
    

REFERENCE : 

DATE : 

ES: Executive Summary 

07/12/2023 

  ISSUE :    1 Page : 1/15 

 

1 

 

  

 

  

 

Quantum Computing for Earth Observation 

(QC4EO) Study 

 

Executive Summary 

 

 

 

Written by Responsibility 

+ handwritten signature if no electronic workflow tool 

FZJ Team  Gabriele Cavallaro, Amer Delilbasic, Edoardo Pasetto 

TASI Team  Mattia Verducci, Tommaso Catuogno 

TASF Team  Benjamin Marchand 

INFN Team  Ilaria Siloi, Marco Tesoro 

IQM Team  Jiri Guth Jarkovsky 

 

 

  



    

REFERENCE : 

DATE : 

ES: Executive Summary 

07/12/2023 

  ISSUE :    1 Page : 2/15 

 

2 

 

  

Change Records 
 

ISSUE DATE § CHANGE RECORDS AUTHOR 

1 07/12/2023 First issue FZJ 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

  



    

REFERENCE : 

DATE : 

ES: Executive Summary 

07/12/2023 

  ISSUE :    1 Page : 3/15 

 

3 

 

  

Table of contents 
1 Scope of the document and terminology ............................................................................................................... 4 

1.1 Scope and context of the document ............................................................................................ 4 

1.2 Reference documents .................................................................................................................. 4 

1.3 Acronyms .................................................................................................................................... 4 
2 Study summary...................................................................................................................................................... 6 
3 Use cases summary ............................................................................................................................................... 5 

3.1 UC1: Mission Planning for EO Acquisitions ............................................................................. 6 

3.1.1 Instance for the quantum optimization approach ....................................................................... 6 

3.1.2 Instance for the quantum machine learning approach ............................................................... 8 

3.2 UC2: Multiple-view Geometry on Optical Images ..................................................................... 9 

3.3 UC3: Optical Satellite Data Analysis ....................................................................................... 11 

3.4 UC4: SAR Raw Data Processing .............................................................................................. 13 
4 Conclusions ......................................................................................................................................................... 15 

 
  



    

REFERENCE : 

DATE : 

ES: Executive Summary 

07/12/2023 

  ISSUE :    1 Page : 4/15 

 

4 

 

  

1 Scope of the document and terminology 

1.1 Scope and context of the document 
 

This document is a summary of the outcomes of the Quantum Computing for Earth Observation 

(QC4EO) study. You can refer to the study website1 and the reference documents 1-4 for additional 

information. 

1.2 Reference documents 
 

[RD-1] QC4EO-D1-Use Case Definition and Design Report 

[RD-2] QC4EO-D2-Machine Definition Report 

[RD-3] QC4EO-D3-Machines Roadmap Assessment Report 

[RD-4] QC4EO-D4-Use Cases Timeline Report 

1.3 Acronyms 
 

AR Acquisition Request 

BAQ Block Adaptive Quantization 

DLO Downlink Opportunity 

DTO Data Take Opportunity 

EO Earth Observation 

FFT Fast Fourier Transform 

InSAR Interferometric SAR 

IFFT Inverse Fast Fourier Transform 

FZJ Forschungszentrum Jülich 

MCF Minimum Cost Flow 

ML Machine Learning 

QC4EO Quantum Computing For Earth Observation 

QFT Quantum Fourier Transform 

QPU Quantum Processing Unit 

QUBO Quadratic Unconstrained Binary Optimization 

SAR Synthetic Aperture Radar 

SIFT Scale Invariant feature Transform 

SotA State-of-the-Art 

SVM Support Vector Machine 

TASI Thales Alenia Space Italy 

TASF Thales Alenia Space France 

TWMP Tree Weighted Message Passing 

UC Use Case 

VHR Very High Resolution 

WP Work Package 

 
1 https://eo4society.esa.int/projects/qc4eo-study/ 

https://eo4society.esa.int/projects/qc4eo-study/
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2 Study summary 

 
Earth Observation (EO) satellites generate a growing amount of data every year and highlight the need for 

scalable algorithms and adequate computational resources. However, the question about how to leverage 

quantum computing for enhancing the required computational steps is still largely unanswered. The 

QC4EO study proposes insightful answers and potential solutions to this question. The study has been 

conducted in the period March 2023 - October 2023 by a consortium led by Forschungszentrum Jülich, 

with Thales Alenia Space Italy/France, INFN and IQM, and supported by the European Space Agency. 

The scope of the study covers 12 use cases and a 15-year timeframe, evaluating a potential practical 

advantage of quantum computing in specific computational tasks and the availability of the required 

hardware in the near future. 

 

USE CASE TITLE 
SHORT 

DESCRIPTION 

BOTTLENECKS OF THE 

CONSIDERED 

CLASSICAL SOLUTION 

PROPOSED 

QUANTUM 

SOLUTION 

UC1: Mission 

Planning for EO 

Acquisitions 

Finding an optimal 

acquisition plan of a 

satellite constellation 

given user requests 

Acquisition planning is a 

combinatorial optimization 

problem of exponential 

complexity, currently solved 

with deterministic or 

heuristic methods 

Two different approaches 

have been studied: 

quantum optimization and 

quantum machine learning 

UC2: Multiple-view 

Geometry on Optical 

Images 

Analyzing satellite 

images of a specific area 

captured from various 

perspectives 

Keypoint extraction: 

combinatorial optimization 

problem of exponential 

complexity 

Quantum clustering: 

quantum k-medoids, 

quantum kernel density 

UC3: Optical Satellite 

Data Analysis 

Analyzing the semantic 

content of satellite images 

Kernel methods: quadratic 

algorithmic complexity and 

time overhead of kernel 

computation, expressivity of 

the kernel 

Quantum kernels 

UC4: SAR Raw  

Data Processing 

Image generation of an 

area of interest from the 

raw signal received by the 

SAR system 

Frequency-based methods 

(Range Doppler): 

polylogarithmic complexity 

of Fourier transformation 

Quantum Range  

Doppler Algorithm 

 

This study culminated in the release of four technical deliverables and an executive summary, each 

encompassing a detailed analysis of four selected use cases, i.e., mission planning for EO acquisitions, 

multiple-view geometry on optical images, optical satellite data analysis, and SAR raw data processing. 

The use cases have been selected according to their impact for the space industry and their compatibility 

with the expected development of quantum computing devices in the considered timeframe. For each use 

case, a relevant quantum algorithm is selected, a realistic problem instance is defined, and a timeline is 

proposed, mapping the problem size with quantum hardware requirements. Superconducting qubits and 

ion-traps are considered the most promising quantum computing technologies. The QC4EO study 

concludes that executing experiments on real hardware is expected to be possible for a reasonable 

problem size in the near future, providing practical insights on the theoretical advantage of the designed 

quantum algorithms. 
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3 Use cases summary 

3.1 UC1: Mission Planning for EO Acquisitions 
 

 
 

Mission planning is a pivotal aspect in EO, targeting the optimal scheduling of acquisition requests from 

end-users. State-of-the-art classical methods leverage deterministic and meta-heuristic algorithms to 

generate optimal solutions for smaller satellite constellations with thousands of optimization variables. 

However, as larger constellations featuring numerous satellites (𝑁 ≥ 100) increases, the task of finding 

optimal solutions becomes more challenging. The difficulty is further intensified by the necessity to 

account for more complex mission constraints, impacting both the required time and the quality of the 

solution. Consequently, the concept of quantum advantage should consider not only the computational 

time but also the quality of the solution obtained. The QC4EO study proposes two distinct approaches to 

attack this problem: in the first one, the mission planning is cast into an optimization problem, while in 

the second approach relies on machine learning. 

3.1.1 Instance for the quantum optimization approach 

 

The objective of the mission planning is finding the optimal scheduling of satellite observations for a 

given list of user requests. For each satellite and for each “acquisition request”, there are several “data 

take opportunities” and “downlink opportunities”. The solution must return, for each satellite, a time-

ordered shortlist of the possible observations and downlinks opportunities taking in consideration several 

constraints, i.e., on-board available memory, minimum preparation time between two subsequent 

acquisitions, time ordering of the acquisitions with respect to the downlink opportunities, available 

battery. We have formulated the problem in terms of a QUBO, where the original constraints now appear 

as penalty terms in a quadratic problem. We studied the feasibility of a quantum solution with the aim to 

improve the quality of the optimal solution. Our QUBO formulation is amenable for an implementation 

both on digital (or general purpose) quantum computer, using the Quantum Approximate Optimization 

Algorithm (QAOA), and analog specific-purpose quantum computers (or simulators) that are not able to 



    

REFERENCE : 

DATE : 

ES: Executive Summary 

07/12/2023 

  ISSUE :    1 Page : 7/15 

 

7 

 

  

run generic quantum algorithms, but are optimized to solve specific problems, i.e., QUBO problems using 

quantum annealing algorithm in the case of QA. We underline the importance of proceeding in both 

directions: digital quantum computers have been recently applied to similar scheduling problems with a 

reduced set of variables and constraints; on the other hand, quantum annealers (and quantum simulators) 

can already allocate up to thousands of qubits and have shown promising results in the solution of similar 

optimization problems. 

However, D-Wave states to be able to support real-world size applications with up to 1 million variables 

and 100,000 constraints via their quantum-classical hybrid solver: obviously, these numbers must be 

tailored on the specific problems based on the form of the interactions that appear in the cost function 

(including constraints). 

 
 Problem size Hardware requirements Timeline 

 Up to 5 years Up to 10 years Up to 15 years 

Minimum-

size 

problem 

2 satellites, 

2.000 requests 

Analog hardware 

(superconducting, neutral 

atoms): ~106 qubits 

(polynomial scaling of 

qubits). 

Digital hardware 

(superconducting): ~106 

qubits (polynomial 

scaling of gates), error 

correction required 

Problem 

implemented 

on NISQ 

devices 

Problem 

implemented 

on NISQ 

devices 

Problem 

implemented on 

NISQ devices 

Full-size 

problem 

10-100 

satellites, 

10.000-100.000 

requests 

Analog hardware 

(superconducting, neutral 

atoms): ~109 qubits 

(polynomial scaling of 

qubits), error correction 

required. 

Digital hardware 

(superconducting): ~109 

qubits (polynomial 

scaling of gates), error 

correction required 

No feasible 

implementation 

envisioned 

 

 

No feasible 

implementation 

envisioned 

 

 

Problem 

implemented if 

fully scalable 

error correction 

on 

superconducting 

devices become 

available 

 

The QUBO approach to a medium real size mission planning problem involves 106 binary variables.  

Although photonic platforms could potentially accommodate such a great number of qubits, we focused 

on forthcoming platforms such as superconducting qubits (digital quantum computers and quantum 

annealers), ion-trap digital quantum computers, and arrays of Rydberg atoms confined with optical 

tweezers. The main bottleneck for an implementation on quantum annealers (such as D-Wave Quantum 

Systems) is the required number of qubits, which depends both on the number of binary variables and the 

number of auxiliary qubits to account for the limited connectivity in the hardware. Our study anticipates 

that, while existing hardware can already manage very small size problems, it is feasible to solve at least 

the minimum-size problem (2 satellites, 2000 requests) within the 3 to 5 years. Our estimates are based on 

the D-Wave roadmaps, where they plan to reach more than 7000 qubits by 2024 with improved 

connectivity. Further, Rydberg simulators appear promising due to their intrinsic flexibility which allows 

for the adjustment of the connectivity to meet the specific requirements of each problem. On the other 

hand, the application of digital quantum computers appears feasible in a 5+ years horizon due to the 

number of qubits and gates required (see table below) even for a small-to-medium size problem. Since 
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QAOA is a hybrid-variational algorithm we expect that the implementation of error mitigation techniques 

will help the convergence towards optimal results. However, the timeline for solving the full-size problem 

for both approaches, general purpose quantum computers and quantum annealer-simulators extends 

beyond 15 years. 

3.1.2 Instance for the quantum machine learning approach 

 

In the second approach, the mission planning problem is addressed through a hybrid classical-quantum 

method based on a Quantum Neural Network (QNN) and a Reinforcement Learning (RL) framework. In 

this algorithm, an agent interacts with an environment, using a reward function to evaluate and assign 

values to the agent’s actions. The RL agent employs a policy model to determine which actions based on 

the state of the environment, thus transforming the state itself. The policy model is trained to select 

actions that maximize the probability of achieving a positive reward. We considered the policy model as a 

parameterized quantum circuit to establish the input-output relation of the model and apply it within the 

mission planning context.  

 
 Problem size Hardware requirements Timeline 

 Up to 5 years Up to 10 years Up to 15 years 

Minimum-

size 

problem 

2 satellites, 

2.000 requests 

Accuracy related to 

number of features. 

Experimental 

demonstration with 32 

features. Hardware 

requirements scale 

linearly: 2𝑓  features 

encoded using 2𝑞 qubits 

and 2𝑙  layers with 𝑓 =
𝑞 + 𝑙. 

Problem 

implemented 

on NISQ 

devices 

Problem 

implemented 

on NISQ 

devices 

Problem 

implemented on 

NISQ devices 

Full-size 

problem 

10-100 

satellites, 

10.000-100.000 

requests 

Accuracy related to 

number of features. 

Hardware requirements 

scale linearly: 2𝑓   

features encoded using 2𝑞 

qubits and 2𝑙  layers with 

𝑓 = 𝑞 + 𝑙. 

No feasible 

implementation 

envisioned 

 

 

No feasible 

implementation 

envisioned 

 

 

Problem 

implemented if 

fully scalable 

error correction 

on 

superconducting 

devices becomes 

available 

 
This quantum subroutine follows a classical pre-processing step based on classical neural network to 

reduce the number of relevant features, which serve as input for the QNN. This approach has 

demonstrated promising results for small-case instance and is viable for implementation on a general-

purpose digital quantum computer. Specifically, the proposed quantum circuit requires few qubits (the 

exact count depends on the number of input data features) and few layers, yielding a number of logical 

gates that is linear with the input size. In previous work, a circuit with 4 qubits (thus encoding 32 

features) and 8 layers, resulting in the implementation of more than 100 logical gates, was proposed to 

solve a small-medium size problem. This narrow quantum circuit can be already implemented on current 

state-of-the-art quantum hardware technology without full error-correction, such as IBM quantum 

computer based on superconducting qubits. Furthermore, IBM roadmap outlines the potential for 

hardware with over 4000 qubits by 2025, with plans for scaling to 10k-100k error-corrected qubits 
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beyond 2026. This makes the implementation of the QML approach for the mission planning problem 

feasible within the next 15 years, even for full-size scenarios. The primary challenges in this algorithm 

stem from the error rates of quantum gates, which are device-dependent and significantly impact the 

quality of the obtained solution. In this context, it is worth to highlight another promising platform: 

trapped-ion based quantum computers. Despite having a smaller number of currently available qubits, 

these machines feature longer coherence times and notably lower error rates, often orders of magnitude 

below those of IBM processors. Furthermore, this technology provides enhanced connectivity compared 

to superconducting architectures. A notable player in this domain is the American public company IonQ, 

which has set ambitious plans to achieve 1024 qubits by 2028. 

3.2 UC2: Multiple-view Geometry on Optical Images 
 

 
 

Multiple images of a given area of interest can be retrieved as satellites orbit around the planet. These 

images may be obtained from different satellites or from a single satellite during a long enough 

opportunity window or multiple passes. An important task is to analyze the changes that have occurred on 

the area of interest as time has passed and perform terrain reconstruction. To do so, these images are 

compared with each other. However, the agility of the satellites and their different orbits result in the 

acquisition of different views of the area of interest: images may be rotated or translated, the illumination 

or scale may differ from one image to another. This problem can be tackled with bundle adjustment, 

which consists in estimating the different changes by minimizing the re-projection error, a single 

functional with a high number of parameters due to the high number of degrees of freedom. These 

calculations must be executed in a limited time to allow for more accurate approaches for terrain 

reconstruction and reduce constraints on the satellite platform localization. This method is conducted by 

first extracting keypoints that characterize well the different images, then by matching those that are 

common to multiple images. In this study, we have addressed the keypoint extraction and the feature 

matching problem using an optimization formulation and by utilizing both gate-based quantum computers 

and quantum annealers. The keypoints extraction procedure is conducted using two different clustering 

approaches: quantum k-medoids clustering and quantum kernel density clustering. In the first case, the 

problem is formulated as a Quadratic Unconstrained Binary Optimization (QUBO) to select k distinct 
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objects located in the center of the image. In the second case, the problem is also formulated as a QUBO 

but the kernel matrix is computed by evaluating a quantum circuit on a gate-based quantum computer. 

Feature descriptors such as Scale Invariant Feature Transform (SIFT) are added to gain more information 

about the different scaling and rotations between images before performing the feature matching 

operation that uses quantum annealing as well as the kernel matrix computed a priori. We envision that 

ion-trap quantum computers and superconducting quantum computers and annealers are the most 

promising platforms for this use-case considering the needs for high qubit connectivity and for many 

qubits. The small size problem, which addresses images of tens of pixels, can already be solved 

efficiently using this quantum approach even though no clear advantage is demonstrated. However, 

extracting keypoints directly from the original image of a full-size problem would require a substantial 

number of qubits and high connectivity from the hardware architecture chosen. Such achievements seem 

unrealistic without scalable error corrected quantum computers and thus extend beyond 15 years. 

Nevertheless, an iterative approach that consists in solving the keypoint extraction problem on batches of 

medium-size images seems very promising. While the solution quality might slightly differ from that of 

the original approach, this process reduces greatly the resources needed for practical implementation on 

real hardware and may be possible within 5 to 10 years.  

 
 Problem size Hardware requirements Timeline 

 Up to 5 years Up to 10 years Up to 15 years 

Minimum-

size 

problem 

Extraction of 10 

keypoints on 

8x8 patches 

 

Feature 

matching of 10 

keypoints 

Analog hardware 

(superconducting, neutral 

atoms): 8x8 qubits. 

Additional digital 

hardware needed with 4 

qubits. 

Problem 

implemented 

on NISQ 

devices 

Problem 

implemented 

on NISQ 

devices 

Problem 

implemented on 

NISQ devices 

Full-size 

problem 

Extraction of 10 

keypoints on 

30.000x30.000 

pixel images 

 

Feature 

matching of 10 

keypoints 

Analog hardware 

(superconducting, neutral 

atoms): 30.000x30.000 

qubits. Error correction 

required. Additional 

digital hardware needed 

with 4 qubits. 

No feasible 

implementation 

envisioned 

 

 

No feasible 

implementation 

envisioned 

 

 

Problem 

implemented if 

fully scalable 

error correction 

on 

superconducting 

devices becomes 

available 
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3.3 UC3: Optical Satellite Data Analysis 
 

     
 

 
 

Optical satellite data analysis is indispensable for extracting valuable insights from acquired data, 

enabling the comprehensive study and enhanced understanding of terrestrial and oceanic processes, as 

well as Earth’s dynamic systems. This encompasses crucial functions such as land cover monitoring, 

environmental assessment, precision weather forecasting, disaster preparedness and response, cutting-

edge atmospheric research, and its application in diverse scientific and urban planning contexts. The 

QC4EO study focuses on the process of Land Use and Land Cover (LULC) classification, which aims at 

interpreting the information obtained by satellite data to create classification maps of the investigated 

scene. Classification maps are thematic products of great importance for many EO applications, such as 

monitoring deforestation, resource management, agriculture, and the study of the impact of climate 

change. This use case is addressed using quantum kernel methods. Kernel methods are a well-established 

framework in machine learning, and they can be understood as a two-step methodology. The first step 

involves mapping the data from the original input space into a higher-dimensional kernel feature space 

through a nonlinear function. The second step focuses on solving a linear problem within this transformed 

kernel space. These methods enable the design and interpretation of learning algorithms in the kernel 

space, which is nonlinearly related to the input space, effectively combining statistics and geometry. 

Importantly, they provide solutions with the desirable property of uniqueness, often requiring only a few 

sets of free parameters to ensure proper algorithm functioning. The mapping into quantum information is 

carried out by applying a data-dependent unitary transformation to an initial reference state. The circuit 

responsible for encoding, often referred to as the feature map, should be computationally challenging to 

simulate using classical methods; otherwise, it may not yield a quantum advantage. The quantum kernel 

function between two data points is obtained by taking the modulo square of the dot product between the 

quantum states obtained by encoding the corresponding feature vectors. Such a quantity cannot be 

directly calculated but must be estimated through a sampling procedure by performing measurements on 

the quantum state. The number of shots used to estimate each kernel function evaluation scales 

quadratically with the inverse of the additive error that one wants to achieve. To perform the training of 

the learning algorithm, it is necessary to evaluate the kernel function across all possible data pairs, and 

therefore, the number of such evaluations scales quadratically with the number of data points. The 

quantum kernel can then be used by classical supervised learning algorithms such as Support Vector 
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Machines (SVM) and Gaussian Processes (GP). These algorithms can be implemented on various 

quantum hardware platforms such as superconducting and trapped ion hardware. The number of qubits 

needed for this approach is strictly related to the number of features of data points, requiring a few 

hundred qubits for data with a high number of features (e.g., hyperspectral images, time series of data, 

etc.). The main obstacle for this approach is the computational time needed to calculate the kernel 

function evaluations between the data points. Access to quantum hardware resistant to errors is also 

important to obtain a good estimation of the kernel function. The QC4EO study anticipates that a full-size 

problem might be possible to solve within a 15-year timeframe. However, even though there are feature 

maps that are conjectured to be hard to simulate classically, it is not yet clear how the quantum kernel 

implementation might provide an advantage compared to classical solutions. 

 

In the most common implementation of a quantum kernel algorithm, each feature from the data vector is 

encoded in a single qubit of the quantum register. Such encoding is carried out by applying some 

parametrized quantum gates whose parameters depend on the feature value, for instance by applying qubit 

rotation with an angle depending on the feature value. The encoding can be applied multiple times to 

increase the model’s expressivity (data-reuploading algorithms). The number of required qubits is strictly 

related to the number of features in the data and amounts to about several hundred qubits for high-

dimensionality hyperspectral data. The required qubits connectivity in the quantum hardware depends on 

the encoding strategy that is used: when using the so-called “full-entanglement” strategy a CNOT gate is 

applied to each possible pair of qubits, thus requiring full connectivity, however, there are 

other possible entanglement strategy in which the CNOT gates are applied to a small subset of qubits 

pairs. To achieve a higher model’s expressivity, the encoding should ideally be repeated several times 

thus increasing the circuit’s depth. Such a higher depth will entail a higher number of gates and therefore 

error correction will be needed to ensure the correctness of the computation. Moreover, to estimate the 

kernel function value through a sampling procedure several run of the quantum circuits are needed. Such 

sampling procedure must be carried out for each possible data point pair (thus scaling quadratically with 

the dataset size). A low gate-operation time is therefore advisable in order to maintain the execution time 

low for a large problem with many image pixels. The two main quantum platform candidates for this 

application are superconducting qubits and ion-based quantum computers. Superconducting qubit 

hardware, such as those produced by IBM and IQM, provide, in general, a high number of physical qubits 

and a low gate time execution. The companies working with superconducting qubits have also plans to 

increase the number and the quality of qubits in the future: for instance, IBM is scheduled to provide a 

quantum computer with thousands of logical qubits in 2033. Ion trap quantum computers are another 

candidate for building quantum computing hardware: in general, they offer a higher connectivity and 

higher error fidelity when compared to some superconducting implementations, at the expense of a lower 

number of qubits. One of the main companies developing ion-trap quantum computing hardware is IONQ 

which currently provides quantum computer with a few tens qubit and it is planning to reach 1024 qubits 

in 2028, according to their technological roadmap. 

 

The current estimated times for the execution of a 2-qubits gate on superconducting and ion-trap 

hardware are 533 ns and 50 ms, respectively. By considering those values, it is possible to get an estimate 

for the execution time of a problem instance on quantum hardware by multiplying the number of 2-qubits 

gates by their corresponding execution times. For this use case each quantum kernel instance must be 

calculated for each possible pair of data points, i.e., for on N(N-1)/2 values, with N being the number of 

pixels. For each of those values, the number of 2-qubits gates depends on the specific encoding structure, 

for example, when using a full entanglement scheme, it amounts to n(n-1) CNOT gates, with n being the 

number of qubits. The feature map can then be repeated by an arbitrary number of times L (data-

reuploading models). Finally, for each kernel value to be estimated the circuit must run for a number of 
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times that scales quadratically with the inverse of the average additive error that one wants to achieve. By 

taking these notions into consideration, it is possible to get an estimation of the number of CNOT gates 

and therefore the execution time. 

 
 Problem size Hardware requirements Timeline 

 Up to 15 years 

Minimum-

size 

problem 

Learning 

problem with 

~1.000 training 

samples 

Digital hardware 

(superconducting, ion-

trap): number of qubits 

fixed, equal to number of 

features (up to ~100), 

number of gates scales 

linearly/quadratically 

according to the 

entanglement scheme. 

Execution time has to be 

reasonably short 

The problem can be implemented, but the feasibility 

depends on the gate times. The total time can be 

computed as described above. Currently, the 

execution time for a sufficient accuracy bound is 

prohibitive. As no roadmaps are available, no 

estimation can be provided for the future 

Full-size 

problem 

Learning 

problem with 

~10.000 training 

samples 

Digital hardware 

(superconducting, ion-

trap): number of qubits 

fixed, equal to number of 

features (up to ~100), 

number of gates scales 

linearly/quadratically 

according to the 

entanglement scheme. 

Execution time has to be 

reasonably short 

A time factor of 100 with respect to the minimum-

size problem must be accounted 

 

 

3.4 UC4: SAR Raw Data Processing 
 

 
 

Synthetic Aperture Radar (SAR) is an active imaging technique that has had a significant impact on 

remote sensing, due to its effectiveness with different weather and lighting conditions. In SAR imaging, 

microwave signals are sent to the analyzed area by an airborne or spaceborne radar system. Then, the 

backscattered echo signals are collected and sampled by the radar. Image formation consists in generating 

an intensity image that gives a visual description of the physical properties of the analyzed area, starting 

from the acquired raw signal. A number of processing steps have to be performed, mostly related to the 

physical setting of the imaging system. The Range Doppler is a widely employed algorithm for this 
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purpose. Using the Fast Fourier Transform (FFT), the signal is transformed to the frequency domain, in 

which the processing steps are performed. This process is computationally expensive (FFT alone has time 

complexity 𝑂(𝑁 𝑙𝑜𝑔 𝑁 ) ) and challenging to extend to large-scale SAR acquisitions. 

We proposed a quantum version of the Range Doppler algorithm based on the Quantum Fourier Trans- 

form (QFT). In theory, QFT provides an exponential speedup over FFT. However, a practical algorithmic 

speedup can potentially be achieved only when the whole processing pipeline is performed in the 

quantum domain, as repeatedly measuring the output of a QFT circuit hinders the algorithmic speedup. 

On the one hand, the required number of qubits would be relatively low, as it scales only logarithmically 

with the input signal size. On the other hand, the potentially very large circuit depth poses a challenge for 

NISQ devices, as it would require low gate error rates and long coherence times. Ion-trap devices may be 

able to solve a minimum size problem in the future, due to its better performance according to these 

requirements. Estimations still show a high error rate for ion-trap devices (IonQ) even for small-size 

problems. However, even an improvement in the error rate can lead to a breakthrough. For full-size 

problems, scalable quantum error correction is required, which can realistically be achieved only by 

superconducting devices. Optimistic forecasts envision this achievement within the next 15 years, also 

due to the low number of logical qubits required. Additional studies on the feasibility of the approach and 

its specific circuit implementation are crucial, as different formulations of the QFT can lead to different 

hardware requirements. 

 
 Problem size Hardware 

requirements 

Timeline 

 Up to 5 years Up to 10 years Up to 15 years 

Minimum-

size 

problem 

Image 

formation of a 

16x16 patch 

(specific object 

and location) 

Qubits scale 

logarithmically with the 

image size, while gates 

scale exponentially. 

Digital hardware (Ion-

trap, superconducting): 

~8 qubits, long 

coherence times and low 

error rates (not reached 

now) 

No feasible 

implementation 

envisioned 

Problem 

possibly 

implemented 

on ion-trap 

devices, 

according to 

the 

improvement in 

gate error rate 

 

Problem possibly 

implemented on 

ion-trap devices, 

according to the 

improvement in 

gate error rate 

Full-size 

problem 

Image 

formation of a 

10000x10000 

patch 

(Sentinel-1 

acquisition) 

Qubits scale 

logarithmically with the 

image size, while gates 

scale exponentially. 

Digital hardware (Ion-

trap, superconducting): 

~27 qubits, very long 

coherence times and low 

error rates 

No feasible 

implementation 

envisioned 

 

 

No feasible 

implementation 

envisioned 

 

 

Problem 

implemented if 

fully scalable 

error correction 

on 

superconducting 

devices become 

available 
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4 Conclusions 
 

The QC4EO study provides an analysis of the exploitation of quantum algorithms and computing 

technologies for four selected use cases that hold high interest and impact in the domain of Earth 

Observation (EO). The main results regarding the expected predictions for effective usage of quantum 

computing are illustrated in the timeline. The tables show time predictions regarding the applicability of 

quantum computing to the use cases for different problem instance sizes. Some problems of small size, 

which are still distant from effective practical use, might be solved in a 3-5 year time frame. Full-size 

problems, on the other hand, are expected to be efficiently solved in at least 15 years, with improved, and 

possibly error-resilient, quantum computing hardware. It is important to point out, however, that these 

predictions were made considering the current knowledge of different quantum hardware platforms, and 

therefore, the actual possibility of efficiently solving the use-cases using quantum computing may change 

depending on future research findings. 
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