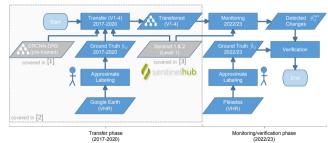
/SB TECHNICAL | IT4INNOVATIONS ||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

Monitoring of Urban Changes with Sentinel 1 and 2 Data in Mariupol, Ukraine, in 2022/23

Georg Zitzlsberger

georg@zitzlsberger.com

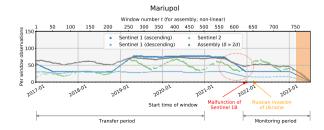
06-02-2024

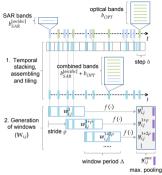


EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Objectives

- Multi-modal Sentinel 1 and Sentinel 2 observations to be used together (both level 1) for high temporal resolution
- Demonstration of the combination of recent works for monitoring urban changes in Mariupol, Ukraine:

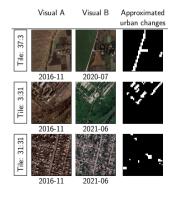


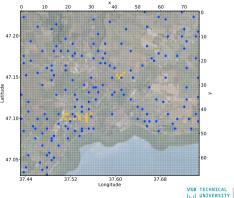

All covered in [4]

- Analysis of how the malfunction of Sentinel 1B (23 December 2021) influences the monitoring performance
- Showcasing the methods for a disaster event (Russo-Ukrainian war)

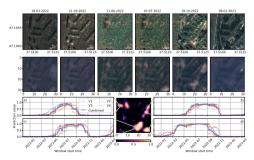
Data Processing

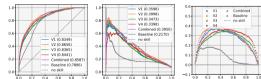
- ▶ The *rsdtlib* [3] tool was used to...
 - retrieve Sentinel 1 and Sentinel 2 data from SentinelHub
 - process data to windowed time series (with stacking, assembling, and tiling)
- Two periods were considered:
 - Transfer period (2017-2020) for transfer learning to the region of Mariupol, Ukraine
 - Monitoring period (November 2021 and later)





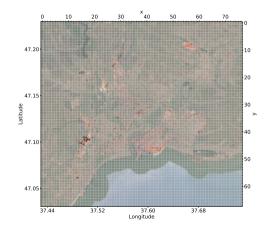
Transfer


- \blacktriangleright Selection of 164 tiles (training + validation) and label with a change map for 2017-2020
- Balanced representation of changes: favor diverse changes of smaller extent
- ▶ Labeling was accomplished with freely available Google Earth[™] historic imagery
- ▶ Applied transfer learning on pre-trained model from [1] (multiple times)



Monitoring

- ▶ Applied the transferred model(s) to the present (November 2021 and following)
- Airbus Pléiades has been used for validation since recent Google Earth imagery was not available at the time of the project
- ▶ With an uncertainty of half a year, the changes are localizable over time
- ▶ The malfunction of Sentinel 1B did not overly impact our method



ROC (left) and PR (middle) curves; Cohen's Kappa is shown for different thresholds (right). Area under the ROC/PR curves are in parenthesis.

Example

The monitoring applied to the time frame November 2021 to mid 2023 is shown below. Changes are highlighted in red (superimposed over a static image from 2019 for reference) and are a maximum over every window's inference.

PERCOMPLITING 6/7

References

- Georg Zitzlsberger, Michal Podhorányi, Václav Svato, et al. "Neural Network-Based Urban Change Monitoring with Deep-Temporal Multispectral and SAR Remote Sensing Data". In: Remote Sensing 13.15 (2021). ISSN: 2072-4292. DOI: 10.3390/rs13153000. URL: https://www.mdpi.com/2072-4292/13/15/3000.
- [2] Georg Zitzlsberger, Michal Podhoranyi, and Jan Martinovic. "A Practically Feasible Transfer Learning Method for Deep-Temporal Urban Change Monitoring". In: International Journal of Remote Sensing (2023). DOI: 10.1080/01431161.2023.2243021.
- [3] Georg Zitzlsberger, Michal Podhoranyi, and Jan Martinovi. "rsdtlib: Remote sensing with deep-temporal data library". In: SoftwareX 22 (2023), p. 101369. ISSN: 2352-7110. DOI: https://doi.org/10.1016/j.softx.2023.101369. URL: https://www.sciencedirect.com/science/article/pii/S2352711023000651.
- [4] Georg Zitzlsberger and Michal Podhoranyi. "Monitoring of Urban Changes With Multimodal Sentinel 1 and 2 Data in Mariupol, Ukraine, in 2022/23". In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 17 (2024), pp. 5245–5265. DOI: 10.1109/JSTARS.2024.3362688.

The project is hosted on Cittub. See for the trained models, data, videos, etc.

Acknowledgments

This research was funded by the Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPS II) project IT4Innovations excellence in science - LQ1602 and by the IT4Innovations Infrastructure, which is supported by the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:90140), and via the Open Access Grant Competition (OPEN-25-24 and OPEN-27-1). This work was also supported by ESA Network of Resources Initiative (ID:2923ca) to provide access to Sentinel Hub, and Airbus Pleiades.

We also would like to thank CESNET Meta Centrum for providing us access to a DGX H100 node.

IT4Innovations National Supercomputing Center

VŠB – Technical University of Ostrava Studentská 6231/1B 708 00 Ostrava-Poruba, Czech Republic www.it4i.cz VSB TECHNICAL | IT4INNOVATIONS ||||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

