WE BUILD QUANTUM COMPUTERS

Quantum Computing Platforms

Jiri Guth Jarkovsky, Jay Nath, Markus Weber

Martin Leib, Frank Deppe, Bjorn Potter

IQM Team

www.meetiqm.com

Fast Lane to Quantum Advantage

IQM

Outline

- Quantum Computer
- QC Platforms
 - Superconducting Qubits
 - Superconducting Quantum Annealers
 - Trapped lons
 - Cold Atoms
 - Photonics
 - Photonic Boson Sampling
 - Spin Qubits
 - Topological Qubits
- QC Metrics
 - Quantum Technology Readiness Level
- Bonus
 - Some QC Roadmaps

IQM

Quantum Computer

DiVincenzo Criteria for quantum computation:

- 1. A scalable physical system with well-characterized qubit
- 2. The ability to initialize the state of the qubits to a simple fiducial state
- 3. Long relevant decoherence times (stability)
- 4. A "universal" set of quantum gates
- 5. A qubit-specific measurement capability

DiVincenzo Criteria for quantum communication:

- 1. The ability to interconvert stationary and flying qubits
- 2. The ability to faithfully transmit flying qubits between specified locations

Superconducting

Topological

Spins

Trapped lons

Cold Atoms

Superconducting Qubits

- Qubits are states of a small (LC) electric circuit
 - \circ States $|0\rangle$ and $|1\rangle$ are the lowest two energy states
- Gates via microwave/flux pulses

Advantages	Disadvantages
 Fast gate and cycle times Good device metrics (fidelity etc.) Large arrays demonstrated (100+ Qbs) Demonstrated supremacy 	Wiring and packagingLimited connectivity

Superconducting Quantum Annealers

• Adiabatic QC:

- 1. Start with a trivial Hamiltonian, prepare the ground state
- 2. Slowly change the Hamiltonian, state remains the ground state
- 3. End up with the problem Hamiltonian, state is the ground state = solution

Advantages	Disadvantages	
 Very large qubit numbers (5000+ Qbs) 	 Speed ↔ quality tradeoff Limited connectivity Not universal 	$H(\sigma) =$

$$H(\sigma) = \sum_{i,j}^{N} J_{i,j}\sigma_i\sigma_j + \sum_{i}^{N} h_i\sigma_i$$

i:Wave The Quantum Computing Company™

Trapped lons

- Array of ions (Yb, Ba) trapped in EM field
- Laser qubit control, cooling and detection
- Entangling gate via phononic excitations

eleQtron

(•) AQT

Advantages	Disadvantages	
 Excellent gate fidelities Easier optical network connection All-to-all connectivity 	 Slow gate times (=longer cycle times) Limited number of ions in a single trap Difficulty in on-chip scaling 	

Cold Atoms

- 2D array of neutral atoms (Rb, Sr, Cs) in optical lattice / optical tweezers
- Gate based and quantum simulator
- CNOT gates via Rydberg blockade

Advantages	Disadvantages
 Large qubit arrays (100+	 Tweezer arrays not
Qbs) demonstrated Good connectivity and	scalable Significant initialization
fidelities	error for lattices (60%)

Photonics

- Qubits are the photons (polarization / count) or Gaussian states of photons
- Integrated optics (PsiQuantum) or optical table based (Xanadu)
- Measurement-based QC (Xanadu)
- Fusion-based QC (PsiQuantum)

Advantages	Disadvantages	
 Easier optical network connectivity Modular architecture Minimal cooling needed 	 Significant photon loss (66%: gate) Source, gate heralding needing post-selection 	PsiQuantum

Photonic Boson Sampling

- A matrix is encoded in the interferometer
- Measurements correspond to samples
 proportional to sub-matrix Hafnian
- Adjacency matrix of graph:
 - $\circ \quad \text{Large Hafnian} \leftrightarrow \text{large density}$

Advantages	Disadvantages
Demonstrated supremacy	 Requires hybrid algorithm to be useful Not universal

Spin Qubits

- Qubits are spins (semiconductor-based quantum dots or NV centers in diamond)
- Exchange based gates, spin-charge readout

Topological Qubits

- Qubits are Majorana zero modes localized on topological superconductor
- Gates are made by "braiding" the qubits' wordlines

Adv	vantages	Disadvantages
•	Theoretically highly stable and protected from errors	 No acceptable demonstrations yet

QC Metrics

Hardware-oriented

- □ Number of qubits: The possible width of a quantum algorithm
- **Cycle / Gate Time**: Time to run 1 shot of an algorithm / 1 gate
- □ Single- and two-qubit gate fidelity: The accuracy of implementing gates on the hardware
- Connectivity: How well are qubits connected with each other for performing multi-qubit gates
- □ Scalability: How well can the qubit number be scaled up
- □ T1, T2 times: The time that qubits remain in their quantum state
- Native gate set: Which quantum gates can be implemented natively on the hardware

	Qb Type	Basis Gates	Highest Qb count	1 Qb Gate Time	1 F
					F
Superconducting					
IQM	Tunable transmon qbs and tunable couplers	CZ, 1Q	20		ľ
IBM	Osprey - Fixed frequency transmon qbs and fixed couplers	ECR, ID, RZ, SX, X	433	10-50 ns	9
IBM	Sherbrooke - Fixed frequency transmon qbs and fixed couplers	ECR, ID, RZ, SX, X	127		9
IBM	Prague - Tunable frequency transmon qbs and tunable couplers	CZ, ID, RZ, SX, X	33		9
Google	Tunable transmon qbs and tunable couplers	CZ, fSim, 1Q	72	25 ns	g
Rigetti	Tunable transmon qbs and fixed couplers	CZ, XY, 1Q	Aspen - 80		9
Rigetti	Tunable transmon qbs and tunable couplers	CZ, SWAP	Ankaa - 1 (square lattice): 84 -> 184 (2024)		

Snap-shot of QC metrics compiled in QC4EO report

QC Metrics

Algorithm-oriented

- Logical number of qubits: The number of error-corrected qubits
- Logical gate fidelities: The error rates of gates performed on logical qubits
- □ Quantum volume: The depth to which a certain random quantum circuit can be faithfully executed
- CLOPS: The number of quantum volume circuit layers executed per second
- Q-score: Largest max-cut problem that can be solved better than random guessing
- □ Algorithmic qubits: Largest number of qubits that can faithfully run a certain set of algorithm
- **QTRL:** TRL-inspired rating for quantum technologies

Quantum Technology Readiness Level

- •7-9: Engineering & Development (Products)
- •4-6: Industrial research (Demonstrators)
- •1-3: University research (Laboratory tests)

QTRL

Quantum Technology Readiness Levels describing the maturity of Quantum Computing Technology

Source: FZ Jülich

The second secon

Backup Slices

Fast Lane to Quantum Advantage

IQM

Development Roadmap

IBM Quantum

Rigetti Roadmap Aims to Reach Quantum Advantage¹

Copyright Rigetti Computing 2022

Fast Lane to Quantum Advantage

