Tensor Network applications to quantum computing

Ilaria Siloi

Dipartimento di Fisica e Astronomia, Universita' di Padova Quantum Computing and Simulation Center

Esa ESRIN, October 12th

Dipartimento di Fisica e Astronomia Galileo Galilei

Quantum Circuit

Digital quantum simulation Variational Circuits

https://baltig.infn.it/quantum_tea

Ground state search & time evolution Many Body systems

Digital Twin

Hard-Optimization problems

Quantum Circuit

Emulator

https://baltig.infn.it/quantum_tea

Digital quantum simulation Variational Circuits

Ground state search time evolution Many Body systems

Hard-Optimization problems

Quantum hardware

Image compression through SVD

Entanglement and compression

By considering only the highest χ Schmidt values we perform the BEST approximation in terms of entanglement

Quantum circuit emulator

Memory requirements

$O(2^n) \rightarrow O(2n\chi^2)$

MPS SIMULATIONS ARE TED BY THE NUMBER OF OUBITS BUT

- MPS: efficient representation of the state
- Simulation of quantum circuits: gates are applied as matrices
- Measurement of local observables
- Efficient sampling of the final state

Benchmarking quantum algorithms

https://baltig.infn.it/quantum_matcha_tea

Entanglement generation in QNN

Digital quantum simulation: 2D Fermi-Hubbard

Computational qubits

LATTICE

- 1D —> Jordan-Wigner (local)
- $2D \rightarrow Jordan-Wigner$ (non local)

Other methods: gauge defermionization

napping Fermions to Fermion pa our Hopping Stabilizer

Spin-charge separation over a 4x2 lattice

Vijayan et al., Science 367, 186–189 (2020)

qubit ratio	3	
rity weight	1	Ι
weight	6	
r weight	6	

Digital quantum simulation

GROUND STATE \bigcirc PREPARATION

- GS @ t=0.1, U=1 (repulsive), half-filling (Insulating regime)
- ADIABATIC PREPARATION

Slowly turning on hopping part $H = (1 - \beta)H_0 + \beta H_1$

$$H_0 = H_{Hubb}(t = 0)$$
$$H_1 = H_{Hubb}$$

- Check local spin S_i^z and charge n_i are stationary

TIME EVOLUTION

- Trotterization of the evolution operator;
- Bond dimension 1024
- Measuring local observables;
- Charge deviation from initial conditions: $N_{i}(\tau) = \langle n_{\uparrow,i} \rangle(\tau) + \langle n_{\downarrow,i} \rangle(\tau)$
- Spin deviation from initial conditions:

 $S_i^2(\tau) = \langle n_{\uparrow,i} \rangle(\tau) + \langle n_{\downarrow,i} \rangle(\tau) - 2 \langle n_{\uparrow,i} n_{\downarrow,i} \rangle(\tau)$

Spin-charge separation

M. Ballarin, G. Cataldi, G. Magnifico, D. Jascke, IS, S. Montangero, P. Sllvi, to be submitted (2023)

Variational Circuits

https://baltig.infn.it/quantum_tea

Ground state search & time evolution Many Body systems

Digital Twin

Hard-Optimization problems

Digital twin for Rydberg QPU

Legend:

GOAL

- Gain insights on quantum hardware for QPU development
- Large scale simulation to support the next lacksquaredecades of hardware developments

QUESTION Quantify crosstalk between CZ gates executed in parallel during the preparation of a global GHZ state in an 8x8 Rydberg array

Find minimal distance r_g required between CZ gates in parallel to have crosstalk negligible (I~10^(-3))

> $F = \left| \langle \psi(\tau) | \psi_{\text{GHZ}} \rangle \right|^2$ I = 1 - F

Mission planning for earth observation

14

Closest Vector Problem

$$\hat{\mathscr{H}} = \left\| \vec{t} - \sum_{k=1}^{n} \hat{x}_{k} \vec{d}_{k} - \vec{b}_{op} \right\|^{2} + h_{i} \sigma_{i}^{x}$$
III-to-all Ising like Hamiltonian small perturbation
n=#qubits=lattice size $n \approx \frac{\log_{2} N}{\log_{2} \log_{2} N}$
TTN ground state search

Schnorr's lattice sieving

• An integer N and prime factoring basis define a family of CVP problems:

$$(p^{(1)}, p^{(2)}, p^{(3)}, \dots, p^{(m)})$$

Approximated solutions of CVPs provide congruence relations for factorization

Sampling bit-strings from TTN state

Closest Vector Problem

Number of lattices to success (c = 1)10 bits (TTN) 30 bits (TTN) 50 bits (TTN) ------ \bigcirc 20 bits (TTN) 40 bits (TTN) -------60 bits (TTN) 10^{3} number of lattices 10^{2} - \bigcirc 10^{1} 10^{0} -20 30 40 50 60 10

number of qubits

Quantum Circuit Emulator

marco.ballarin.6@phd.unipd.it

Ground state search & time evolution Many Body systems

2D Fermi-Hubbard model & spin-charge separation

Entanglement generation in QNN

Digital Twin for Rydberg QPU

Closest Vector Problem

Quantum Information and Matter

Simone Montangero	Marco Ballarin
Pietro Silvi	Marco Rigobello
Ilaria Siloi	Nora Reinic
Daniel Jaschke	Alice Pagano
Francesco Campaioli	Marco Tesoro
Davide Rattacaso	Peter Majcen
Giuseppe Calajo'	Matija Tecer
Simone Notarnicola @ Harvard	Giovanni Catald
	Simone Scarlatel
Giuseppe Magnifico @ Uni Bari	Samuele Cavinata

AQTIVATE

T-NiSQ Tensor Networks in Simulation of Quantum Matter

li

la

0

Benchmarks & QNN

QUBO embedding

QUBO matrix representation N=3 satellites, M=3 targets

- Reducing slack variables using preprocessing

DWAVE HARDWARE

Table 5

Comparative summary of lattice tailored encodings. d represents the degree of the Hamiltonian graph, v and h respectively the vertical and horizontal dimensions of a 2-dimensional lattice (we set $v \leq h$), n is the number of fermionic modes / sites on the lattice. The number of operators scales linearly with E, the number of edges. We have E = h(v-1) + v(h-1)for a 2-dimensional regular lattice, and $E = \sum_{i}^{D} \left[(n_i - 1) \prod_{j \neq i}^{D} n_j \right]$ for an regular lattice of dimension D and n_i the number of sites along the i^{th} dimension.

Method	Pauli Weight	Qubits	Comments
Jordan-Wigner (snake pattern) [305]	<i>O</i> (2 <i>v</i>)	n	Optimal direct applica Jordan-Wigner mappir dimensional lattice.
Bravyi-Kitaev (Fenwick tree lattice mapping) [253]	$\mathcal{O}(\log(v))$	n	Optimal direct applica Bravyi-Kitaev mappin dimensional lattice.
Auxiliary Fermion Scheme [305]	4 (2-dim.)	2n, (n = vh)	Uses auxiliary fermion, ters to create operators out Z strings in the Jomapping
Superfast Bravyi-Kitaev [239, 253, 255]	O(2d)	O(nd/2)	Relies on stabilizers f define an efficient en cost dependent on the Hamiltonian graph
Generalized Superfast Encoding [221]	$\mathcal{O}(\log_2(d))$	O(nd/2)	Extension of Superfast ing Pauli weight and of opportunities for error o
Compact encoding [224, 225]	3 (2-dim.), 4 (3- dim.)	O(1.5n)	Modifies the stabilize used in Superfast BK the number of qubits far limited to 2 and 3 lattices

ation of the ng to a 2-

ation of the ng to a 2-

n/qubit registhat cancelordan-Wigner

formalism to ncoding with degree of the

BK, optimizoffering better corrections

er formalism to optimize required. So 3-dimensional

