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Mission planning is a pivotal aspect in EO, targeting the optimal scheduling of acquisition requests from 

end-users. State-of-the-art classical methods leverage deterministic and meta-heuristic algorithms to 

generate optimal solutions for smaller satellite constellations with thousands of optimization variables. 

However, as larger constellations featuring numerous satellites (𝑁 ≥ 100) increases, the task of finding 

optimal solutions becomes more challenging. The difficulty is further intensified by the necessity to 

account for more complex mission constraints, impacting both the required time and the quality of the 

solution. Consequently, the concept of quantum advantage should consider not only the computational 

time but also the quality of the solution obtained. The QC4EO study proposes two distinct approaches to 

attack this problem: in the first one, the mission planning is cast into an optimization problem, while in 

the second approach relies on machine learning. 
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1.1.1 Instance for the quantum optimization approach 

 

The objective of the mission planning is finding the optimal scheduling of satellite observations for a 

given list of user requests. For each satellite and for each “acquisition request”, there are several “data 

take opportunities” and “downlink opportunities”. The solution must return, for each satellite, a time-

ordered shortlist of the possible observations and downlinks opportunities taking in consideration several 

constraints, i.e., on-board available memory, minimum preparation time between two subsequent 

acquisitions, time ordering of the acquisitions with respect to the downlink opportunities, available 

battery. We have formulated the problem in terms of a QUBO, where the original constraints now appear 

as penalty terms in a quadratic problem. We studied the feasibility of a quantum solution with the aim to 

improve the quality of the optimal solution. Our QUBO formulation is amenable for an implementation 

both on digital (or general purpose) quantum computer, using the Quantum Approximate Optimization 

Algorithm (QAOA), and analog specific-purpose quantum computers (or simulators) that are not able to 

run generic quantum algorithms, but are optimized to solve specific problems, i.e., QUBO problems using 

quantum annealing algorithm in the case of QA. We underline the importance of proceeding in both 

directions: digital quantum computers have been recently applied to similar scheduling problems with a 

reduced set of variables and constraints; on the other hand, quantum annealers (and quantum simulators) 

can already allocate up to thousands of qubits and have shown promising results in the solution of similar 

optimization problems. 

However, D-Wave states to be able to support real-world size applications with up to 1 million variables 

and 100,000 constraints via their quantum-classical hybrid solver: obviously, these numbers must be 

tailored on the specific problems based on the form of the interactions that appear in the cost function 

(including constraints). 

 
 Problem size Hardware requirements Timeline 

 Up to 5 years Up to 10 years Up to 15 years 

Minimum-

size 

problem 

2 satellites, 

2.000 requests 

Analog hardware 

(superconducting, neutral 

atoms): ~106 qubits 

(polynomial scaling of 

qubits). 

Digital hardware 

(superconducting): ~106 

qubits (polynomial 

scaling of gates), error 

correction required 

Problem 

implemented 

on NISQ 

devices 

Problem 

implemented 

on NISQ 

devices 

Problem 

implemented on 

NISQ devices 

Full-size 

problem 

10-100 

satellites, 

10.000-100.000 

requests 

Analog hardware 

(superconducting, neutral 

atoms): ~109 qubits 

(polynomial scaling of 

qubits), error correction 

required. 

Digital hardware 

(superconducting): ~109 

qubits (polynomial 

scaling of gates), error 

correction required 

No feasible 

implementation 

envisioned 

 

 

No feasible 

implementation 

envisioned 

 

 

Problem 

implemented if 

fully scalable 

error correction 

on 

superconducting 

devices become 

available 
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The QUBO approach to a medium real size mission planning problem involves 106 binary variables. 

Although photonic platforms could potentially accommodate such a great number of qubits, we focused 

on forthcoming platforms such as superconducting qubits (digital quantum computers and quantum 

annealers), ion-trap digital quantum computers, and arrays of Rydberg atoms confined with optical 

tweezers. The main bottleneck for an implementation on quantum annealers (such as D-Wave Quantum 

Systems) is the required number of qubits, which depends both on the number of binary variables and the 

number of auxiliary qubits to account for the limited connectivity in the hardware. Our study anticipates 

that, while existing hardware can already manage very small size problems, it is feasible to solve at least 

the minimum-size problem (2 satellites, 2000 requests) within the 3 to 5 years. Our estimates are based on 

the D-Wave roadmaps, where they plan to reach more than 7000 qubits by 2024 with improved 

connectivity. Further, Rydberg simulators appear promising due to their intrinsic flexibility which allows 

for the adjustment of the connectivity to meet the specific requirements of each problem. On the other 

hand, the application of digital quantum computers appears feasible in a 5+ years horizon due to the 

number of qubits and gates required (see table below) even for a small-to-medium size problem. Since 

QAOA is a hybrid-variational algorithm we expect that the implementation of error mitigation techniques 

will help the convergence towards optimal results. However, the timeline for solving the full-size problem 

for both approaches, general purpose quantum computers and quantum annealer-simulators extends 

beyond 15 years. 

1.1.2 Instance for the quantum machine learning approach 

 

In the second approach, the mission planning problem is addressed through a hybrid classical-quantum 

method based on a Quantum Neural Network (QNN) and a Reinforcement Learning (RL) framework. In 

this algorithm, an agent interacts with an environment, using a reward function to evaluate and assign 

values to the agent’s actions. The RL agent employs a policy model to determine which actions based on 

the state of the environment, thus transforming the state itself. The policy model is trained to select 

actions that maximize the probability of achieving a positive reward. We considered the policy model as a 

parameterized quantum circuit to establish the input-output relation of the model and apply it within the 

mission planning context. This quantum subroutine follows a classical pre-processing step based on 

classical neural network to reduce the number of relevant features, which serve as input for the QNN. 

This approach has demonstrated promising results for small-case instance and is viable for 

implementation on a general-purpose digital quantum computer. Specifically, the proposed quantum 

circuit requires few qubits (the exact count depends on the number of input data features) and few layers, 

yielding a number of logical gates that is linear with the input size. In previous work, a circuit with 4 

qubits (thus encoding 32 features) and 8 layers, resulting in the implementation of more than 100 logical 

gates, was proposed to solve a small-medium size problem. This narrow quantum circuit can be already 

implemented on current state-of-the-art quantum hardware technology without full error-correction, such 

as IBM quantum computer based on superconducting qubits. Furthermore, IBM roadmap outlines the 

potential for hardware with over 4000 qubits by 2025, with plans for scaling to 10k-100k error-corrected 

qubits beyond 2026. This makes the implementation of the QML approach for the mission planning 

problem feasible within the next 15 years, even for full-size scenarios. The primary challenges in this 

algorithm stem from the error rates of quantum gates, which are device-dependent and significantly 

impact the quality of the obtained solution. In this context, it is worth to highlight another promising 

platform: trapped-ion based quantum computers. Despite having a smaller number of currently available 

qubits, these machines feature longer coherence times and notably lower error rates, often orders of 

magnitude below those of IBM processors. Furthermore, this technology provides enhanced connectivity 
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compared to superconducting architectures. A notable player in this domain is the American public 

company IonQ, which has set ambitious plans to achieve 1024 qubits by 2028. 

 
 
 Problem size Hardware requirements Timeline 

 Up to 5 years Up to 10 years Up to 15 years 

Minimum-

size 

problem 

2 satellites, 

2.000 requests 

Accuracy related to 

number of features. 

Experimental 

demonstration with 32 

features. Hardware 

requirements scale 

linearly: 2𝑓 features 

encoded using 2𝑞 qubits 

and 2𝑙 layers with 𝑓 =
𝑞 + 𝑙. 

Problem 

implemented 

on NISQ 

devices 

Problem 

implemented 

on NISQ 

devices 

Problem 

implemented on 

NISQ devices 

Full-size 

problem 

10-100 

satellites, 

10.000-100.000 

requests 

Accuracy related to 

number of features. 

Hardware requirements 

scale linearly: 2𝑓  

features encoded using 2𝑞 

qubits and 2𝑙 layers with 

𝑓 = 𝑞 + 𝑙. 

No feasible 

implementation 

envisioned 

 

 

No feasible 

implementation 

envisioned 

 

 

Problem 

implemented if 

fully scalable 

error correction 

on 

superconducting 

devices becomes 

available 

 
 


