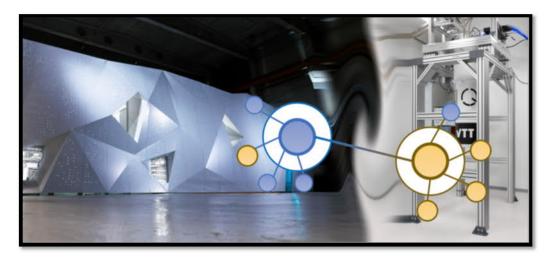
<u>UENCE</u> **Mikael Johansson** Manager, Quantum Tech, CSC 12 Oct 2023 CSC

What is a quantum computer not?

A quantum computer is *not* a super-fast version of a classical computer — It is *different*


Speeds up some types of calculations, others not at all

Connecting supercomputers with quantum computers

High-Performance Computing + Quantum Computing (HPC+QC)

Quantum acceleration

- Quantum computers are performing computations in a completely different manner
- For some types of calculations, QC can potentially speed up calculations significantly
- For most types of calculations, QC provides no advantage over classical computing

LUMI and Helmi Available for users since 2022

Hybrid HPC+QC is the future!

• Quantum computers will merge with supercomputers, both need each other

Funded by the European Union Destination Earth implemented by CECMWF Cesa EUMETSAT

DESTINATION EARTH PROGRAM

- Target: full digital replica of the Earth by 2030
- Implemented by ESA, ECMWF, and EUMETSAT through procurements
- Climate change adaptation DT is one of the first being developed
 - to assess the impacts of climate change and different adaptation strategies at local and regional levels over multiple decades;
 - during phase 1, multi-decadal simulations on a 5 km global mesh;
 - utilizing two climate models, IFS-FESOM/NEMO and ICON, at its core

https://digitalstrategy.ec.europa.eu/en/policies/destin ation-earth

CECMWF

DESTINATION	
EARTH	

CLIMATE DT TEAM

Name	Organisation	Country
csc	CSC – IT Center for Science	FI
BSC	Barcelona Supercomputing Center/Centro Nacional de Supercomputación	ES
MPI - M	Max Planck Institute for Meteorology	DE
UH	University of Helsinki	FI
AWI	Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research	DE
CNR-ISAC	Consiglio Nazionale delle Ricerche, Istituto di Scienze dell'Atmosfera e del Clima	IT
POLITO	Politecnico di Torino	IT
FMI	Finnish Meteorological Institute	FI
DWD	National Meteorological Service of Germany	DE
UFZ	Helmholtz Centre for Environmental Research	DE
UCLouvain	Université catholique de Louvain	BE
DKRZ	German Climate Computing Centre	DE
HPE	Hewlett Packard Enterprise	FR

• 13 European organizations with expertise in climate modelling, impact assessments & high performance computing

8

DESTINATION EARTH

TYPICAL EARTH SYSTEM MODEL

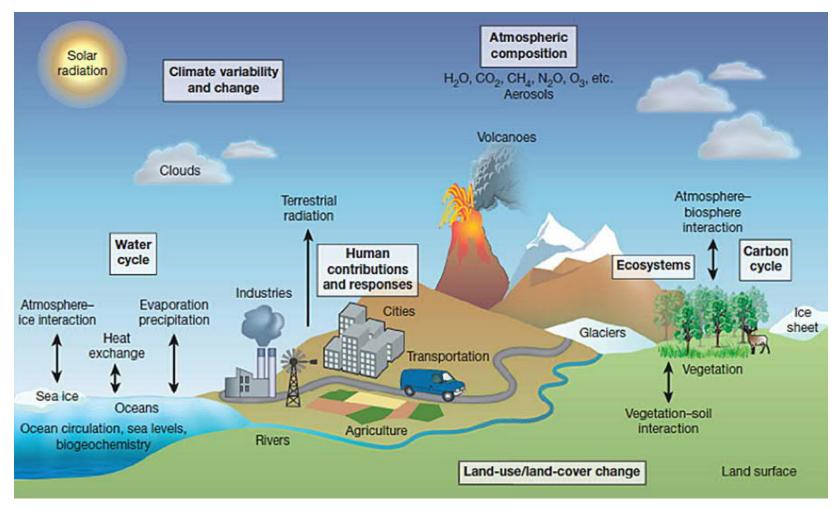
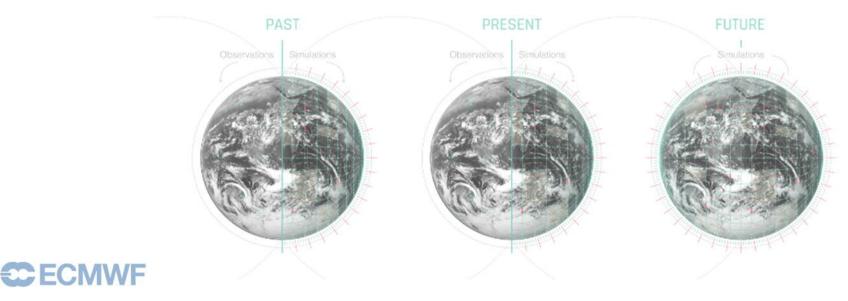


Figure from U.S. Climate Change Science Program. Strategic Plan for the Climate Change Science Program, Final Report (eds Subcommittee on **Global Change** Research) Figure 2.5 19 (US Climate Change Science Program, Washington DC, 2003).

CSC

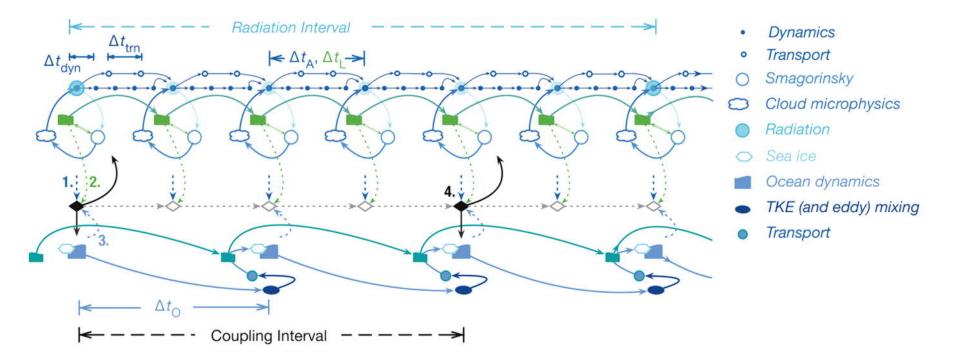
CECMWF

MAJOR COMPONENTS OF A TYPICAL ESM


- Atmosphere (~90%)
- Temperature, humidity, and pressure profiles
- Wind patterns and circulation
- Radiative transfer, including solar and infrared radiation
- Cloud formation and dynamics
- Atmospheric chemistry, including greenhouse gas concentrations

- Ocean (~10%)
- Sea surface temperature and salinity
- Ocean currents and circulation patterns
- Thermohaline circulation (e.g., the Gulf Stream)
- Heat and carbon dioxide uptake and release

- Land surface
- Surface temperature and moisture content
- Vegetation and land cover types
- Soil properties and dynamics, including moisture and nutrient content
- Land use changes and human impacts (e.g., deforestation, urbanization)


- **ClimateDT** is a new type of data-intensive **climate information system** based on high-resolution climate simulations, impact modeling and high-performance computing
- The simulations contain a plethora of **calculations** (*e.g.*, fluid dynamics) that could **potentially benefit** from **quantum** computing
- **Higher resolution** additionally exposes the simulations to **smaller scale physics and processes** (*e.g.*, clouds and atmospheric chemistry)

Quantum perspective on climate modelling

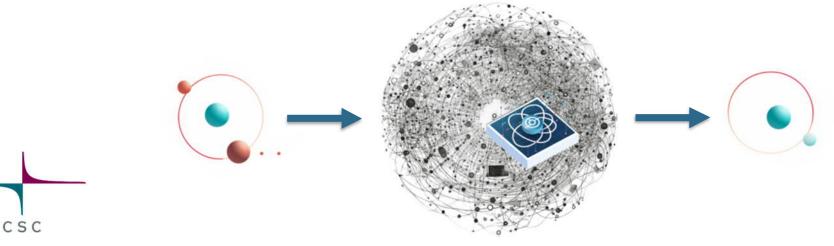
Time-stepping in a climate model (Hohenegger et al., Geosci. Model Dev. 2023)

- There is roughly a 1:30 ratio between the shortest and longest time steps
- The wall-time for computing the individual time-steps range from the **subsecond regime** to around 10 s on the LUMI supercomputer

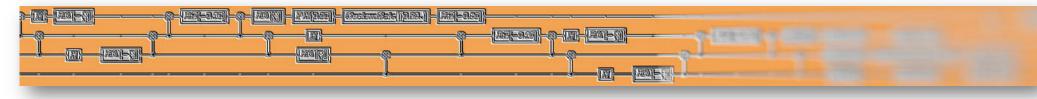
Quantum perspective on climate modelling

Some observations om the present Climate DT workflows

- Amount of data is huge
- Already with a grid resolution of 10 km, the total number of grid points representing the atmosphere is in the hundreds of millions
- Each grid point has several associated variables:
 - air density, temperature, wind speed, humidity, etc.


We can now identify two main challenges that hamper direct adoption of QC

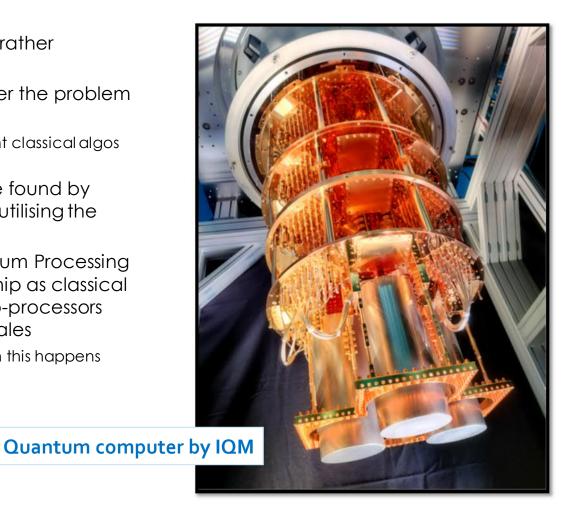
- 1. "Big data" problem
- 2. Short wall-time for individual calculations


1. "Big data" problem

- Climate models work on a large amount of data Both as input and output
- These "big data" problems are not directly suitable for quantum computers
- QC is good with problems with a *moderate* amount of both input and output variables
- The relation between input and output should be a highly complex equation that can be solved efficiently by some quantum algorithm
 - QC typically excels at problems with a large potential solution space, but only a small set or even a single solution
 - Additionally, the input parameters need to be of the same order of magnitude as the number of qubits of the quantum computer

2. Need to solve sufficiently complex problems in very short time

- For quantum advantage (measured by time-to-solution), QCs need to solve sufficiently complex algorithms
 - Algorithms have to be sufficiently deep, i.e., the number of basic operations needs to be high


- In practice, this means that single useful quantum calculations will take on the order of seconds to complete (minimum)
 - Individual variational circuits are faster, but the wall-time to solution is much longer, as several iterations are needed
- On the other hand, already now, the shortest individual time-steps in Climate DT take < 1 s, and the longest ~10 s
- The aim of Climate DT is to speed up the individual time-steps by a factor of one hundred

CSC

Quantum computers cannot speed these up further, as they are already faster than the fastest useful QC calculation

So what then?

- At a first glance, climate models seem to be rather unsuitable for quantum acceleration...
- For **quantum advantage**, we need to consider the problem from a broader perspective
 - Attempting to make quantum versions of present classical algos and their inherent approximations **will not work**
- In the medium-term, advantage can only be found by approaching the problem from new angles, utilising the unique features of QC
- In the long-term, when (fault-tolerant) Quantum Processing Units (QPUs) are integrated onto the same chip as classical processing, they might be able to work as co-processors executing useful tasks on subsecond time-scales
 - We cannot just wait-and-see whether and when this happens

Computational fluid dynamics (CFD)

A large part of current workflows are in effect CFD

- Direct connection to solving linear systems of equations
- Thus, the Harrow, Hassidim, and Lloyd (**HHL**) quantum algorithm (and its refinements) have the potential to speed up also CFD
- As noted by Lapworth (2022) classical algos on supercomputers are highly efficient at solving matrix equations by, e.g., side-stepping the need for matrix inversions
- Quantum algorithms do not need to, even should not rely an the same approximations as classical algorithms!
 - For example, HHL and the Quantum Singular Value Transformation (QSVT) can efficiently
 perform direct matrix inversions —> no need to circumvent the problem anymore

Enhancing machine learning

Use of machine learning (ML) and artificial intelligence (AI) is increasing also in climate modelling and digital twins of the Earth

CSC

• For CFD, a promising approach is to decrease the grid size without losing accuracy, by using ML for interpolation

Quantum machine learning (QML) has potential advantages

- Need to remember that classical ML is immensely powerful
- Instead of speed-up, advantage from doing things differently
 - Potential to get by with less training data, or getting more accurate models by adding quantum layers to a neural network

Missing ingredients in the model – "forced approximations"

Some physical/chemical/dynamical processes are left out because they are too expensive to model

• Quantum computing could reduce the computational complexity sufficiently to include more parameters and additional physics in the models

CSC

Atmospheric chemistry

- Accurate modelling of atmospheric chemistry would be highly beneficial "climate models indicate at least a 30% uncertainty in aerosol direct forcing and 100% uncertainty in indirect forcing due to aerosol–cloud interactions", Li *et al.* (2020)
- Highly challenging to model: radicals, multireference, photochemistry, ...
 - Scales exponentially with the size of the problem in the limit of sufficient accuracy
 - Perfect problem for quantum computers!

Summary and musings

In their present form, digital twins of the climate are largely not amenable to quantum acceleration

- · large amounts of input and output data
- short wall-time of the individual time steps

Still, quantum computers have the potential to enhance climate digital twins through:

- smart use of quantum algorithms
- enhancing machine learning

CSC

• introducing missing physics and chemistry to the models

We need to start making the workflows quantum-ready

- A truly multidisciplinary problem: combine knowledge of mathematics, quantum physics, and computer science with the application field!
- Crucial for HPC and quantum to work together
 - Identify the problems that are a bottleneck due to slowness/low accuracy on classical HPC
 - Figure out how to quantum-accelerate: very hard, very rewarding!

CSC

Mikael Johansson

Manager, Quantum Technologies mikael.johansson@csc.fi

linkedin.com/in/mikael-p-johansson

facebook.com/CSCfi

twitter.com/CSCfi

youtube.com/CSCfi

linkedin.com/company/csc---it-center-for-science

github.com/CSCfi