A Multisensory SAR-based approach for melt ponds retrievals

Summary of methodology performed and first main results using PolarTEP

Sara Aparício

Methodology 1: Preparation preparation of training datasets

1) Acquisition

Sentinel-1

- Through EE
- Selected angles between 31 and 45 degrees
- Selected only HH band
- Daily average
- Over same area:

MPF (Lee et al.)

Data acquired at ramadda.data.bas.ac.uk

2) Processing

Reprojected to 'EPSG:6931'

Aligning and stacking MPF file and S1 reprojected using GDAL commands for warping, followed by creating a VRT to combine them into a single entity

3) Stacking & Masking

Translating them into a GeoTIFF (COG) format

- Masking invalid values (9.969e+36) (NaN) in each band, creating a new binary band indicating where the S1
- is valid Stack masked bands together

4) Cropping into patches

Every COG is divided into tiles of 64 by 64 and saved as a separate TIFF. If all pixels in a tile are either all NaN or all Zero, that tile/patch is not save.

NetCDFs converted

Methodology 2: Preparation 3 different AI workflows: CNN, UNET and SegNET

Consists of convolutional layers followed by pooling layers and fully connected layers.

Pros:

- Effective in capturing spatial hierarchies in data due to the use of convolutional layers.
- Automatically learns hierarchical patterns from the input data.
- Suitable for a variety of tasks such as image classification, object detection, and segmentation.

Cons:

- Requires a large amount of data for training, which can be computationally expensive.
- Prone to overfitting, especially with complex architectures and insufficient data augmentation.
- Interpretability might be challenging due to the complexity of the learned features.

SegNET

Employs an encoder-decoder architecture with skip connections. Utilizes skip connections to retain spatial information during decoding.

Pros:

- Utilizes a hierarchical encoder-decoder architecture which enables capturing fine details.
- Incorporates skip connections to retain spatial information during the decoding process.
- Effective for tasks like image segmentation where preserving spatial information is crucial.

Cons:

- May suffer from vanishing gradients during training, especially in deeper architectures.
- Requires careful tuning of hyperparameters and architecture design to prevent overfitting.
- Computationally intensive due to the use of multiple convolutional layers and upsampling operations.

U-NET

Features a U-shaped architecture with symmetric encoder and decoder paths. Incorporates skip connections to facilitate feature propagation and precise localization.

Pros:

- Incorporates a U-shaped architecture with symmetric encoder-decoder paths, facilitating better feature propagation.
- Enables precise localization of objects due to skip connections that preserve spatial information.
- Widely used and proven effective for medical image segmentation and other tasks requiring precise delineation.

Cons:

- Can be memory-intensive, especially for larger input sizes and deeper architectures.
- Training can be slow due to the large number of parameters, especially in the bottleneck layers.
- May struggle with class imbalance if not properly addressed during training.

Results 1: OLCI ISTOMINA-dataset

10 x 10 input image 38054 instances

Loss and metrics	Loss: MSE Metric: MAE
NaN handling	X =0
CNN	Model A
Epochs	25
Normalizatio n	no data normalization
Results	Model evaluation is [38.27766418457031, 4.0326619148254395]

Results 2: OLCI ISTOMINA-dataset

First trials with UNET

64 x 64 input image

Training datasets w/ NaNs

Epochs

Results

images with NaNs SegNet 1

15

without normalization

Normalization

loss: 10.1952

Results 3: OLCI ISTOMINA-dataset

64 x 64 input image 1302 instances

Lee Filtered

Loss and metrics	Loss: MSE Metric: MAE
NaN handling	X[nan] = 0 images with NaNs
CNN	SegNet 1 with sigmoid
Epochs	25
Normalization	y/100
Results	loss: 0.0014 - ma

