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‘ Whatis Artificial Intelligence?

@® Technology that enables computers and machines to simulate human
intelligence and problem-solving capabilities

Artificial
Machine

@ Catchy term coined in 1956 by John McCarthy (developed of the Lisp Intelligence M
earning

family of programming languages)

Symbolic
Al

@ Funding fathers: Alan Turing, John McCarthy, Marvin Minksy, Nathaniel
Rochester, Claude Shannon

@ Several sub-fields:
O Symbolic Al
O Large Language Models (LLMs)
O Machine learning
O Pattern recognition
O

Deep learning
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‘ Whatis Deep Learning?

® A method in artificial intelligence (Al) that teaches computers
to process data in a way that is inspired by the human brain

@ Deep learning models can recognize complex patterns in
pictures, text, sounds, and other data to produce accurate
insights and predictions
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Pixels of image fed as input

Input Layer

Output Layer

Hidden Layers

Convolutional Neural Networks architecture (example)
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‘ Fire monitoring tools/sensors

@ A variety of available remote sensing

data:

@)

Multispectral and hyperspectral

optical sensors, recording (except
for the visible) the non-visible part

of the sun’s electromagnetic

spectrum
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‘ Fire monitoring tools/sensors

Li@h’r Detection And Kanglng

@ A variety of available remote sensing
data:

o  Point clouds derived from

Unmanned Aerial Vehicles systems
(UAV — UAS — drones) and active
LiDAR sensors
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‘ Fire monitoring tools/sensors

@ A variety of available remote sensing
data:

o Cameras & video devices on
terrestrial sensors or droned
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‘ Fire monitoring tools/sensors

@ A variety of available remote sensing
data:

o  Satellite Synthetic Aperture Radar
(SAR), providing vegetation height
and vertical structure
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‘ Artificial Intelligence tools

@® The volume, the acquisition frequency and
the high-resolution characterizing these data
pose problems in their analysis

@® Need for automated “artificial intelligence”
processes:

O Machine learning
O Pattern recognition
O Statistical models

O  Deep learning
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‘ Fuel types/models mapping

®

Forest fuels: Any living or dead organic matter

available for combustion.

Fuel types: They describe the physical

characteristics of fuels that exhibit specific
combustion behaviour under specified fire

conditions.

Fuel models: Numerical description of fuel

types.
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Stefanidou, A.; Z. Gitas, I;
https:

‘ Estimation of fuel properties
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+¢* Use of LiDAR data and
machine learning models for
surface fuel load estimation

Korhonen, L.; Georgopoulos, N.; Stavrakoudis, D. Multispectral LiDAR-Based Estimation of Surface Fuel Load in a Dense Coniferous Forest. Remote Sens. 2020, 12, 3333.
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‘ Point Cloud Segmentation for Fuel Type

Classification

Point cloud (LiDAR, RGB,...)

— Voxelization

Fuel (canopy, bark, understory,
shrub, etc.) & buildings classific
ation via Graph Convolutional
Networks (e.g., Zhang et al.,
2023)

1 B Trunk
't B Ground

£ | B | caf
o > Il Bush

https://doi.org/10.3390/rs15194793
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WUI mapping using UAV point clouds

>

)

L)

» Fuel mapping in WUI (Wildland
Urban Interface) areas

L)

» Use of point clouds derived from very
high-resolution aerial photos
acquired by UAVs

L)

L)

L)

* 3D vegetation representation

L)

L)

* Use of contemporary deep learning
techniques (i.e., graph convolutional
neural networks) for the detailed
vegetation and residential buildings

mapping

13
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‘ WUI mapping using UAV/LIDAR point clouds

** Use of LiDAR or/and UAV data for the
detection of endangered areas due
to power lines crossing.

s* Automated methodology based on Al
(Artificial Intelligence) algorithms

¢ ldentification of areas for clearing.

Source: Matikainen, L.; Lehtomaki, M.; Ahokas, E.; Hyyppa, J.; Karjalainen, M.; Jaakkola, A.;
Kukko, A.; Heinonen, T. Remote Sensing Methods for Power Line Corridor Surveys. ISPRS J.

& 14
Photogramm. Remote Sens. 2016, 119, 10-31, doi:10.1016 /j.isprsjprs.2016.04.011.
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‘ Burned Area Mapping using Deep Learning

(a) Zambia (17.3°S_27.3'E)  (b) Ethiopia (10.4°N, 37.1°E) Madagascar (22.3°S, 44.6°E)
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Algorithm architecture

B Correct ] Omission Commission

Examples of burned area classification results

Source: Martins VS, Roy DP, Huang H, Boschetti L, Zhang HK, Yan L. 2022. Deep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope. Remote 16
Sensing of Environment. 280:113203. https://doi.org/10.1016/j.rse.2022.113203




TAT-11: Earth Observation and Machine Learning for Disaster Mapping, 14-17 July 2024, CIHEAM Chania

‘ Fire Danger Prediction using Deep Learning

108°50E 109°10E 109°20E 109°30'E
10 20

- Kil 1
Forest fire s

/Forest fire locaticV
/Ievation (m)

Very Low
% Low
#§ High
Very High

AT OSY
Bk

WY
) ’ § " 7

PO0OBOOLSe

990999000000
99909900000

A X 4
X7 3/ NI AR N PETREON =
: o TAENI U DR 55 3 Non-forest
Relative humidiy (% L NN 7B fire class
X /NN
ZRON
2o
Rainfall (mm) >
‘ Forest fire Iocatio;'l
Lanuse/landcover : .
108°40'E 108°650'E 109°0'E 109°10'E 109°20'E 109°30'E
Source: Truong TX, Nhu V-H, Phuong DTN, Nghi LT, Hung NN, Hoa PV, Bui DT. 2023. A New Approach Based on TensorFlow Deep Neural Networks with ADAM Optimizer and GIS for Spatial 17

Prediction of Forest Fire Danger in Tropical Areas. Remote Sensing. 15(14):3458. https://doi.org/10.3390/rs15143458
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Fire Susceptibility Mapping
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TAT-11: Earth Observation and Machine Learning for Disaster Mapping, 14-17 July 2024, CIHEAM Chania

Wildfire Progression Monitoring using
Deep Learning

——Pre-fire Time Series—» ——On-going Time Series—» Available Dates
”~

Current Date

’_|_|— Unseen Dates

Orbit-1
Orbit-2

Select prefire master “ \ master

available dates For each orbit /\

Binary logRt Map

Compute StdDev map for ench orbit

~5amplhing | gocanase Pseudo Labels Burn
) Train Confidence
o
: dict u
Tes
| EM ll’rogucts
elevation, slope & aspect
Burn Map

Example of Sentinel-1 based wildfire progression maps

Source: BanY, Zhang P, Nascetti A, Bevington AR, Wulder MA. 2020. Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning. Sci Rep. 10(1):1322
https://doi.org/10.1038/s41598-019-56967-x
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‘ Fire Detection using Deep Learning

= | 5@

1. Resize image.
2. Run convolutional networks.
3 Non-max suppression.

Cutput

Deep outputs: bbox

ConvNet softmax  regressor
Rol
pooling P —FC
laver

Rol
projection

Rol feature vector

Conv
feature map

Algorithms’ architecture
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Source: https://www.slideshare.net/slideshow/fire-detection-using-deep-learning-methods/265111168 Fire & smoke detection
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‘ Fire Detection using Deep Learning

Convolutional neural network
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Diagrams of fire detection algorithms based on the four CNNs.
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Source: Li P, Zhao W. 2020. Image fire detection algorithms based on convolutional neural networks. Case Studies in Thermal Engineering. 19:100625. https://doi.org/10.1016/j.csite.2020.100625
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‘ Fire smoke detection

@® Automated smoke detection
through static cameras and
image analysis algorithms —
early warning

@ Use of Neural Networks
(Attention Enhanced
Bidirectional Long Short-Term
Memory Network — ABi-LSTM)

23

Cao, Y,; Yang, F.; Tang, Q.; Lu, X. An Attention Enhanced Bidirectional LSTM for Early Forest Fire Smoke Recognition. IEEE Access 2019, 7, 154732-154742, d0i:10.1109 /ACCESS.2019.2946712.
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Fire smoke detection

Source: https://www.embention.com/news/drones-against-forest-fires/
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Situational Reach difficult Thermal Search and
awareness places assessment rescue

Source: https://www.flytbase.com/blog/drone-fire-fighting
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