

High-Spatial Resolution Mapping of Above-Ground Carbon (AGC) Stocks

techstars_

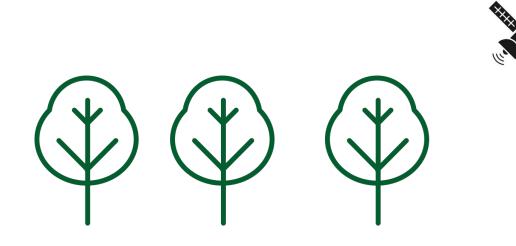
Company Introduction

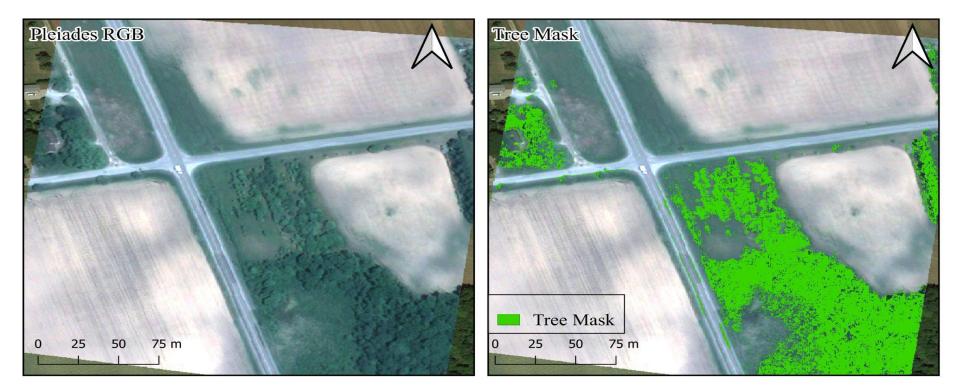
- Albo-Climate combines geospatial modeling and Al expertise to provide a state-of-the-art remote sensing solution for carbon stocks and ecosystem monitoring
- Albo's Technology reduces the number of samples that need to be taken on the ground
- Our vision is to create new paradigm of transparency and scalability in nature-based Climate projects.
- Albo's solution enables project developers in the carbon credits market to monitor their project development and detect major threats affecting the project site
- Albo's solution received the Solar Impulse Prize and Official Concept Note Approval from Verra, Al for the planet, google for startups
- Albo's solution was awarded the Solar Impulse Prize, recognized by Al for the Planet and Google for Startups, and also received Official Concept Note Approval from Verra

Project Introduction

- Albo has extensive experience in aboveground carbon (AGC) stock estimation using remote sensing techniques and AI modelling
- Albo has built Al models on dense tropical and conifer forest, using high spatial resolution satellite imageries such as Sentinel-1 and Sentinel-2
- In this project Albo aimed to provide AGC stocks for relatively young and sparse plots managed by private owners in Canada.
- High resolution satellite images are therefore needed in order to capture the young trees in the small plots

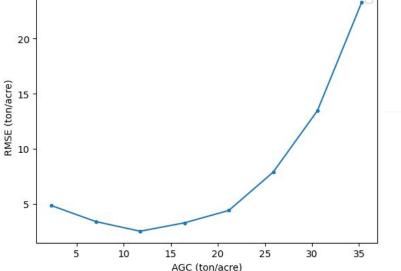
Project Goal

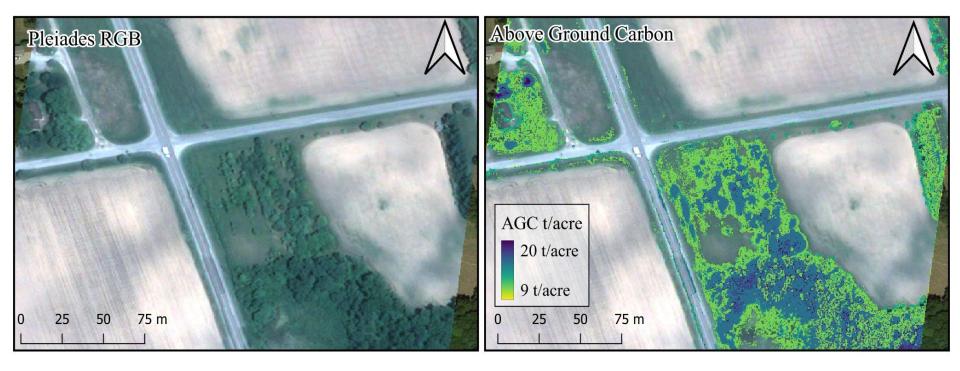

- Develop an AI-based model at very-high spatial resolution for mapping AGC in young trees plantations in farmland
- Provide carbon stock estimates at the project level in Canada


Tree Detection

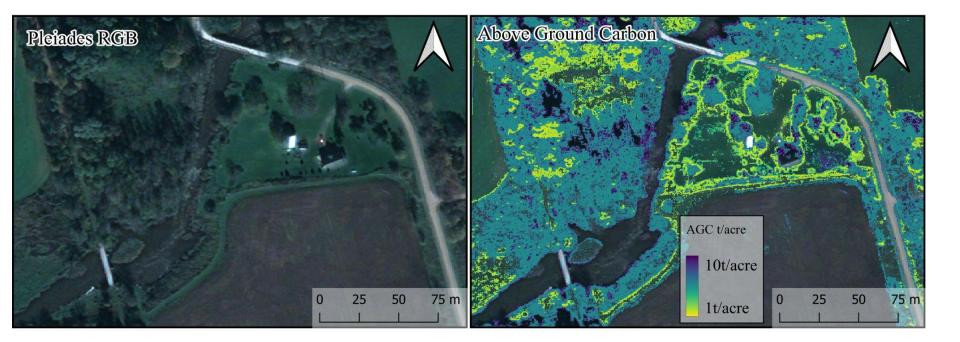
- In order to make the carbon predictions more accurate, a tree detection model was developed
- The goal was to make the carbon predictions only for trees
- The Tree Classification model has been validated on out-of-sample data (~93% accuracy)

Visual Results - Tree Mask


Visual Results - Tree Mask


Above Ground Carbon Predictions -Accuracy Results

- The AGC model has been validated on both external and ground-truth datasets, and the prediction RMSE reached 3 ton/acre in the AGC range of 10-15 ton/acre
- The model RMSE increases significantly with increasing AGC range
- This performance is expected due to the low AGC values in most of the training dataset and less training data in higher AGC range.



Visual Results - Above Ground Biomass

Visual Results - Above Ground Biomass

Conclusion

- Using a combination of Ground Truth, GEDI and Pleiades imagery allow high-resolution AGC stock predictions
- High-resolution images from Pleiades, combined with GEDI data and elevation information, enable the prediction of AGC stocks with a Root Mean Square Error (RMSE) of 10-15 ton/acre.
- RMSE/Accuracy of the AGC model
- Tree detection is possible using 4-bands Pleiades imagery, with an accuracy of 93%
- The methodological approach employed in this study can be replicated and applied to other ecosystems and geographical regions.

References

Akhtar, A. M., Qazi, W. A., Ahmad, S. R., Gilani, H., Mahmood, S. A., & Rasool, A. (2020). Integration of high-resolution optical and SAR satellite remote sensing datasets for aboveground biomass estimation in subtropical pine forest, Pakistan. *Environmental Monitoring and Assessment*, *192*(9), 1-17.

Asner, G. P., Powell, G. V. N., Mascaro, J., Knapp, D. E., Clark, J. K., Jacobson, J., Kennedy-Bowdoin, T., Balaji, A., Paez-Acosta, G., & Victoria, E. (2010). High-resolution forest carbon stocks and emissions in the Amazon. *Proceedings of the National Academy of Sciences*, *107*(38), 16738–16742.

Asner, G. P., Brodrick, P. G., Philipson, C., Vaughn, N. R., Martin, R. E., Knapp, D. E., Heckler, J., Evans, L. J., Jucker, T., & Goossens, B. (2018). Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. *Biological Conservation*, *217*, 289–310.

Fassnacht, F. E., Hartig, F., Latifi, H., Berger, C., Hernández, J., Corvalán, P., & Koch, B. (2014). Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. *Remote Sensing of Environment*, *154*(1), 102–114. https://doi.org/10.1016/J.RSE.2014.07.028

Klochkova, V. G., Panchuk, V. E., & Tavolzhanskaya, N. S. (2015). Peculiarities of the atmosphere and envelope of a post-AGB star, the optical counterpart of IRAS 23304+ 6347. *Astronomy Letters*, *41*(1), 14-22.

Mascaro, J., Asner, G. P., Muller-Landau, H. C., van Breugel, M., Hall, J., & Dahlin, K. (2011). Controls over aboveground forest carbon density on Barro Colorado Island, Panama. *Biogeosciences*, 8(6), 1615–1629. https://doi.org/10.5194/bg-8-1615-2011

Zhang, Y., Liang, S., & Yang, L. (2019). A Review of Regional and Global Gridded Forest Biomass Datasets. In *Remote Sensing* (Vol. 11, Issue 23). https://doi.org/10.3390/rs11232744

Thank you for your attention!

