeman–
Durden approach [FRE 98] decomposes a polarimetric covariance matrix 
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under the form of three contributions associated with the canonical responses 
of simple reflection, double reflection and volume scattering. The volume 
component is modeled under the form of a sum of scattering contributions 
from anisotropic particles, represented by a randomly oriented lexicographic 
target vector or ࢑௣௔௥௧ = [ܽ, 0, ܾ]், as: 

௩࡯ = ݈݅݉௕→଴ ׬ ஼(߶)ଶగ଴ࢁ ࢑௣௔௥௧࢑௣௔௥௧ு (߶)஼ுࢁ d߶ = ௙ೡ଼ ൥3 0 10 2 01 0 3൩ [2.45]  

whereas the simple and double reflection mechanisms are associated with 
pure polarimetric, that is rank 1 responses: 

௦࡯ = ௦݂ ൥|ߙ|ଶ 0 0ߙ 0 ∗ߙ0 0 1൩ and ࡯ௗ = ௗ݂ ቎|ߚ|ଶ 0 0ߚ 0 ∗ߚ0 0 1቏ [2.46]  

The terms ௫݂ in [2.45] and [2.46] correspond to coefficients modulating 
the intensity of volume canonical scattering mechanisms, simple or double 
reflections, signaled by their respective index, ݔ = ,ݒ  or ݀. The global ݏ
model of polarimetric response is given by: 

࡯ = ௦࡯ + ௗ࡯  + ௩࡯  = ێێۏ
ۍێ ௦݂|ߙ|ଶ + ௗ݂|ߚ|ଶ + ଷ௙ೡ଼ 0 ௦݂ߙ + ௗ݂ߚ + ௙ೡ଼0 ௙ೡସ 0

௦݂ߙ∗ + ௗ݂ߚ∗ + ௙ೡ଼ 0 ௦݂ + ௗ݂ + ଷ௙ೡ଼ ۑۑے
  [2.47] ېۑ

with (࡯)݊ܽ݌ݏ = ௦ܲ + ௗܲ + ௩ܲ and ௦ܲ = ௦݂(1 + ଶ), ௗܲ|ߙ| = ௗ݂(1 + ଶ), ௩ܲ|ߚ| = ௩݂. Estimation parameter of this decomposition requires us to  
determine five parameters from only four equations. It is suggested in  
[FRE 98] to replace ࡯௦ or ࡯ௗ by a canonical expression according to the 
argument of ܧ(ܵ௛௛ܵ௩௩∗ ). If ℛ൫ܧ(ܵ௛௛ܵ௩௩∗ )൯ > 0, then this correlation term is 
dominated by the simple reflection contribution, and we set ߚ = −1, or 
otherwise we impose ߙ = 1. This decomposition technique implies that the 
environment response has a reflection symmetry property, that is ܧ൫ܵ௣௣ܵ௣௤∗ ൯ = 0, with ݌, ݍ = ℎ or ݒ, which may not be verified in practice. 
In addition, the estimation of the different model parameters from [2.47] can 
lead to outliers resulting in negative powers, or in non postitive semi-definite  
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compounds. The Freeman–Durden decomposition results are shown in 
Figure 2.19. 

 
                             a)                                    b) 

Figure 2.19. Comparison of color coded polarimetric images in the Pauli basis of the 
San Francisco Bay: a) image reconstructed from the intensity of canonical scattering 
mechanism of the Freeman–Durden decomposition, b) original color coded  
image (not decomposed). For a color version of this figure, see 
www.iste.co.uk/baghdadi/2.zip 

We notice that this decomposition tends to overestimate the volume 
component, and is, by definition, not adapted to environments presenting 
correlations between co- and cross-polar channels; i.e. orientated 
environments or environments with artificial structures. 

2.2.3. A few applications using polarimetric SAR images  

2.2.3.1. Advanced decomposition techniques  

2.2.3.1.1. Approaches based on a scattering model  

Two-term Freeman decomposition 

This approach models the response of a terrain with 2 compounds. A rank 
1 ground covariance which represents simple or double reflections, where a 
full rank term, ࡯௩, is associated with volume scattering  [FRE 07]. The total 
covariance matrix is written: 
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࡯ = ௚࡯ + ௩࡯  = ௚݂ ൥|ߙ|ଶ 0 0ߙ 0 ∗ߙ0 0 1൩ + ௩݂ ൥1 0 0ߩ 1 − ߩ ߩ0 0 1൩ [2.48]  

This approach, illustrated in Figure 2.20, proves to be more robust than 
the approach using three components, as it does not result in an 
underdimensioned system and allocates to the volume component an 
additional degree of freedom, helping to better condition the parameter 
elimination parameters, as mentioned above. 

 
                                        a)                  b) 

Figure 2.20. Images of the intensity of the compounds of the of the  
two-element Freeman decomposition for the San Francisco Bay:  

a) ground component, b) volume component 

Four-term Yamaguchi decomposition 

Polarimetric responses measured over complex environments, containing 
in particular artificial structures like urban areas, may not verify the 
reflection symmetry property on which are based the decomposition 
techniques suggested by Freeman–Durden and Freeman. The application of 
those methods with no previous modification can result in a significant loss 
of information. To address this limitation, the approach developed by 
Yamaguchi et al. [YAM 05] suggests to add to the three component model a 
fourth rank 1 component associated with the response of a left or right helix: 

۱௟௛,௥௛ = ௛݂ ൦ 1 ∓݆√2 −1±݆√2 2 ∓݆√2−1 ±݆√2 1 ൪ [2.49]  
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The volume contribution is also modified to take into account a more 
adapted particle distributions. Thus, the volume covariance matrix is 
obtained through the disorientation of ࢑௣௔௥௧ = [ܽ, 0, ܾ]், as: ࡯௩ೌ್ = ׬ ஼(2߶)ଶగ଴ࢁ ࢑௣௔௥௧࢑௣௔௥௧ு ஼ு(2߶)ࢁ థ݂(߶)d߶  

with థ݂(߶) = ଵଶ ݏ݋ܿ ߶rect ቀథగቁ [2.50]  

where rect(ݔ) = 1, |ݔ|∀ < ଵଶ and is nowhere else. Two cases are then 
considered, depending on whether the particles composing the volume are 
orientated around the vertical, ࡯௩ೡ , or horizontal, ࡯௩೓, direction: 

௩ೡ࡯ = lim௔→଴࡯௩ೌ್ = ௙ೡଵହ ൥8 0 20 4 02 0 3൩ and ࡯௩೓ = lim௕→଴࡯௩ೌ್ = ௙ೡଵହ ൥3 0 20 4 02 0 8൩ [2.51]  

The expression of the global model is given by ࡯ = ௦࡯ + ௗ࡯  + ௛࡯  +  ௩࡯
and its estimation, more complex than the one of the Freeman–Durden 
approach, requires the selection of the most adapted helix, ࡯௛ =  ,௥௛࡯ ௟௛or࡯
and volume responses (Figure 2.21). 

 
                                    a)                                b) 

Figure 2.21. Comparison of color coded polarimetric images in the Pauli basis  
of the San Francisco Bay: a) image reconstructed from canonical mechanism  

intensities s,d,v of the Yamaguchi decomposition, b) original image.  
For a color version of this figure, see www.iste.co.uk/baghdadi/2.zip 
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Neumann decomposition with an advanced description of the volume 
contribution 

This approach [NEU 09] considers a volume composed of lexicographic 
target vector particles ࢑௣௔௥௧ = [ܽ, 0, ܾ]் = 1]ܣ + ,∗ߜ 0, 1 −  oriented ,்[∗ߜ
according to a truncated normal law, whose dispersion, ߬, is parametric: 

థ݂(߶) = ௖௢௦(ଶ(థିథഥ ))గఛ  with ߬ =   ఑ [2.52]ି݁(ߢ)଴ܫ

where ߶ത represents the average orientation of particles and ߢ is the degree of 
concentration of the distribution, similar to the reverse of the standard 
deviation of థ݂(߶). The different types of particles simulated by means of 
the parameters ߜ and ߬ are described in Figure 2.22. The global covariance 
matrix is given by a ground component and a volume component, through ܶ = ௚݂ࢀ௚ +  ௩݂ࢀ௩, with: 

௩ࢀ = ଷ்(߶ത)ࢁ ൦ 1 ݃௖ߜ 0݃௖ߜ∗ ଵା௚ଶ ଶ|ߜ| 00 0 ଵି௚ଶ ଶ൪|ߜ| ଷு்ࢁ (߶ത)  

and  ࢀ௚ = ൥ 1 ߚ ∗ߚ0 ଶଶߚ 00 0   ଷଷ൩ [2.53]ߚ

where ݃ = and ݃௖ (ߢ)଴ܫ/(ߢ)ଶܫ =  and with a full rank ground (ߢ)଴ܫ/(ߢ)ଵܫ
contribution. This decomposition technique models, with a reduced number 
of parameters, the response of a very realistic volume, allocating a high 
number of degrees of freedom to the ground contribution. The estimation of 
the different parameters can be adaptively conducted using the Non Negative 
Eigenvalue Decomposition (NNED) approach [VAN 11] presented below. 
Figure 2.22 illustrates the relevance of that approach by comparing its 
definition domain with those of the Freeman and Yamaguchi approaches. 

Another adaptive method and NNED estimation  

Similarly to the previous approach, this technique models a volume as a 
cloud of anisotropic particles, randomly orientated according to the 
following law: 
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థ݂(߶) = ௖௢௦మ೙(థିథഥ ׬( ௖௢௦మ೙(థିథഥ )మഏబ  [2.54]  

where ݊ represents the distribution order that sets the dispersion ߬ [ARI 10, 
ARI 11]. This type of law helps to generate a quasi-deterministic 
distribution, when ݊ →  +∞, up to a uniform distribution, for ݊ = 0, as 
shown in Figure 2.23. The global polarimetric covariance model is given by: ۱ = ௦࡯ + ௗ࡯  +  ௩݂࡯௩(߶ത, ݊) +   ௥௘௠ [2.55]࡯

where ࡯௥௘௠ represents the estimation residue, that is the part of ࡯ that 
cannot be explained by the suggested model. The NNED estimation 
approach, or positive semi-definite estimation, is then applied to find the 
optimal volume parameters, that verify: ( ௩݂, ߶ത, ݊)௢௣௧ = ݃ݎܽ ݉݅݊൫௙ೡ,థഥ ,௡൯ ௥௘௠ᇱ࡯)ݎݐ ) with 

௥௘௠ᇱ࡯  = ۱ − ௩݂࡯௩(߶ത, ݊) and ࡯௥௘௠ᇱ ≥ ૙ [2.56]  

with ࡯)ݎݐ௥௘௠ᇱ ), the span of residual term from which are estimated the 
contributions ࡯௦ and ࡯ௗ, whose constraint ࡯௥௘௠ᇱ ≥ ૙ ensures the semi- an 
adequate parameterization. The performances of that approach can be 
assessed in Figure 2.23. 

 

Figure 2.22. Illustration of the Neumann adaptive decomposition. Top: example of 
particles modeled by means of parameters ߬, ,ߜ ߶ = ߰; bottom: illustration of ߬,  |ߜ|
domains covered by the Freeman–Durden decompositions (blue), Freeman II (red), 
Yamaguchi (green) for a) | ଵܶଶ|, b) ଶܶଶ and c) ଷܶଷ. For a color version of this figure, 
see www.iste.co.uk/baghdadi/2.zip 
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                                  a)                              b) 

 
                             c)                                       d) 

Figure 2.23. Results of the polarimetric decomposition approach based on an 
adaptive model [ARI 11], applied to the polarimetric image measured in the L-band 
by the JPL/AirSAR sensor over the Black Forest, Germany: a) orientation 
distributions used, b) (ܥ)݊ܽ݌ݏ in C-band, c) ݊ܽ݌ݏ(ܥ௥௘௠)/(ܥ)݊ܽ݌ݏ, d) ௜ܲ/݊ܽ݌ݏ for  
each identified component. For a color version of this figure, see 
www.iste.co.uk/baghdadi/2.zip 

2.2.3.1.2. Generalization of the approach based on an eigen-
decomposition  

Among the various polarimetric decomposition approaches based on the 
eigen-elements of the covariance matrix, we can quote the method developed 
in Paladini et al. [PAL 12], which aims at improving two aspects linked to 

Double-bounce SurfaceVolume
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the estimation of the dominant or average mechanism presented in [2.43] 
and [2.44]: 

– among the four angular variables used to parameterize a target vector in 
[2.43], only ߙ is rotationally invariant around the radar line of sight; 

– the definition of an average mechanism by means of the different 
angular variables on the different eigen-elements [2.43] can result in a 
significant bias and a potentially erroneous interpretation of the scattering 
mechanism. 

The invariance improvement is provided by redefining the 
parametrization of a target vector in the circular basis. The application of a 
rotation on the target vector in the basis (݈, ݈ୄ) can be written as: 

࢑(௟,௟఼)(߶) = (௟,௟఼)࢑ with ,(௟,௟఼)࢑(߶)܀ = ଵଶ ቎ܵ௛௛ − ܵ௩௩ + ݆2ܵ௛௩݆√2(ܵ௛௛ + ܵ௩௩)ܵ௩௩ − ܵ௛௛ + ݆2ܵ௛௩቏, 

(߶)܀ = ൥݁ି௝ଶథ 0 00 0 00 0 ݁௝ଶథ൩ [2.57]  

This relationship shows that contrary to what happens in the Pauli basis, 
an azimuthal rotation may be summarized, in the circular polarization basis, 
by a symmetric phase term. A unit target vector may be parameterized under 
the following form: 

࢑(௟,௟఼)(߶) = (ߙ)܀(௖ߚ)܀(ߓ)܀(߶)܀ ൥100൩ = ێێۏ
ۍ ݊݅ݏ ߙ ݏ݋ܿ ݏ݋ܿ௖݁ି௝(రయంାଶథ)ߚ ݊݅ݏ−௝(ఴయం)݁ߙ ߙ ݊݅ݏ ۑۑے௖݁ି௝(రయంିଶథ)ߚ

ې
 [2.58]  

where the various parameters can be interpreted as follows: 

– ߶ represents the target vector orientation around the line of sight, which 
may be close to the one of the imaged object; 

 ,is an indicator of the anisotropic nature of the polarimetric response ߓ –
i.e., of its sensitivity to the polarization state used for the transmission and 
reception of the SAR signal; 
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 is identical to the Cloude–Pottier decomposition parameter and ߙ –
indicates the nature of the scattering mechanism; 

 ௖ represents the contribution of the helix type scattering mechanism inߚ –
the polarimetric response. 

In the same way as the approach suggested in [2.42], the covariance 
matrix expressed in the circular basis can be decomposed into eigen-
elements, by: 

(௟,௟఼)ࢀ = ு, with ࢛௜܃઩܃ = ێێێۏ
ۍ ݊݅ݏ ௜ߙ ݏ݋ܿ ݏ݋ܿ௖೔݁ି௝(రయం೔ାଶథ೔)ߚ ݊݅ݏ−௜݁௝(ఴయం೔)ߙ ௜ߙ ݊݅ݏ ۑۑۑے௖௜݁ି௝(రయం೔ିଶథ೔)ߚ

ې
 [2.59]  

The potential bias provided by an average characterization of the type ݔҧ = ∑ ௜ଷ௜ୀଵݔ௜݌  can be avoided by rigorously taking into account the 
orthogonality relationship between the different eigenvectors. In fact: 

࢛ଵ = ,൫߶ଵ܀ ,ଵߓ ,௖భߚ ଵ൯ߙ ൥100൩ and ࢛ଵு࢛ଶ = 0 ⇒ 

,૚൫߶ଵି܀ ,ଵߓ ,௖భߚ ଵ൯࢛ଶߙ = ൥0ܾܽ൩ = ,ߦ)܀ ߳) ൥010൩ [2.60]  

and, of course, ିࡾ૚(ߦ, ,૚൫߶ଵିࡾ(߳ ,ଵߓ ,௖భߚ ଵ൯࢛ଷߙ = [0 0 1]், which shows 
that the third eigenvector, orthogonal to the first two, does not provide any 
information. The parameter ߳ measures the predictability of the second 
eigenvector scattering mechanism from the first one and ߦ is a mutual 
orientation parameter. We can illustrate ߳ by noting that in case of an 
environment with a reflection symmetry, we have by definition ߙଶ = గଶ −  ,ଵߙ
and in that case ߳ = 0. This decomposition approach is suitable as its 
parameters are rotationally invariant and the technique takes into account the 
orthogonality conditions of the eigenvectors, that is to say it only uses a 
minimum number of real parameters to describe the covariance matrix: four 
angular coefficients for the first eigenvector, two terms to describe the 
second eigenvector according to the first one, and three eigenvalues, so a set 
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of nine real parameters, equivalent to DoF(ࢀ). An application example of 
that technique is given in Figure 2.24. 

Many polarimetric decomposition approaches, based on mathematical 
considerations or specific perspectives of physical interpretation, may be 
found in [LEE 08]. 

 

Figure 2.24. Parameters of decompositions into “classic” and  
“generalized” eigen-elements on a polarimetric image acquired in the  

C-band by the DDRE/EmiSAR sensor in the Nyborg port area (Denmark) 

2.2.3.2. Statistical classification of the polarimetric SAR images  

Though based on the analysis of 2nd order multivariate moments through 
the covariance matrix, the polarimetric characterization approaches 
presented so far do not explicitly use the statistical laws of polarimetric 
quantities. The consideration of that type of information can be extremely 
useful, in particular to gather image pixels with a similar polarimetric 
behavior. This allows us to better estimate or classify underlying scattering 
mechanisms, or to jointly use the polarimetric information, based on the 
study of the relative amplitudes and phases of the various channels, and the 
one linked to radiometry, through span, which plays a leading role in 
differentiating various environments. 
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2.2.3.2.1. Iterative ML polarimetric classification  

The segmentation of a polarimetric SAR image into a set of statistically 
homogeneous groups aims at assigning, according to a given optimality 
criterion, the SAR image pixel, ݌, to one of the possible ܯ groups or segments {ܥଵ, … ,  A solution to this optimization problem, which minimizes the error .݌  measured for the pixel ࢑ ௠} according to the polarimetric responseܥ
probability, is given by the decision called the maximum a posteriori (MAP): 

Decide ݌ ∈ (࢑|௜ܥ)ܲ ௜ ifܥ > ܲ൫ܥ௝ห࢑൯∀݆ ≠ ݅ [2.61]  

where ܲ(ܥ௜|࢑) is the a posteriori probability, that is after measuring ࢑, of 
the segment ܥ௜. A pixel is then allocated to the most likely segment after 
measuring its polarimetric response. As the a posteriori probabilities 
mentioned in [2.61] generally have expressions which are hard to determine, 
we use the Bayes rule, which when coupled with the assumption of the a 
priori equiprobable segment, i.e. ܲ(ܥ௜) = ଵெ  ∀ ݅, leads to the so-called 
maximum likelihood (ML) decision rate: 

Decide ݌ ∈ (௜ܥ|ܓ)࢑݂ ௜ ifܥ > ݆∀(௝ܥ|ܓ)࢑݂ ≠ ݅ [2.62]  

where ࢑݂(ܥ|࢑௜) is called the likelihood, whose estimation requires us to 
estimate the statistics of the members of the segment ܥ௜. Thus, the optimal 
ML classification solution consists in finding the distribution of the different 
image pixels on the ܯ segments, which maximizes a global likelihood 
criterion formed from the likelihoods of the different measurements. 
Rigorously solving this combinatorial optimization problem requires 
significant computing power, suboptimal techniques such as the k-means 
algorithm [FER 01b, LEE 99, LEE 01, LEE 04] are generally preferred. This 
aims at iteratively optimizing the global likelihood, and may be summarized, 
in the polarimetric case, as follows. We suppose that we have, at the ݊௧௛ 
iteration of the algorithm, a segmentation map temporarily allocating each 
image pixel to one of the ܯ segments {ܥଵ௡, … , ௠௡ܥ }. Assuming responses are 
affected by the speckle effect, the likelihood of ܮ realizations of the pixel ݌ 
response, ݂൫࢑௣(1), … , ࢑௣(ܮ)หܥ௜) or ݂൫ࢀ෡௣หܥ௜) with ࢀ෡௣ = ଵ௅ ∑ ࢑௣(݈)࢑௣ு(݈)௅௟ୀଵ  
can be obtained from [2.21] as: ݂൫ࢀ෡௣หܥ௜௡) ≈ ݂൫ࢀ෡௣ห઱෡௜೙ ) = ௅೜ಽหࢀ෡೛หಽష೜శభ௰෩೜షభ(௅)หࢳ෡೔೙หಽ eି௅trቀࢳ෡೔೙షభࢀ෡೛ቁ  

with ઱෡௜೙ = ଵே೛೔ ∑ ෡௣௣∈஼೔೙ࢀ  [2.63]  
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where ࢳ෡௜೙ represents the centre of class ܥ௜ at the ݊௧௛ iteration; i.e. the 
covariance matrix barycentre of the filtered matrices ࢀ෡௣ of the pixels ݌ ∈  ௜௡. By using log-likelihoods and by ignoring terms not involved in theܥ
decision process, we obtain the following decision ML rule: 

Deciding ݌ ∈ ,෡௜೙ࢳ௜௡ାଵ if  ℒ൫ܥ ෡௣൯ࢀ < ,෡௝೙ࢳ൫ܮ  ෡௣൯ࢀ

with ℒ൫ࢳ෡௜೙, ෡௣൯ࢀ = ݃݋݈ |෡௜೙ࢳ| + tr(ࢳ෡௜೙ିଵࢀ෡௣) [2.64]  

where ℒ൫ࢳ෡௜೙,  ෡௣൯ represents a concentrated log-likelihood, i.e. within whichࢀ
elements not dependent on ࢳ෡௜೙ are removed. The synoptics of the k-means 
segmentation algorithm adapted to polarimetric data is given in Figure 2.25. 

 

Figure 2.25. Synopsis of the ML classification of multi-look  
polarimetric data, based on the k-means technique 

The results shown in Figure 2.26 confirm the relevance of the 
classification approach to separate the specific scattering mechanisms. 
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Figure 2.26. Unsupervised polarimetric segmentation results for the  
image of the San Francisco Bay using 8 or 16 classes. For a color  

version of this figure, see www.iste.co.uk/baghdadi/2.zip 

2.2.3.2.2. ML polarimetric classification respecting the nature of 
scattering mechanism  

This is a variant of the iterative k-means algorithm, which has been 
known to give an excessive importance to the radiometric aspect of the 
polarimetric response, through the span; which plays a leading role in the 
decision rate of [2.64]. As a consequence, pixels with different scattering 
mechanisms, but with similar radiometry, may fall within the same segment. 
To place a greater emphasis on polarimetric information in the classification 
process, it was suggested in [LEE 02a] to split the image, before the 
statistical segmentation, into three classes by means of the Freeman–Durden 
decomposition. Each class is then separately segmented, through k-means 
procedures, thus avoiding mixing the different polarimetric behaviors during 
the iterative process. A classification example is given in Figure 2.27. 

2.2.3.3. Advanced characterization of scattering mechanisms 

2.2.3.3.1. Estimation of rough surface geophysical properties  

Estimation of a scene azimuthal topography 

The orientation of an imaged object around the radar line of sight plays a 
significant role in radar polarimetry. It is indeed possible to measure the 
azimuthal orientation of environments whose polarimetric response shows a 
moderate entropy, satisfying the reflection symmetry conditions for an  
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orientation parallel to the horizontal, as was shown in [LEE 02b]. The  
covariance matrix expressed in the circular basis, after an azimuthal rotation 
is given by [2.57] as: ࡯௥௟(߶) = (߶)஼ೝ೗ࢁ௥௟࡯(߶)஼ೝ೗ࢁ =቎ ௥௟(1,1)࡯ ௥௟(1,2)eି௝ଶథ࡯ ௥௟(2,1)eା௝ଶథ࡯௥௟(1,3)eି௝ସథ࡯ ௥௟(2,2)࡯ ௥௟(3,1)eା௝ସథ࡯௥௟(2,3)eି௝ଶథ࡯ ௥௟(3,2)eା௝ଶథ࡯ ௥௟(3,3)࡯ ቏ [2.65]  

 

Figure 2.27. Illustration of the polarimetric segmentation preserving the  
scattering mechanism nature on the AirSAR image of San Francisco 

This expression shows that the azimuthal orientation modifies the 
argument of the three intercorrelation coefficients, i.e. the off-diagonal 
elements, it can in practice only be estimated from a single one, as ࡯௥௟(1,2) 
and ࡯௥௟(2,3) generally have complex values, whereas, in case of a horizontal 
natural environment, we have ൫ܵ௣௣ܵ௣௤∗ ൯ = 0 ⇒ ௥௟(1,3)࡯ ∈ ℝ, which makes 
it possible to easily estimate ߶ from ࡯௥௟(߶)(1,3). Examples of estimation of 
azimuthal slopes are given in Figure 2.28 for surfaces not covered by 
vegetation, observed in the L-band or oceanic scenes measured in the  
P-band. The comparison of continental azimuthal slopes obtained with  
 

Surface Specular Volume
Double
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a digital elevation model (DEM), shows that the polarimetric approach 
allows us to estimate the main land relief characteristics, when the 
polarimetric response is not dominated by the volume component. However, 
this topographical characterization approach cannot be compared with 
dedicated means or techniques, like LiDAR and SAR interferometry. In fact, 
the polarimetric estimates are generally affected by significant noise and 
ambiguities, and do not provide sufficient information to reconstruct an 
elevation profile, even mono-dimensional, without any assumption as to the 
scene range topography. The second result indicated in Figure 2.28 shows 
the potential of polarimetric SAR processing for measuring marine currents, 
an application for which very few remote sensing means can be considered 
as really adapted. 

 

Figure 2.28. Estimation of azimuthal slopes by means of the polarimetric azimuthal 
orientation angle, ߶. a) Polarimetric image of the Camp Roberts site acquired  
in the L-band by the JPL/AirSAR sensor, b) estimated values of ߶, c) values  
of ߶ simulated from a DEM estimated in the C-band, d) a DEM estimated in the  
C-band [LEE 02b], e) values of ߶ estimated by the same sensor in the P-band, of the 
Gulf Stream oceanic current, f) orientation angle profile [LEE 98]. For a color version  
of this figure, see www.iste.co.uk/baghdadi/2.zip 
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Soil characterization by means of the ܪ, ,ܣ  ത parameters and of theߙ
SPM model 

Due to the close link between the polarimetric response of soils and some 
of its geophysical properties, SAR polarimetry has often been used to 
estimate, on a large scale, the roughness and moisture of natural surfaces. 
Among the various approaches mentioned in the literature, the one 
developed in [HAJ 03], directly uses the parameters ܪ, ,ܣ  ത, derived fromߙ
the eigen-decomposition technique of [CLO 97], as well as the small 
perturbation model (SPM) EM scattering model [FUN 94]. This 1st order 
model makes it possible to very easily simulate the polarimetric response of 
a moderately rough surface, as: ܂ௌ௉ெ(ߢ௖ߪ, ܹ, ,ߠ ߳௥) = ݉௦ଶ(ߢ௖ߪ, ,ߠ)଴ࢀ(ܹ ߳௥) [2.66]  

where ߢ௖ = ଶగఒ೎  is the wave number of the carrier used, ߪ is the standard 
deviation of the soil surface heights, modeled here under the form of a 
random process, whose power spectral density, W, is given by the Fourier 
transform of its autocorrelation function. The incidence angle, in range, is 
denoted by ߠ and ߳௥ represents the soil relative dielectric permittivity. This 
1st order modeling technique offers a formulation that separates the 
influences of the soil roughness and moisture from the global response. 
Roughness modulates, through the scalar function ݉௦ଶ(ߢ௖ߪ, ܹ), the overall 
response, and does not modify polarimetric characteristics, whereas  
moisture is considered through ߳௥, which intervenes in ࢀ଴(ߠ, ߳௥). The global 
covariance matrix has a zero intensity cross-polarization term, ࢀௌ௉ெ(3,3) =0, and perfectly correlated co-polarized channels, which provides a unit rank 
and a zero entropy, very different from the values generally observed on real 
data, in the L- and C-bands. A solution to that limitation is suggested in 
[HAJ 03], which consists in introducing some degree of depolarization in the 
SPM model through a rotation of ࢀௌ௉ெ around the radar viewing axis: 

(߰߂)܂ = ׬ ,ߪ௖ߢ)ௌ௉ெ܂(߶)ଷ்܃ ܹ, ,ߠ ߳௥)ࢁଷு் (߶) ట݂(߶)૛ିૈ૛ૈ d߶ [2.67]  

with ట݂(߶), a uniform probability density centered around 0 and with a 
width ߰߂. The aforementioned eigen-decomposition is then applied to (߰߂)ࢀ, to produce (߰߂)ܪ, ,(߰߂)തߙ  whose simulated values, shown ,(߰߂)ܣ
in Figure 2.29, indicate that ߳௥ can be estimated from (߰߂)ܪ and (߰߂)ߙ, 
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whereas the simulated anisotropy, (߰߂)ܣ, is not at all correlated with ߙത(߰߂).  

  
                                        a)                                                        b) 

Figure 2.29. Geometrical locations covered by the polarimetric  
parameters of (߰߂)ࢀ, simulated according to Hajnsek et al.  

[HAJ 03] for ߠ = (10,20,30,40,50)[݀݁݃] and ߳௥ ∈ [2,40], in the  
a) (߰߂)ܪ − (߰߂)ܣ (b ,(߰߂)തߙ  planes (߰߂)തߙ −

In their studies, Hajnsek et al. [HAJ 03] linked the measured anisotropy 
with a roughness characteristic, through the empirical relationship  ܣ = 1 −  Soil moisture indicators, like the volume water content, can .ߪ௖ߢ
then be estimated from ߳௥.  

Soil characterization by means of the IEM model, taking into account 
the reflection symmetry 

Another technique, introduced in [ALL 04, ALL 05a], suggests an 
alternative approach which does not require an arbitrary azimuthal 
disorientation and uses the integral equation model (IEM) [FUN 94,  
CHE 03]. In the case, always verified over rough surfaces, of a polarimetric 
response showing a reflection symmetry, we can give a simple analytical 
expression of the unsorted eigenvalues of the covariance matrix [ALL 05b] 
may be given: ߣଵ೙೚ೞ = E(|ௌ೓೓|మା|ௌೡೡ|మ)ାඥE(|ௌ೓೓|మା|ௌೡೡ|మ)మାସE(|ௌ೓೓|మ)    ଶߣଶ೙೚ೞ = E(|ௌ೓೓|మା|ௌೡೡ|మ)ିඥE(|ௌ೓೓|మା|ௌೡೡ|మ)మାସE(|ௌ೓೓|మ)    ଶߣଷ೙೚ೞ = E(|ܵ௛௩|ଶ)  [2.68]  
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The eigenvalues given in [2.68] are not sorted, even if ߣଵ೙೚ೞ ≥ ଶ೙೚ೞߣ  , and 
that they can be defined exactly through the span and two real parameters, 
for example, the relative differences of the simple (SERD) and double 
(DERD) reflections, defined in [ALL 05b]. The reflection symmetry  
property, implies that, the eigenvectors associated with ߣଵ೙೚ೞ and ߣଶ೙೚ೞ  only 
contain reduced information of the associated scattering mechanisms, with ߙଶ = గଶ −  ଵ. In fact, when the assumption of the symmetry reflection isߙ
verified, a fully polarimetric covariance matrix can be defined with the help 
of ߣ௜೙೚ೞ and a two-complex element unit vector, sufficient to construct ࢜ଵ, 
orthogonal to ࢜ଶ. That information redundancy gives the average parameters 
defined by [CLO 96], and to ߙത in particular, a highly biased nature, which 
can undermine the estimation of physical parameters and even the 
identification of scattering mechanisms [FER 03]. The approach of  
[ALL 05b] uses a reduced set of parameters, composed of ߙௌ, SERD and 
DERD, defined as: ܵܦܴܧ = ఒೄିఒయ೙೚ೞఒೄାఒయ೙೚ೞ  and  ܦܴܧܦ = ఒವିఒయ೙೚ೞఒವାఒయ೙೚ೞ [2.69]  

where ߣௌ,஽ = ௜ߙ ௜,௝ with ݅ such asߣ ≤ గସ, ݅ = 1 or 2 and ݆ = 3 − ݅. Due to 
their dented range of variation and the possibilities of interpretation given by 
their analytical expression, SERD and DERD cover a domain more 
significant than the anisotropy, with −1 ≤ ,ܦܴܧܵ ܦܴܧܦ ≤ 1. The DERD 
parameter can be compared with the anisotropy, whereas the SERD proves 
to be particularly useful in case of a high entropy. The method to 
characterize the soils introduced in [ALL 04, ALL 05b] uses the IEM for 
higher orders, which generally takes into account the depolarization 
phenomenon and allows us to obtain a covariance matrix revealing a 
reflection symmetry. In Figure 2.30, the anisotropy and DERD obtained by 
means of the IEM for different soil configurations are compared. 

If the link between the anisotropy and some roughness descriptors is 
verified by the IEM, the use of identified rather than sorted eigenvalues 
helps to free the anisotropy of its significant ambiguity, by giving the DERD 
parameter a more extended and non-ambiguous definition domain. Similar 
conclusions were obtained from measurements taken at the European 
laboratory JRC of Ispra, in Italy, whose results are shown in Figure 2.31. 
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                                        a)                                                        b) 

Figure 2.30. Simulation result of the EM response over rough  
soil by means of the IEM model, for different field conditions  

and as a function of ݇ߪ: a) anisotropy (A); b) DERD 

  
                                        a)                                                        b) 

Figure 2.31. Polarimetric parameter values derived from measurement  
taken at the European laboratory JRC, as a function of ݇ߪ: a) anisotropy; b)  
DERD. For a color version of this figure, see www.iste.co.uk/baghdadi/2.zip 

The use of the ߙௌ parameter instead of ߙത to estimate ߳௥ allows us to avoid 
a significant bias, which cannot be avoided by the joint use of ߙത and ܪ. The 
results obtained using data measured by an airborne SAR sensor are shown 
in Figure 2.32. 
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Figure 2.32. Dielectric permittivity estimation over agricultural fields from  
polarimetric data acquired in L-band by the ESAR sensor of the DLR and  

the technique proposed in [ALL 05b]. For a color version of this figure,  
see www.iste.co.uk/baghdadi/2.zip  

2.3. An introduction to SAR interferometry and tomography 

2.3.1. Principle of topography measurement through the SAR 
interferometry 

SAR imaging uses spectral and spatial diversity, to focus a 2D image of 
an environment EM response, which can be expressed as: ݔ)ݏ, (ݎ = ׬ ׬ ܽ௖(ݔᇱ, ᇱ)ାஶିஶାஶିஶݎ ݁ି௝௞೎௥ᇲℎ௔௥(ݔ − ,ᇱݔ ݎ −   [2.70] ′ݎᇱdݔᇱ)dݎ

where ℎ௔௥(ݔ − ,ᇱݔ ݎ −  ᇱ) represents the focused response of a punctualݎ
scatterer with coordinates (ݔᇱ, ,ᇱݔ)ᇱ), and ܽ௖ݎ  ᇱ) is the projection of the 3Dݎ
reflectivity density of an environment in the range-azimuth domain. As was 
shown in Figure 2.33, the reduction of the representation domain to two 
dimensions leads to a cylindrical ambiguity: for a given position in azimuth ݔ଴, there is an infinity of coordinates ݕ,  leading to the same focusing ݖ
position in range ݎଵ = ඥ(ܪ − ଶ(ݖ +   .ଶݕ

Measured εr values Estimated εr values

High values Low values
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                                     a)                                                              b) 

 

 
c) 

Figure 2.33. Principle of the estimation of a scatterer position in elevation using  
coherent spatial diversity: a) the location P is the only intersection solution  

for circles with ݎଵ and ݎଶ; b) representation of the signals acquired by each sensor 
before and after co-registration in relation to a reference point Pref 

Spatial diversity is set up with a second measurement taken from a 
slightly different position, parameterized by a distance, the baseline B, and  
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an orientation angle ߙ. The imaged scatterer position ݕ଴,  ଴ is then given byݖ
the intersection of two circles, whose radiuses, ݎଵ and ݎଶ, must be measured 
with high accuracy. From the expression of the focused response of a point-
like scatterer, given by: ݏ௜(ݔ଴, (௜ݎ = ܽ௖೔݁ି௝௞೎௥೔ℎ௔௥(0, ௜ݎ − (଴ݎ = |ܽ௖೔|ℎ௔௥(0, ௜ݎ −  ଴)݁௝(క೔ି௞೎௥೔) [2.71]ݎ
with ߦ௜ = arg (ܽ௖೔)   

we note that the radiuses ݎ௜ can be incoherently measured, by 
radargrammetry using |ݏ௜(ݔ଴, ,଴ݔ)௜ݏ) ݃ݎܽ ௜)|, or coherently measured by usingݎ  ௜)) through interferometry. As shown in Figure 2.34, theݎ
selection of a method depends on various factors and in particular on the 
amplitude of the shifts generated by the scene topography. These shifts may 
be measured by synchronizing the two images on an arbitrary geometry, 
during a “co-registration” phase: image 2, called “slave”, is resampled so 
that each of its pixels corresponds, for a nominal scene geometry, to its 
equivalent in image 1, called “master”. Once the images are synchronized, 
the appearance of a shift indicates that the real scene geometry is different 
from the one used to co-register the images. Radargrammetry, suitable for 
large shifts, estimates ݎ߂ଵଶ = ଵݎ −  ଶ with an accuracy similar to the rangeݎ
resolution ݎߜ, whereas interferometry, suitable for the estimation of small 
shifts, has an accuracy in the range of ߣ௖ ≪  Assuming a perfect speckle .ݎߜ
correlation between the two SAR measurements, the interferometric phase 
difference, or interferogram, is given by: 

if ߦଵ = ଶ, then Δ߶ଵଶߦ = (∗ଶݏଵݏ)݃ݎܽ =  −݇௖ݎ߂ଵଶ [2.72]  

As shown in Figure 2.34b, that phase term can be approximated, by a 
locally plane wave, if ݎଵ ≫ by [BAM 98]; as: Δ߶ଵଶ ,ܤ =  −݇௖ݎ߂ଵଶ ≈ −݇௖ܤ ߠ)݊݅ݏ − (ߙ =  −݇௖[2.73] ∥ܤ  

We then see in [2.73] that ߂߶ଵଶ is indeed linked to the scene topography,  
h, through ߠ = acos ቀுି௛௥భ ቁ, but also depends on the considered range 
position ݎଵ (Figure 2.35).  
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                                        a)                                                        b) 

Figure 2.34. a) Parameterization of the relative positions of measurements  
in InSAR configuration in a Cartesian (ܤ௛, ,ܤ) ௩), polarܤ ,∥ܤ) or wave ,(ߙ  (ୄܤ

coordinate system; b) illustration of a locally plane wave approximation 

 

Figure 2.35. Illustration of the dependence of ݎ߂ଵଶ on  
a variation of the position in elevation ߂ℎ or in range ݎ߂  

Those two behaviors can be separated by means of a linearization, valid 
in the neighborhood of a reference point with coordinate (ݎ଴భ, ଵଶ߶߂߂ :଴) [FER 07]ݖ = ଵଶ߶߂ − ଵଶ଴߶߂ ≈ ௧௢௣௢߶߂߂  + ௙௘߶߂߂ = ݇௭଴ℎ௥௘௟ +  ݇௙௘ݎ௥௘௟ [2.74]  
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where ߂߂߶௧௢௣௢ represents the increase of the topographic component of ߂߶ଵଶ, sensitive to an elevation variation ℎ௥௘௟ = ݖ −  ଴ relative to the one ofݖ
the reference point, and ߂߂߶௙௘ is the “flat earth” component, which takes 
into account the variation of ݎ߂ଵଶ with ݎ௥௘௟ = ଵݎ − ଴భݎ  for a site with a flat 
topography. The height-to-phase conversion coefficients ݇௭బ  and ݇௙௘ are 
determined by the acquisition geometry, as: ݇௭଴ = −݇௖ ஻఼௥బభ௦௜௡ఏబభ and ݇௙௘ = −݇௖ ஻఼௥బభ௧௔௡ ఏబభ [2.75]  

where ߠ଴ଵ and ୄܤ, respectively, represent the incidence angle and the 
orthogonal baseline, in the image co-registration geometry, at the considered 
reference point. The relative topographic component of an interferogram can 
then be obtained through the simple compensation of the flat earth 
component. Before converting the phase measured in height using [2.74], the 
topographic phase, generally needs to be unwrapped, since ݇௭଴ℎ௥௘௟, can only 
be measured on a reduced domain, with – ߨ ≤ ଵଶ߶߂߂ <  The elevation .ߨ
domain that can be measured without phase aliasing is called the ambiguous 
height or the height ambiguity, and is given by ℎ௔௠௕ = మഏ|ೖ೥| = మഏೝబభೞ೔೙ഇబభೖ೎ಳ఼ . For 
relative elevations superior to ℎ௔௠௕, the estimation of the scene topography 
from the interferometric phase requires the developement of a phase 
unwrapping procedure, whose principle is illustrated in Figure 2.36  
[FER 07]. 

An example of interferometric SAR data processing chain is given in 
Figure 2.37. 

2.3.2. Polarimetric SAR interferometry 

Similarly to the case of polarimetric data, the practical estimation of the 
interferometric phase information requires the use of second order moments 
through the covariance matrix that can be expressed from ࢙ =  :as ்[ଶݏଵݏ]

۱ = E(࢙࢙ு) = ቈඥܫଵ 00 ඥܫଶ቉ ൤ 1 ∗ߛߛ 1൨ ቈඥܫଵ 00 ඥܫଶ቉ with ߛ =   ௝థ [2.76]݁|ߛ|

where ߛ is called the interferometric coherence and is a quality indicator of 
the interferometric phase. It may be shown this coherence can be written 
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under the form of a product of various components, associated with 
decorrelation sources, as: ߛ = |ߛ| ௭ withߛ௦௨௥௙ߛ௧௘௠௣ߛ௣௥௢௖ߛௌேோߛ ≤ min (|ߛ௜|) [2.77]  

where the different terms, respectively, represent the action of the 
signal/noise ratio (SNR), of the focusing processing errors, of the scene 
reflectivity density variations between the two measurements, of the scene 
geometry and, finally, of the reflectivity density distribution in the vertical 
direction. The interferometric coherence notion is illustrated in Figure 2.38. 

 

Figure 2.36. a) Principle of interferometric phase unwrapping in 1D; b) wrapped 
interferometric phase measured during the SIR-C XSAR campaign, a color cycle 

corresponds to a phase cycle from −ߨ to +ߨ; c) unwrapped phase.  
For a color version of this figure, see www.iste.co.uk/baghdadi/2.zip 
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Figure 2.37. Digital elevation model (DEM) generation of a SAR processing chain:  
a) formation of the interferogram; b) compensation of the flat earth phase; c) 2D 
phase unwrapping; d) phase to height conversion before geo-codification. For a color 
version of this figure, see www.iste.co.uk/baghdadi/2.zip 

 

Figure 2.38. Illustration of the interferometric coherence over the Oberpfaffenhofen 
site, observed at VV polarization and in L-band by the DLR/ESAR sensor, with 
indications of the dominant decorrelation phenomena: a) intensity image; b) |ߛ| after 
1 h and with ܤ = 20 ݉; c) |ߛ| after 1 year and with ܤ = 0 ݉ 
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Assuming that the other components of ߛ listed in [2.77] can be 
compensated and coherence can be used to measure the geophysical 
properties of a volume, through the expression [BAM 98, TRE 99, TRE 00]: ߛ௭ = ׬ ௙(௭)௘ೕೖ೥೥ ௗ௭׬ ௙(௭) ௗ௭  [2.78]  

with ݂(ݖ) = E(ܽ௖భ(ݖ)ܽ௖మ∗  .the elevation reflectivity density in elevation ,((ݖ)
Figure 2.39 shows a description of a canonical volume environment often 
used in radar, called Random Volume Over Ground (RVOG), composed of 
ground with a reflectivity density ௚݂(ݖ) = ݖ)ߜ௚ܫ − -௚) and a semiݖ
transparent volume with a reflectivity density ௩݂(ݖ), with ׬ ௩݂(ݖ) ݀ݖ =   .௩ܫ

 

Figure 2.39. Geometric configuration of the RVOG model and  
associated reflectivity distributions. For a color version of this  

figure, see www.iste.co.uk/baghdadi/2.zip 

Figure 2.40 shows the evolution of ߛ௩, the coherence of the volume term 
obtained by replacing ݂(ݖ) with ௩݂(ݖ) in [2.78], for different volume 
characteristics: in case of a constant extinction volume, it is possible, for a 
given extinction value (݇௘), to estimate the vertical extent and the volume 
average elevation.  

In practice, the reflectivity density is composed of the ground and volume 
responses, and the measured coherence is written [CLO 98, CLO 03,  
PAP 01]: ݂(ݖ) = ௚݂(ݖ) + ௩݂(ݖ) ⇒ ௭ߛ = ఊೡାఓ௘ೕೖ೥೥೒ଵାఓ  with ߤ = ூ೒ூೡ [2.79]  

where ߤ, the intensity ratio of the ground and volume responses, or Ground 
to Volume Ratio, is a priori unknown, which prevents any reliable  
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estimation of the volume characteristics. By means of a formalism not 
presented here, it is possible using polarimetric measurements taken from 
slightly different positions, to synthesize an interferometric coherence for an 
arbitrary polarization state (ܟ)ߛ ,ܟ, which, assuming a volume with an 
extinction independent from the polarization state of the wave going through 
it, may be written as: ߛ௭(ܟ) = ఊೡାఓ(࢝) ௘ೕೖ೥೥೒ଵାఓ(࢝)  =(1 − ௩ߛ((࢝)ܮ +  ௝௞೥௭೒݁(࢝)ܮ

with ܮ(࢝) = ఓ(࢝)ଵାఓ(࢝) [2.80]  

where only (ܟ)ߤ or ܮ(࢝) depend on polarization [CLO 98, CLO 03,  
PAP 01]. We note from [2.80] that coherences obtained for different 
polarization states show varying phase and correlation values, which depend 
on the proportion of the ground and volume responses for the considered 
polarization state. There then is a polarization state close to the ground 
response for which (ܟ)ߤ is maximum, and  ߛ௭(࢝) → ௚ߛ = ݁௝௞೥௭೒ and 
another one for which (ܟ)ߤ is minimum and ߛ௭(࢝) →  ௩௢௟. This type ofߛ
relationship results in a coherence which describes, when it is calculated for 
arbitrary values of ܟ, a line segment in the complex plane, shown in  
Figure 2.41. Generally, despite the fact that ݉ܽ࢝ݔ൫ߤ(࢝)൯ <  ௚ canݖ ,∞+ 
still be estimated  through the extrapolation of the line segment up to the unit 
radius circle, that is up to ߛ௚ = ݁௝௞೥௭೒ [CLO 98, CLO 03, PAP 01]. As an 
example, a result obtained by PolinSAR is shown in Figure 2.42. 

 

Figure 2.40. Characteristics of the interferometric coherence for a nulll ground 
response, ߛ௭ = ,௩௢௟ߛ ௭݇ ݎ݋݂ = 0.2 and for a constant extinction volume. For a color 

version of this figure, see www.iste.co.uk/baghdadi/2.zip 
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                                             a)                                                 b) 

Figure 2.41. a) Idealized representation of the phase centers obtained  
in an environment of the RVOG type for different polarization channels;  

b) geometric location followed by ߛ௭(࢝), the segment extrapolation allows  
us to estimate ߶଴ = ߶௚ with ߤ(࢝) <  +∞ 

 

 

Figure 2.42. Estimation of forest height results over the Oberpfaffenhofen site, 
measured in L-band by the DLR/ESAR sensor. Results derived from [PAP 01].  

For a color version of this figure, see www.iste.co.uk/baghdadi/2.zip  
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2.3.3. Differential SAR interferometry 

The principle of differential SAR interferometry [FER 01a, GAB 89, 
MAS 93, ZEB 94], illustrated in Figure 2.43, is particularly simple: a 
displacement of the area observed occurring between the two SAR 
measurements of an interferometric pair, results in a phase anomaly, adding 
to the flat earth or topographic components, and which makes it possible to 
very accurately measure a topographic deformation. In fact, for a scatterer 
whose range position changes by Δݎ between the acquisitions, the 
interferometric phase is written, after compensating the flat earth term, as: ߂߂߶ଵଶ = ௧௢௣௢߶߂߂ + ௗ௜௦௣௟߶߂߂ = ݇௭଴ℎ௥௘௟ +  ݇௖Δ[2.81] ݎ  

The phase measured can be compensated from its topographic 
component, through a differential approach using data previously measured 
or through simulation from a DEM, to isolate the term linked to the ground 
displacement, ߂߂߶ௗ௜௦௣௟ =  ݇௖Δݎ.  

On the one hand, we note the extreme accuracy of that type of 
measurement, whose ambiguous displacement is given by Δݎ௔௠௕ = ఒ೎ଶ , and 
on the other hand, the independence of that measurement with respect to the 
used baseline. 

 

Figure 2.43. Ground deformation measurement principle using  
 differential SAR interferometry. For a color version of this figure, 

 see www.iste.co.uk/baghdadi/2.zip 
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The combination of this type of approach with the permanent scatterer 
technique allows us to measure displacements ranging from a few mm/year 
on very long periods, as shown in Figure 2.44. 

 

Figure 2.44. Differential a) and c) measured interferograms; b) and  
d) modelized on Mount Etna, Italy, for a series of images acquired in  

C-band by ERS-1 [MAS 95]. For a color version of this figure, see 
www.iste.co.uk/baghdadi/2.zip  

Differential SAR interferometry is one of the most popular SAR imaging 
disciplines, due to its very close link with the physical evolution of an 
environment and its unique aptitude for mapping, on a large scale and at low 
price, ground movements with extreme accuracy. There are numerous 
applications of this technique, in particular in the geosciences and 
geophysics fields; two famous illustrations are shown in Figure 2.45. 

The main limitations to the development of differential SAR 
interferometry concern the management of scene variations observed  
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and of the propagation conditions. Changes in the effective propagation 
speed of SAR signals in the atmosphere creates phase patterns, called phase 
screens, which can be wrongly interpreted as displacements. Scene 
variations over time create a reduction of the interferometric coherence, 
which, over the span of several years, can reach values for which the 
interferometric phase cannot be interpreted. A technique based on the 
characteristics of some point-like scatterers that remain coherent over time, 
permanent scatterers (PS), has made it possible to overcome those 
limitations on urban areas [FER 01a, FER 07], as illustrated in Figure 2.46. 

 

Figure 2.45. Illustration of the application differential SAR interferometry in C-band in 
geophysics. a) “Breathing” time deformation visualization of the Galápagos island 
volcanoes, Equator (each fringe corresponds to a 5 cm radial displacement)  
[AME 00]; b) differential interferogram caused by the Hector mine earthquake, United 
States (each fringe corresponds to a 2.8 cm radial displacement) [ZEB 99]. For a 
color version of this figure, see www.iste.co.uk/baghdadi/2.zip  

a) 

b) 



136     Microwave Remote Sensing of Land Surfaces 

 

Figure 2.46. Map of subsidence established over the city of Pisa, Italy, by means  
of 45 ERS images. Result made available by the SAR group of Politecnico di  

Milano, Italy. For a color version of this figure, see www.iste.co.uk/baghdadi/2.zip 

2.3.4. SAR tomography 

SAR tomography is the generalization of SAR imaging to 3D focusing, 
which uses an azimuth and elevation bi-dimensional synthetic aperture 
combined with a 3D adapted filter. The configuration of a topographic 
measurement given in Figure 2.47 shows that, in practice, we use a set of N 
images, with ܰ ≪ ௣ܰ and ௣ܰ the number of pulses acquired during a single 
measurement, measured in interferometric mode along parallel trajectories.  

Those N images can also be coherently combined by means of the back-
projection algorithm, for example, to synthesize an elevation aperture and to 
form a 3D image, whose elevation resolution is given, for a set of N images 
arranged as a uniform linear network, by ݖߜ = ௛ೌ೘್ே , with ℎ௔௠௕ = ଶగ|ௗ௞೥|, and ݀݇௭ = ݇௭೔శభ − ݇௭೔, proportional to the baseline difference of the two 
consecutive measurements of the elevation network. Since the vertical 
resolution is sometimes insufficient, techniques with better performances 
than the Fourier approach may be used, i.e. the adapted filter approach may  
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be used, in terms of resolution, at the expense of the SNR in general  
[GIN 05, GUI 05, HUA 11a, SAU 11]. For this, a covariance matrix ܀ ∈ ℂே×ே, is formed as ܀(݅, ݆) =  :௜௝, withߛܫ

௜௝ߛ = ׬ ௙(௭)௘ೕ(ೖ೥ೕషೖ೥೔)೥ ௗ௭׬ ௙(௭) ௗ௭  [2.82]  

 

Figure 2.47. a) Configuration of an N image tomographic SAR measurement;  
b) illustration of the resolving power over volume contributions in the vertical  

direction. For a color version of this figure, see www.iste.co.uk/baghdadi/2.zip 

The estimation of ݂(ݖ), the elevation reflectivity density, defined in 
[2.79], from ܀ is similar to a spectral analysis problem for which there exists  
a large variety of solutions. A synopsis of the tomographic SAR processing 
chain is given in Figure 2.48. 

The reflectivity profile estimated by tomography, ܲ(ݖ) = መ݂(ݖ), can then 
be used to estimate geophysical characteristics of the observed 
environments, directly or through 3D EM scattering models. Like in the case 
of interferometric data, that type of spatial approach can be combined with a 
polarization diversity, which allows us, as shown by the works in [TEB 09, 
TEB 10], to automatically separate the ground and volume responses, 
through the technique called Sum of Kronecker Products (SKP) 
decomposition. Following the pioneering work conducted in [REI 00], 
numerous SAR tomography applications were carried out, for which  
Figures 2.49–2.52 show arbitrarily sampled results. 

SAR resolution cell
TomSAR resolution cell
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Figure 2.48. Synopsis of the tomographic SAR processing chain using  
coherent N SAR images to estimate an elevation reflectivity profile P(z).  

Example of application on very high resolution tomographic SAR data of a snow 
cover. For a color version of this figure, see www.iste.co.uk/baghdadi/2.zip 

 
                          a)                                                b) 

Figure 2.49. 3D reconstruction of the urban area of the city of Dresde, Germany, 
using intermediate resolution of the polarimetric SAR data in L-band for a minimum 
number of images (N=3) [HUA 09, FER 15]; a) illustration of the vertical resolution 
gain provided by some spectral analysis techniques; b) comparison of the results 
obtained on a group of buildings with a LiDAR profile. For a color version of this 
figure, see www.iste.co.uk/baghdadi/2.zip 
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Figure 2.50. Suggested 3D reconstruction [SHA 12] of a facade by means of two 
sets of very high resolution TerraSAR-X data each of 25 images: a) 3D position of 

the detected scatterers; b) 3D reconstruction of the intensity profile. For a color 
version of this figure, see www.iste.co.uk/baghdadi/2.zip 

 
                             a)                                                  b) 
Figure 2.51. Characterization of a tropical forest using polarimetric SAR tomography 
in P-band using ONERA/SETHI data [HUA 11b, FERRO 15]; a) PolSAR 2D image 
and tomographic profile reconstructed HH polarization; b) comparison of the 
tomographic and LiDAR estimates of the altitude of the tree tops (Ztop) and of the 
underlying ground height (Zground), on the whole site. For a color version of this 
figure, see www.iste.co.uk/baghdadi/2.zip 

 

Figure 2.52. Illustration of the SKP approximation capacity presented in [TEB 09, 
TEB 10, TEB 12] to separate the underlying ground and volume contributions 
through the analysis of PolTomSAR data. Case of an image of a boreal forest in the 
L and P-bands. Images made available by S. Tebaldini. For a color version of this 
figure, see www.iste.co.uk/baghdadi/2.zip 
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2.4. Key points  

The use of coherent diversity modes makes it possible to significantly 
increase the characterization capacities provided by classic SAR imaging. In 
fact, the 2D electromagnetic reflectivity of environments alone can seem 
limited to further characterize realistic objects with complex or volumetric 
structure. The two most used modes to improve SAR imaging performances 
implement a polarization diversity for the polarimetric mode, or a space 
diversity for interferometric imaging. Measuring the response of an object in a 
polarization basis gives information on some of its intrinsic geophysical 
properties, whereas interferometry allows us to measure the topography of 
environments, and its multi-acquisition version, or tomography, allows us to 
estimate the reflectivity of complex environments and to separate the 
contributions from scatterers located at different altitudes. The use of those 
diversity modes requires the extension of statistical representations and 
speckle filtering procedures to the case of N–D data, with ܰ = 2 in inSAR, ܰ ≥ 3 for SAR tomography and 2 ≤  ܰ ≤ 4 for polarimetric measurements. 
The processing and the interpretation of those different types of data require 
signal processing procedures, specific to each mode, such as polarimetric 
decomposition, interferometric compensation or tomographic focusing 
techniques.  

SAR polarimetry makes it possible to differentiate the environments 
observed according to their EM scattering mechanism, by estimating some of 
their key parameters, like their structure, orientation, moisture or roughness. 
Space borne SAR interferometry allows us to map the planet with a global 
accuracy never achieved before, and the use of a differential mode gives us 
access to the measurement of field displacements ranging from a few 
millimeters per year. SAR tomography aims to image semi-opaque complex 
volume environments and has resulted in significant progress in characterizing 
complex environments, whose study by means of 2D images is ill-
conditioned. We note that those different diversity modes can be combined for 
a better characterization of environments, and that their implementation within 
the context of space borne measurement is either already operational, or under 
study for the tomographic mode. 
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