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Optical satellite data analysis is indispensable for extracting valuable insights from acquired data, 

enabling the comprehensive study and enhanced understanding of terrestrial and oceanic processes, as 

well as Earth’s dynamic systems. This encompasses crucial functions such as land cover monitoring, 

environmental assessment, precision weather forecasting, disaster preparedness and response, cutting-

edge atmospheric research, and its application in diverse scientific and urban planning contexts. The 

QC4EO study focuses on the process of Land Use and Land Cover (LULC) classification, which aims at 

interpreting the information obtained by satellite data to create classification maps of the investigated 

scene. Classification maps are thematic products of great importance for many EO applications, such as 

monitoring deforestation, resource management, agriculture, and the study of the impact of climate 

change. This use case is addressed using quantum kernel methods. Kernel methods are a well-established 

framework in machine learning and they can be understood as a two-step methodology. The first step 

involves mapping the data from the original input space into a higher-dimensional kernel feature space 

through a nonlinear function. The second step focuses on solving a linear problem within this transformed 

kernel space. These methods enable the design and interpretation of learning algorithms in the kernel 
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space, which is nonlinearly related to the input space, effectively combining statistics and geometry. 

Importantly, they provide solutions with the desirable property of uniqueness, often requiring only a few 

sets of free parameters to ensure proper algorithm functioning. The mapping into quantum information is 

carried out by applying a data-dependent unitary transformation to an initial reference state. The circuit 

responsible for encoding, often referred to as the feature map, should be computationally challenging to 

simulate using classical methods; otherwise, it may not yield a quantum advantage. The quantum kernel 

function between two data points is obtained by taking the modulo square of the dot product between the 

quantum states obtained by encoding the corresponding feature vectors. Such a quantity cannot be 

directly calculated but must be estimated through a sampling procedure by performing measurements on 

the quantum state. The number of shots used to estimate each kernel function evaluation scales 

quadratically with the inverse of the additive error that one wants to achieve. To perform the training of 

the learning algorithm, it is necessary to evaluate the kernel function across all possible data pairs, and 

therefore, the number of such evaluations scales quadratically with the number of data points. The 

quantum kernel can then be used by classical supervised learning algorithms such as Support Vector 

Machines (SVM) and Gaussian Processes (GP). These algorithms can be implemented on various 

quantum hardware platforms such as superconducting and trapped ion hardware. The number of qubits 

needed for this approach is strictly related to the number of features of data points, requiring a few 

hundred qubits for data with a high number of features (e.g., hyperspectral images, time series of data, 

etc.). The main obstacle for this approach is the computational time needed to calculate the kernel 

function evaluations between the data points. Access to quantum hardware resistant to errors is also 

important to obtain a good estimation of the kernel function. The QC4EO study anticipates that a full-size 

problem might be possible to solve within a 15-year timeframe. However, even though there are feature 

maps that are conjectured to be hard to simulate classically, it is not yet clear how the quantum kernel 

implementation might provide an advantage compared to classical solutions. 

 

In the most common implementation of a quantum kernel algorithm, each feature from the data vector is 

encoded in a single qubit of the quantum register. Such encoding is carried out by applying some 

parametrized quantum gates whose parameters depend on the feature value, for instance by applying qubit 

rotation with an angle depending on the feature value. The encoding can be applied multiple times to 

increase the model’s expressivity (data-reuploading algorithms). The number of required qubits is strictly 

related to the number of features in the data and amounts to about several hundred qubits for high-

dimensionality hyperspectral data. The required qubits connectivity in the quantum hardware depends on 

the encoding strategy that is used: when using the so-called “full-entanglement” strategy a CNOT gate is 

applied to each possible pair of qubits, thus requiring full connectivity, however, there are 

other possible entanglement strategy in which the CNOT gates are applied to a small subset of qubits 

pairs. To achieve a higher model’s expressivity, the encoding should ideally be repeated several times 

thus increasing the circuit’s depth. Such a higher depth will entail a higher number of gates and therefore 

error correction will be needed to ensure the correctness of the computation. Moreover, to estimate the 

kernel function value through a sampling procedure several run of the quantum circuits are needed. Such 

sampling procedure must be carried out for each possible data point pair (thus scaling quadratically with 

the dataset size). A low gate-operation time is therefore advisable in order to maintain the execution time 

low for a large problem with many image pixels. The two main quantum platform candidates for this 

application are superconducting qubits and ion-based quantum computers. Superconducting qubit 

hardware, such as those produced by IBM and IQM, provide, in general, a high number of physical qubits 

and a low gate time execution. The companies working with superconducting qubits have also plans to 

increase the number and the quality of qubits in the future: for instance, IBM is scheduled to provide a 

quantum computer with thousands of logical qubits in 2033. Ion trap quantum computers are another 

candidate for building quantum computing hardware: in general, they offer a higher connectivity and 
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higher error fidelity when compared to some superconducting implementations, at the expense of a lower 

number of qubits. One of the main companies developing ion-trap quantum computing hardware is IONQ 

which currently provides quantum computer with a few tens qubit and it is planning to reach 1024 qubits 

in 2028, according to their technological roadmap. 

 

The current estimated times for the execution of a 2-qubits gate on superconducting and ion-trap 

hardware are 533 ns and 50 ms, respectively. By considering those values, it is possible to get an estimate 

for the execution time of a problem instance on quantum hardware by multiplying the number of 2-qubits 

gates by their corresponding execution times. For this use case each quantum kernel instance must be 

calculated for each possible pair of data points, i.e., for on N(N-1)/2 values, with N being the number of 

pixels. For each of those values, the number of 2-qubits gates depends on the specific encoding structure, 

for example, when using a full entanglement scheme, it amounts to n(n-1) CNOT gates, with n being the 

number of qubits. The feature map can then be repeated by an arbitrary number of times L (data-

reuploading models). Finally, for each kernel value to be estimated the circuit must run for a number of 

times that scales quadratically with the inverse of the average additive error that one wants to achieve. By 

taking these notions into consideration, it is possible to get an estimation of the number of CNOT gates 

and therefore the execution time. 

 

 
 Problem size Hardware requirements Timeline 

 Up to 15 years 

Minimum-

size 

problem 

Learning 

problem with 

~1.000 training 

samples 

Digital hardware 

(superconducting, ion-

trap): number of qubits 

fixed, equal to number of 

features (up to ~100), 

number of gates scales 

linearly/quadratically 

according to the 

entanglement scheme. 

Execution time has to be 

reasonably short. 

The problem can be implemented, but the feasibility 

depends on the gate times. The total time can be 

computed as described above. Currently, the 

execution time for a sufficient accuracy bound is 

prohibitive. As no roadmaps are available, no 

estimation can be provided for the future. 

Full-size 

problem 

Learning 

problem with 

~10.000 training 

samples 

Digital hardware 

(superconducting, ion-

trap): number of qubits 

fixed, equal to number of 

features (up to ~100), 

number of gates scales 

linearly/quadratically 

according to the 

entanglement scheme. 

Execution time has to be 

reasonably short. 

A time factor of 100 with respect to the minimum-

size problem must be accounted. 

 


