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1 Introduction 
 

1.1 Scope and context of the document 

This document is part of a comparative study between existing quantum computers technologies. The study 

is particularly focused on integrated systems and Quantum Computing machines. 

 

Based on the machines roadmaps defined in the previous phase of the study (WP3), we will derive a feasible 

timeline to process each of the identified Earth Observation use cases. Hence, regarding the algorithms  

that  will  run  on  the  chosen  hardware, we will estimate the minimum amount of needed resources, which 

is essential in the timeline definition. 

 

Then we will estimate the level of investment that companies and research institutions can provide to make 

the proof of concept. Each investment will strongly rely on the capacity of each actor to have access to real 

hardware. 

 

1.2 Applicable documents 

[AD-1] QC4EO Study Statement of Work 

[AD-2] Proposal submitted for QC4EO 

 

1.3 Reference documents 

[RD-1] QC4EO-D1-Use Case Definition and Design Report 

[RD-2] QC4EO-D2-Machine Definition Report 

[RD-3] QC4EO-D3-Machines Roadmap Assessment Report 

 

1.4 Acronyms 

AR Acquisition Request 

DLO Downlink Opportunity 

DTO Data Take Opportunity 

EO Earth Observation 

FTQC Fault-Tolerant Quantum Computing 

KPI Key Performance Indicator 

ML Machine Learning 

NISQ Noisy Intermediate Scale Quantum 

PPO Proximal Policy Optimization 

PQC Parametrized Quantum Circuits 

QAOA Quantum Approximate Optimization Algorithm 

QC4EO Quantum Computing For Earth Observation 

QEC Quantum Error Correction 

QFT Quantum Fourier Transform 



    

REFERENCE : 

DATE : 

D4:QC4EO Study 1 

18/11/2023 

ISSUE :    1.1 Page : 5/31 

 

QNN Quantum Neural Network 

QPU Quantum Processing Unit 

QTRL Quantum Technology Readiness Level 

QUBO Quadratic Unconstrained Binary Optimization 

RBF Radial Basis Function 

RDA Range Doppler Algorithm 

RL Reinforcement Learning 

SIFT Scale Invariant Feature Transform 

SotA State-of-the-Art 

SVM Support Vector Machine 

UC Use Case 

WP Work Package 
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2 Use cases timeline structuring 
 

This section describes the information used to operate the feasible timeline for each of the identified use 

cases: 

 

• Current performances of the selected algorithm: Brief remind of algorithm and its actual 

performances on quantum machine (if any) 

• High-level description of algorithms implementation: Description of the structure of the algorithm 

and highlight of the quantum part. When possible, distinction between the different subroutines of 

the quantum part (“algorithmic blocks”) 

• Bottlenecks: Bottlenecks in an algorithmic point of view (i.e. KPIs of WP2) and of different « 

algorithmic blocks » if several are existing 

• Original kernel simplification: Identification of bottlenecks that necessitate to simplify the original 

kernel to a Noisy Intermediate Scale Quantum (NISQ) Computing 

• Hardware machines and roadmaps: Comparative study (from WP3 results and bottlenecks) of 

different quantum machines types, and selection of the most appropriate for each use-case, 

considering its algorithm constraints defined in the previous section 

• Scaling of the proposed algorithms: Study the scaling of the proposed algorithms on the selected 

machines 

• Cost of computing: Highlight the resources required to solve a problem of a given size and how they 

scale with the problem size. One possible way (not exclusive) is, for complex algorithms that can be 

split in multiple “blocks”, to establish when these different algorithmic blocks can be efficiently 

implemented. Idem for the simplified versions of the original kernel if such a simplification has been 

proposed 

• Expected time availability: Establish an approximate timeline taking into account both a pessimistic 

and an optimistic development of the hardware (from WP3). This timeline must include expectations 

about when a minimal size problem and a full size problem can be tackled by the quantum approach 

• Bibliography: references to the specific use case 
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3 List of use cases 
 

The following table lists the use cases which have been already selected and analyzed in the report delivered 

by WP1. References to the corresponding timeline definition are provided. 

 

USE CASE 

NUMBER 

USE CASE TITLE TIMELINE DESCRIPTION 

1 

Mission Planning for EO Acquisitions 

Scenario 1a: Quantum annealing 

Scenario 1b: Quantum machine learning 

 

See section 4.1.1 

See section 4.1.2 

2 
Multiple-view Geometry on Optical 

Images 

See section 4.2 

3 Optical Satellite Data Analysis See section 4.3 

4 SAR Raw Data Processing See section 4.4 
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4 Use cases timeline definition 

4.1 Use case n°1: Mission Planning for EO Acquisitions 

4.1.1 Scenario 1a: Quantum annealing 
 

4.1.1.1 Proposed algorithms 

 
4.1.1.1.1 Current performances of the selected algorithms 

For the solution of the mission planning problem, we chose quantum annealing (QA) and its discretized 

version, the gate-model algorithm (Quantum Approximate Optimization Algorithm, QAOA). These 

approaches are heuristic methods that yield a candidate solution which is not guaranteed to be the exact 

solution. Strict bounds for the approximation ratio (how close is the found solution to the best possible 

solution) are not available. However, this is also true to operationally employed classical heuristics. An 

upper bound for a potential speed-up is assumed to be quadratic (cf. Grover algorithm). Current experiments 

are inconclusive concerning a potential quantum advantage as it is inherently difficult to compare heuristic 

method as the performance heavily depends on the specific problem instance to solve. 

 
4.1.1.1.2 High-level description of algorithms implementation 

Quantum annealing (QA) [Edward2000] and QAOA [Fahri2014] both aim to find the solution of a binary 

optimization problem. In current hardware this is limited to quadratic cost functions (Quadratic 

Unconstrained Binary Optimization, QUBO). The algorithms start with an equal superposition of all 

possible binary strings in a quantum register. Then the algorithmic primitives drive the quantum register 

towards the solution of the binary optimization problem. The latter is encoded into the quadratic couplings 

𝑄𝑖𝑗 and linear coefficients 𝑄𝑖𝑖  of the QUBO problem ∑ 𝑄𝑖𝑗𝑥𝑖𝑥𝑗, 𝑥𝑖 ∈ {0,1}𝑖𝑗 . To solve the problem for 

quantum annealing or QAOA one needs to give the quadratic and linear coefficients, as well as multiple 

method specific parameters. For QA these are for example the annealing time and the initial state. For 

QAOA one needs to specify the number of layers, which roughly translate into the number of discretization 

steps in the QA-QAOA analogy. Another important variable is the choice of the initial state and the so-

called driver (or mixer) operation.  

 
4.1.1.1.3 Bottlenecks 

The main bottlenecks for both QA and QAOA are: 

1. Precision: The problem specification is limited by the machine precision of the couplings. This can 

lead to severe suppression of the performance [Stollenwerk2020] as it leads to a misspecification of 

the problem to be solved. For QAOA specifically, high error rates lead to limited usability for 

current NISQ devices due to quickly accumulating errors for large problem sizes (see also the 

discussion in Sec. 4.1.1.2.1.1) 

2. Connectivity: Hard optimization problems like the mission planning problem at hand are 

characterized by nontrivial interactions. i.e., the non-vanishing quadratic couplings in the QUBO 

cannot be directly mapped to a two-dimensional graph as they occur in most solid-state based 

quantum computing platforms (superconducting, spin-qubits). In such cases, compilation strategies 

(embedding for QA, qubit routing for QAOA) must be employed, which may lead to a polynomial 

overhead in terms of quantum computing resources [Zhou2020]. 
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3. Limited width and depth: The size of the problems that can be solved with QA and QAOA are 

limited by the number of qubits (circuit width) as well as the efficient circuit depth, which scales 

with the problem size. The latter is limited by decoherence and error rates as it is shown in the 

figures below. 

 
4.1.1.1.3.1 Original kernel simplification for NISQ applications 

This does not apply to the current use case, because we are not considering problem subdivision here. 

 

4.1.1.2 Hardware machines and roadmaps 

 
4.1.1.2.1 Scaling of the proposed algorithm 

As it was described above, the potential speed-up for both QA and QAOA is believed to be bounded from 

above by quadratic scaling. The total solution time for these approaches is comprised of the time for a single 

run as well as the number of repetitions needed to get a satisfactory result (sample complexity). The former 

is given by the annealing time, which usually scales inversely with the quadratic minimum energy gap 

[Edward2000] during the annealing process. For QAOA a similar time scaling in terms of gate depth is 

plausible. 

 
4.1.1.2.1.1 Cost of computing 

In the context of QA and QAOA, the number of logical qubits comprises both the number of binary 

variables within the cost function and the number of auxiliary variables needed to account for constraints 

in the form of inequalities. For an average mission planning problem, with parameters such as the number 

of satellites in the constellation, the number of Acquisition Requests (AR), the number of Data Take 

Opportunity (DTO), and the number of Download Opportunity (DLO), as reported in Table 2 from [RD-

2], the requirement for logical qubits falls within the range of 103 to 104 when considering preprocessing. 

 

When implementing this problem on D-Wave hardware with the current Pegasus graph, the estimated 

number of physical qubits needed typically falls within the order of 104 to 105 qubits. It's worth noting that 

while the D-Wave Advantage 2 QPU currently provides access to 7000+ qubits, the D-Wave roadmap holds 

the promise of devices with improved connectivity, starting from 2025. In an optimistic scenario, these 

improved QPUs could potentially handle problems with up to 103 logical variables. 

 

Furthermore, QPUs based on Rydberg atoms are also making significant strides in terms of hardware 

development. These systems are capable of implementing adiabatic protocols of a QUBO formulation, 

when operating in analog mode [Wurtz2022]. 

 

We roughly estimate the computing error and running time for the QAOA algorithm in terms of two-qubit 

gates in the NISQ regime. For this estimate we assume that the number of two-qubit gates scales as n2log(n) 

where n is the number of qubits; this scaling can be expected to be a best-case scenario, or lower bound on 

the computing cost.  

 

Assuming a two-qubit error of 7.4×10-3 for superconducting qubits, or 1×10-3 for trapped ion qubits, we 

plot the accumulated error that arises when running the QAOA algorithm on the left-hand side of Figure 1. 

To get a feeling for the expected runtime, we further plot the duration of such calculations on the right-

hand side of Figure 1, based on two-qubit gate durations of 533 ns or 50 ms for superconducting and trapped 

ion qubits, respectively.  
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From the plot of the error rate in Figure 1, we take that the error approaches 100% for less than 50 qubits. 

These current error rates become prohibitive even for small problem sizes, since measurement outcomes of 

such quantum circuits contain too little information.  

 

There are various paths that can be followed from here. One is to consider significantly improved error 

rates. Another path is to consider the effect of error mitigation, which is a technique that alters the qubit 

operations with the aim of suppressing the accumulated error during the calculation to some degree, without 

correcting errors completely. This way the slope of the accumulated error, like that in Figure 1, becomes 

more gradual, thus allowing for larger parameter sets. Indeed, the IBM Quantum team has recently reached 

deep circuits with many quantum gates by employing a type of error mitigation [Kim2023]. 

 

For the problem at hand, however, we consider a third approach, which is that of quantum error correction. 

In this case, logical qubits are represented by several physical qubits, thereby introducing a redundancy that 

allows the correction of most errors.  

 

As noted above, in an optimistic scenario the number of relevant quantum gates scales as n2log(n) with the 

qubit number n. This scaling is roughly equal to that of Shor’s famous factoring algorithm. For the factoring 

problem, [Wilhelm2020] has computed the resources necessary to factor a 1024-bit integer (which would 

be the task to break RSA-1024 encryption), which requires more than 1024 logical qubits. Their result is 

that roughly 1011 physical superconducting qubits are needed to carry out this calculation.  

 

In the mission planning problem, problem instances whose solution requires between roughly 100 to 1000 

logical qubits are instances that are hard to solve exactly. To arrive at a tangible number of qubits that are 

required to solve this problem, we use the comparison to Shor’s algorithm and the calculation carried out 

in [Wilhelm2020] mentioned above. From this, we infer that an error corrected quantum computer based 

on superconducting circuits with 1011 physical qubits would likely suffice to solve the mission planning 

problem with 1000 logical qubits via QAOA in a reliable manner.  

 

 

 

 

Figure 1: Error rates and execution time of QAOA: left: Approximation of 

accumulated error rates for QAOA, right: Approximation of runtime for QAOA. 
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4.1.1.2.2 Expected time availability 

 

Minimum size 

problem 
Full size problem 

Quantum 

maturity within 

15 years 

Timeline 

Up to 5 years Up to 10 

years 

Up to 15 years 

[103 logical binaries  

example 

~2 satellites, ~100 

requests, ~10 

DTO-DLO] 

 

Possible 

implementation: 

NISQ-compatible 

Ion-traps QC (low 

gate error rates), 

Superconducting 

qubits QC (fast 

gate operations); 

SC quantum 

annealer  and 

neutral Rydberg 

atoms in optical 

lattice 

[108 logical binaries 

example 

~102 satellites, ~50K 

requests, ~102 DTO-

DLO] 

 

Challenges: 

Large number of 

required qubits. 

Close to all-to-all 

connectivity 

(High) 

Superconducting 

qubits QC QTRL 8-9 

(High) Trapped ions 

QC QTRL 8 

(High) Neutral 

Rydberg atoms in 

optical lattice QTRL 

7-8 

(Medium) 

Superconducting 

quantum annealer 

QTRL 5 

Minimum size 

problem 

implemented on 

Superconducting 

quantum 

annealer and 

neutral Rydberg 

atoms in optical 

lattice 

Minimum 

size gate-

based 

problem 

implemented 

on  

ion-traps QC 

and 

superconduct

ing qubits 

QC (without 

error 

correction) 

 

 

Optimistic: 

Full size gate 

based problem 

implemented on 

NISQ 

superconducting 

qubits QC with 

very low error 

rates and fast 

gate times 

 

Pessimistic: 

Full size problem 

implemented on 

NISQ ion-trap QC 

with very low error 

rates and fast 

gate times 

Full size problem 

implemented on 

Rydberg atoms  

 

We note that it does not seem impossible that a fully error corrected quantum computer with 1011 qubits 

will be realized within the next 15 years. For example, the quantum computing roadmap of Google 

Quantum AI leads up to the development of an error-corrected quantum computer with 1 million qubits,1 

which was announced to be realized by 2030.2  

 

4.1.1.3 Bibliography 

 

[Edward2000] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Michael Sipser: “Quantum Computation 

by Adiabatic Evolution”, 2000; arXiv:quant-ph/0001106]. 

[Fahri2014] Fahri, E. A quantum approximate optimization. arXiv:1411.4028, 2014. 

 
1 https://ai.google/static/documents/approach-quantum-computing.pdf 
2 https://qubitreport.com/quantum-computing-science-and-research/2021/05/20/1-million-qubits-by-1-1-2030-an-ambitious-goal-from-

google-and-how-to-get-there/ 

https://ai.google/static/documents/approach-quantum-computing.pdf
https://qubitreport.com/quantum-computing-science-and-research/2021/05/20/1-million-qubits-by-1-1-2030-an-ambitious-goal-from-google-and-how-to-get-there/
https://qubitreport.com/quantum-computing-science-and-research/2021/05/20/1-million-qubits-by-1-1-2030-an-ambitious-goal-from-google-and-how-to-get-there/
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[Stollenwerk2020] T. Stollenwerk et al., "Quantum Annealing Applied to De-Conflicting Optimal Trajectories 

for Air Traffic Management," in IEEE Transactions on Intelligent Transportation Systems, 

vol. 21, no. 1, pp. 285-297, Jan. 2020, doi: 10.1109/TITS.2019.2891235. 

[Zhou2020] Zhou, L., Wang, S.T., Choi, S., Pichler, H., & Lukin, M. (2020).  Quantum Approximate 

Optimization Algorithm: Performance, Mechanism, and  Implementation on Near-Term 

Devices. Phys. Rev. X, 10, 021067. 

[Kim2023] Y. Kim, A. Eddins, S. Anand, et al., Evidence for the Utility of Quantum Computing before 

Fault Tolerance, Nature 618, 500 (2023) 

[Wilhelm2020] 

 

F. K. Wilhelm, R. Steinwandt, B. Langenberg, et al., Status of quantum computer 

development, published via the German Federal Office for Information Security (2020), 

https://www.bsi.bund.de/qcstudie 

[Wurtz2022] Wurtz, J., Lopes, P., Gemelke, N., Keesling, A., & Wang, S. (2022). In Industry 

applications of neutral-atom quantum computing solving independent set problems. 

4.1.2 Scenario 1b: Quantum machine learning 
 

4.1.2.1 Proposed algorithms 

 
4.1.2.1.1 Current performances of the selected algorithms 

The algorithm considered to solve the mission-planning problem is a hybrid Quantum Neural Network 

(QNN) used as a policy model in a Reinforcement Learning (RL) environment. The quantum part of the 

algorithm is a quantum circuit added to the classical neural network as an ultimate layer. Currently, such 

an algorithm showed promising results in solving the mission-planning problem for small satellite 

constellations [Rainjonneau2023]. A 4-qubit parameterized quantum circuit has been simulated to solve a 

mission-planning problem with 2 satellites and 2000 requests, and has demonstrated a higher acquisition 

completion rate than a classical greedy algorithm. 

 

Nowadays, classical algorithms with meta-heuristics are used to tackle the re-ordering of requests 

considering their level of priority for large constellations of satellites (10 to 100 satellites) and tens of 

thousands Acquisition Requests (AR). However, these methods do not guaranty a “good” solution for such 

large problems. Even if no quantum speedup has been demonstrated so far, expectations are that quantum 

algorithms may provide a better time-to-solution in the upcoming decades, or a “better” solution than 

current state-of-the-art in a similar computation time duration. 

 
4.1.2.1.2 High-level description of algorithms implementation 

Two approaches have been considered in the implementation of the QNN in the work proposed by 

TerraQuantum and Thales Alenia Space [Rainjonneau2023]. They consist in hybrid classical-quantum 

versions of the Proximal Policy Optimization (PPO) and AlphaZero algorithms. In both cases, the relevant 

parameters of the constellation and Acquisition Requests are used as features, and fed into a neural network. 

The first layers of the neural network are classical. They aim to reduce the number of relevant features 

which are eventually used as inputs to a parameterized quantum circuit. The outputs of the quantum circuit, 

i.e. the last layer of the QNN, enable the RL agent to assign the requests to each satellite. Typically, the 

quantum circuit is composed of an ansatz, which parameters are taken from the values obtained from the 

classical part of the QNN, and is repeated multiple times before measuring the output values. 

https://www.bsi.bund.de/qcstudie
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Figure 2. Parameterized quantum circuit proposed in [Rainjonneau2023]. The ansatz is highlighted in 

green.  

 

 
4.1.2.1.3 Bottlenecks 

The quantum circuit proposed in [Rainjonneau2023] is a 4-qubit circuit in which 32 features can be encoded 

due to the repetition of the ansatz over eight layers. A larger number of features could be encoded if either 

a larger number of layers are added, or a larger number of qubits is available, or both. However, this would 

significantly affect the performance of the algorithm, as the quantum part would be a very different circuit.  

 

Estimating whether or not such modifications would lead to a better quality solution requires further 

investigations and a full study of the specific quantum circuits in this context. Nevertheless, the number of 

classical layers of the QNN could be reduced by increasing the number of encoded features in the quantum 

circuit. This could potentially lead to a faster execution time of the algorithm depending on the hardware 

performances. Still, a phenomenon occurring in machine learning approaches, known as the vanishing 

gradient problem, may occur. This phenomenon occurs in the backpropagation process in the training of 

artificial neural networks and can lead to suboptimal solutions. Such issue also occurs for large QNN and 

lead to the appearance of barren plateaus. According to [Kwak2021], the probability of occurring barren 

plateaus increases exponentially with the number of qubits. No clear solution has been found for large scale 

QNN yet, although the problem can be avoided for small scale QNN by setting good initial parameters. 

 

Although the number of qubits is likely not a bottleneck for such algorithm, other hardware constraints pose 

serious challenges to their efficient implementation [Zaidenberg2021]. The limited depth of the quantum 

circuit that the hardware can handle while maintaining a near-optimal solution is to be taken into account 

if one modifies the quantum circuit to a larger one. The larger the quantum circuit is, the longer the qubit 

decoherence time must be in order to perform operations with a satisfying fidelity. Furthermore, the 

arrangement of qubits is also an important limitation that depends strongly on the entangling capabilities 

and thus the arrangement/number of entangling gates and SWAP gates in the quantum circuit. All these 

limitations come back to the problem of minimizing the error produced in the computation in the NISQ era. 

 
4.1.2.1.3.1 Original kernel simplification for NISQ applications 

Due to the small number of qubits required for the quantum circuit already studied, the algorithm can 

already be implemented in NISQ computers and do not require further simplifications. A small size problem 

has already been solved using quantum simulators. It is expected that such problems can already be solved 

by current NISQ hardware, especially superconducting and trapped ions platforms. 
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4.1.2.2 Hardware machines and roadmaps 

The hardware requirements of this algorithm mostly consist in having a low enough error rate to faithfully 

execute the quantum circuit. The constraints in terms of number of qubits is met by most hardware 

technologies. The most promising technologies for small circuits such as the 4-qubit circuit studied are 

superconducting qubits and trapped ions. 

 
4.1.2.2.1 Scaling of the proposed algorithm 

The hybrid classical-quantum algorithm proposed makes use of a small quantum parameterized circuit and 

does not necessarily need to become larger to tackle full operational problems. It is the role of the classical 

part of the QNN to reduce the number of features down to the number of inputs used in the quantum circuit. 

Nevertheless, it might be beneficial to study larger/deeper quantum circuits in order to reduce the classical 

burden and potentially speed up the training phase. 

 

In any case, the number of qubits is expected to remain reasonable. Quantum computers based on 

superconducting qubits already allow the implementation of circuits of hundreds of qubits when ion traps 

quantum computers currently face difficulties reaching more than 10 qubits. It appears that both 

technologies can be used to perform such small quantum circuits. 

 

These technologies must be compared regarding the error rate obtained by executing this circuit and their 

potential achievements in the next years concerning gate fidelities, coherence times and connectivity. Both 

are very promising platforms, with a current QTRL estimated to 5-6 and successful demonstrations of 

quantum error correction experiments on small QPUs. Their QTRL is expected to be of 8-9 within the next 

10 years, achieving scalable versions of their quantum computers and potentially exceeding the power of 

classical computers. 

 
4.1.2.2.1.1 Cost of computing 

The cost of computing depends on the fidelity of the gates, the gate times as well as the circuit depth. Ion 

traps quantum computers have complete connectivity while current superconducting qubits quantum 

computers have a relatively low connectivity in mainstream architectures. However, considering the small 

number of qubits used in the proposed circuit, this advantage is not significant here. Furthermore, 

superconducting qubits show promising developments in view of long-range connectivity for the future as 

well. 
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Both technologies have shown significant improvements in entangling gate fidelities over the years with 

values about 99.7% for superconductors and 99.9% for ion traps in 2020. When considering a small size 

circuit (in particular, 4 qubits and 8 layers), it appears that NISQ implementations are less subject to errors 

when using ion traps quantum computers. Ion traps computers would therefore be a good choice for near 

term implementations of small-scale problems. 

Figure 3. Error rate produced by the CNOT gates in the quantum circuit studied, as a function of the 

number of ansatz layers. Left: 4-qubit circuit, Right: 8-qubit circuit. The green dotted line corresponds to 

the circuit presented in Figure 2. 

 

No restriction on the size of the problem to solve has been made. However, the larger the problem size, the 

more data need to be processed in the early (classical) steps of the neural network. Such a quantum circuit 

could thus be used for large scale problem as well but improvements in the error rates and gate times are 

needed in order to achieve relatively good quality solutions. However, a quantum speedup in the time-to-

solution may not be significant since a large part of the computation is classical. Increasing the size of the 

circuit in order to perform a larger fraction of the computation in a quantum manner is a possibility but a 

trade-off is to be made between the size of the circuit used and the fidelity of its execution as shown in the 

previous graphs. In that regard, superconducting qubits quantum computers may very likely prove to be 

more interesting in the future. Indeed, their gate times are much faster (by two orders of magnitude) and 

gate fidelities will certainly be improved in the next years. 
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4.1.2.2.2 Expected time availability 

 

Minimum size 

problem 

Full size 

problem 

Quantum 

maturity within 

15 years 

Timeline 

Up to 5 years Up to 10 years Up to 15 years 

2 satellites, 2.000 

requests 

 

Possible 

implementation: 

NISQ-compatible 

Ion-traps QC (low 

gate error rates), 

Superconducting 

qubits QC (fast 

gate operations) 

 

10-100 satellites, 

10-100K requests 

 

Challenges: 

Large amount of 

data as inputs to 

the QNN, long 

training phase, 

very low error rate 

needed and fast 

gate times, 

possible barren 

plateaus for larger 

circuits 

(High) 

Superconducting 

qubits QC QTRL 

8-9 

Minimum size 

problem 

implemented on 

NISQ devices 

(ion-traps, 

superconducting 

qubits) 

Optimistic: 

Full size problem 

implemented on 

NISQ 

superconducting 

qubits QC with 

very low error 

rates and fast 

gate times 

Same algorithmic 

architecture (and 

larger quantum 

circuits if judged 

promising)  

Pessimistic: 

Full size problem 

may require fully 

scalable error 

corrected 

quantum 

computers to be 

addressed 
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4.2 Use case n°2: Multiple-view Geometry on Optical Images 

4.2.1 Proposed algorithms 
 

4.2.1.1 Current performances of the selected algorithms 

The feature-extraction and matching problem between multiple satellite optical images requires heuristics, 

problem decomposition and a large computational power to be solved classically. The quantum approach 

considered in this study consists in extracting relevant keypoints of the images in a first part, and matching 

the keypoints of different images in a second part. The study conducted by Piatkowski et al. 

[Piatkowski2022] showcases that quantum algorithms could already perform these tasks for small images 

of a few tens of pixels using a quantum annealing approach. Both the keypoint extraction problem and the 

feature-matching problem are solved using D-Wave’s quantum annealer. No quantum speedup has been 

observed yet but future developments of the technology might provide a more efficient way to solve these 

problems than classical approaches. 

 

4.2.1.2 High-level description of algorithms implementation 

Two quantum algorithms are offered in order to extract keypoints from a given image. Both these 

algorithms rely on efficient clustering methods. The first one, quantum k-medoids, consists in minimizing 

the distance between the keypoints and the rest of the pixels while maximizing the distance between two 

distinct keypoints. This optimization problem is solved on a quantum annealing machine using a QUBO 

formulation. The second one, quantum kernel density clustering, consists in finding cluster centroids such 

that two feature map distributions are as similar as possible. This optimization problem is also solved using 

a QUBO formulation. However, the kernel matrix that defines the feature map is computed via a 4-qubit 

quantum circuit. This circuit transforms a uniform superposition via n-qubit unitary operations. Here, the 

data of two features x and y is passed as parameters of these universal unitary gates. The choice of the 

operators is not fixed but it is expected that a potential quantum speedup could only be possible if the 

feature map cannot be efficiently simulated classically. 

Figure 4. Quantum circuit to construct the kernel matrix [4]. 

 

The feature matching part is also conducted on a quantum annealer. It consists in identifying matches 

between keypoints of two distinct images using feature descriptors such as Scale Invariant Feature 

Transform (SIFT). The optimization problem is also formulated as a QUBO and the kernel function 

previously mentioned can be used to access a high-dimensional feature space. 
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4.2.1.3 Bottlenecks 

Satellite optical images of interest are composed of 3000x3000 pixels up to 30000x30000 pixels on 3 RGB 

channels or 4 channels. Simply encoding such large data using a quantum annealing approach described 

above would require up to tens of millions of qubits, which cannot be done without Fault-Tolerant Quantum 

Computing (FTQC). This presents a first major bottleneck but it is possible to circumvent it by dividing the 

keypoint extraction task of a full image in the same task to smaller parts of the initial image. 

 

In addition, even though the number of qubits for the circuit realizing the feature map does not, the circuit 

depth increases significantly with the number of pixels. The challenge is to find an efficient implementation 

of the n-qubit operators used in the quantum circuit. Here, the suggested operations are the ones proposed 

in [Piatkowski2022, Havlíček2019] where N is the number of pixels. 

 

This implies that the quantum circuit is composed of a large number of CNOT gates and multi-qubit gates, 

which would later be transpiled into a set of SWAP gates and two-qubit gates. This design can also be 

simplified as it has been done in [Piatkowski2022]. 

 

Having a larger number of qubits in this circuit does not necessarily help achieving a quantum advantage 

because all the qubits end up being measured. Moreover, it is necessary to run this circuit a number of times 

that is quadratic with the number of data points in order to determine the full kernel matrix. However, the 

measurement operation is one that destroys any potential quantum advantage when applied excessively. 

 

The feature matching process faces the same problem, which is the limited number of qubits allowed by 

the hardware machine. The larger the number of qubits available, the larger the images this algorithm can 

process. 

 
4.2.1.3.1 Original kernel simplification for NISQ applications 

The process of keypoints extraction from a very large image can be subdivided into the same process for 

much smaller images in order to reduce the hardware constraints concerning the number of qubits needed 

to perform the computation. The idea is to extract a small number of keypoints in all the small images (of 

hundreds or thousands of pixels) and iteratively extract some of these keypoints by considering aggregates 

of such sub-images until the desired number of keypoints have been extracted from the initial image. This 

bypasses the issue of accessing a large number of qubits in this algorithm but remains the need for high 

connectivity between qubits to limit the number of operations and thus the error that would result from 

them. This intermediate step consists in solving a medium size problem rather than directly extracting 

keypoints from the full initial image. This medium size problem could potentially be solved in the NISQ 

era. 

 

Concerning the quantum circuit for the computation of the kernel matrix, the operation considers local 

feature functions for all subset of 𝑆 = [𝑁], which involves a series of multi-qubit gates that drastically 

increase the depth of the circuit when transpiled into the native gates of the hardware. This approach is too 

costly and it is recommended to consider only pairwise features (which involve two-qubit gates), i.e. |𝑆| =
2, for the algorithm to be NISQ-compatible. 
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Such simplifications are legitimate and do not hinder the resolution of the initial problem, but only future 

hardware developments will allow to proceed without them. 

4.2.2 Hardware machines and roadmaps 

The scaling of the proposed algorithm, and the size of the problems that can be solved, depends on the 

hardware capabilities to provide an all-to-all connectivity, a large number of qubits and to execute gate 

operations in a short time and high fidelity.  

 

4.2.2.1 Scaling of the proposed algorithm 

On the one hand, the QUBO instance of the keypoint extraction algorithm can currently be handled by 

superconducting quantum annealers as long as the images are reduced to the size of a few tens of pixels. 

Even though the number of qubits in such devices may be much larger than necessary, their performance 

is limited by the connectivity between these qubits. On the other hand, cold atoms quantum computers have 

native all-to-all connectivity but scaling up beyond thousands of qubits is a serious technological challenge. 

 

The quantum kernel clustering approach makes use of a quantum circuit with a small number of qubits. 

However, this circuit is to be run a quadratic number of times compared to the number of data points. 

Emphases should be made on the necessity of having access to high gate fidelities. The circuit depth is also 

relatively small when considering the simplified version of the operators, which makes ion traps and cold 

atoms promising hardware technologies considering their native all-to-all connectivity as well. It is possible 

to consider a quantum circuit with a larger number of qubits to access a higher dimensional feature space 

but the circuit depth and the number of 2-qubit gates would increase significantly as they depend on the 

number of combination of all qubits taken two at a time 𝐶2
𝑛. As mentioned in the previous section, 

increasing the number of qubits implies increasing the number of measurements, which can potentially 

hinder any potential quantum speedup. The circuit described in this study can be executed on NISQ 

hardware based on cold atoms, ion traps or superconducting qubits with a specific design to meet the 

connectivity requirements. 

 

The feature-matching problem uses the quantum circuit that represents the feature map as well as a QUBO 

instance to solve the corresponding optimization problem. This algorithm faces the same challenges as the 

ones just discussed. 

 

In order to efficiently solve the multiple view geometry problem on a full size optical image, the quantum 

annealer utilized must be able to efficiently use millions of qubits. This would therefore require a fully 

scalable error-corrected quantum computer, which will likely not be available in the next decade. In 

addition, the quantum circuit would have to be executed billions of times in order to compute the whole 

kernel matrix. The error rate of gate operations would need to be extremely low in order to maintain a 

satisfying level of fidelity of the results. Whether this would lead to a better quality solution than what is 

achievable classically is still an open question. 
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4.2.2.1.1 Cost of computing 

The cost of computing for one execution of the quantum circuit is estimated from its circuit depth, the 

fidelity of the 2-qubit gates and their gate times. The following estimates of computing resources are those 

achieved when running the series of CNOT gates contained in the circuit described above, depending on 

the number of qubits, with the current state of superconducting technology and ion traps hardware. 

Figure 5. (a) Error rate produced by the CNOT gates in the quantum circuit studied, as a function of the 

number of the number of qubits. The green dotted line represents the circuit presented in Figure 4.  

(b) Time to execute the ensemble of all 2-qubit gates in the circuit. 

 

Even though both technologies can be used as of now to execute the proposed algorithm, their advantages 

differ. The ion traps based machines allow for a better fidelity when implementing a 2-qubit gate but it 

come at the cost of a very slow execution of the circuit when compared to superconducting qubits. This is 

particularly noticeable as the size of the circuit considered is larger. Typically, a superconducting machine 

would be faster by two orders of magnitude (0.025ms versus 2.5ms for a single execution of the 4-qubit 

circuit presented above). These estimates are computed to highlight only the trend of execution time and 

their order of magnitude. They do not stand as real execution time values. The CNOT here are assumed to 

be executed one after the other but some of them can be executed in parallel. The real execution time would 

therefore be lower than those indicated in the graphs. 

 

Furthermore, the 2-qubit gate error rates may seem relatively small for the ion-traps technology but the 

circuit is run a large number of times within the algorithm, 𝑁(𝑁 − 1)/2 times where 𝑁 is the number of 

pixels of the image. It is therefore necessary to improve the gates fidelities in view of solving the keypoint 

extraction and feature matching problems on large images. 

 

In this perspective, ion traps may be viewed as the most promising technology in the long term due to their 

larger gate fidelities and all-to-all connectivity, if the circuit chosen remains small. Superconducting qubits 

may also be promising if a large connectivity can be achieved with some clever architecture and if the gate 

fidelities are improved. 
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4.2.2.2 Expected time availability 

 

Minimum size 

problem 

Full size 

problem 

Quantum 

maturity within 

15 years 

Timeline 

Up to 5 years Up to 10 years Up to 15 years 

Extraction of 10 

keypoints on 8x8 

patches 

Feature matching 

of 10 keypoints 

 

Possible 

implementation: 

NISQ-compatible 

Superconducting Q 

annealer for QUBO 

Ion-traps/cold 

atoms (low gate 

error rates and all-

to-all connectivity), 

Superconducting 

qubits QC (fast 

gate operations) 

3099x2029 pixels 

up to 

30Kx30K pixels 

 

Challenges: 

Large amount of 

data thus large 

number of qubits 

required (millions), 

very low error 

rates and  fast 

gate times needed 

for the numerous 

runs of the circuit 

(High) 

Superconducting 

qubits QC QTRL 

8-9, 

Ion traps QC 

QTRL 8 

Minimum size 

problem 

implemented on 

NISQ devices 

(ion-traps, 

superconducting 

qubits) 

 

Optimistic: 

Medium size 

problem  

(~1000s pixels) 

implemented on 

NISQ devices 

Pessimistic : 

Medium size 

problem (~1000s 

pixels) 

implemented on 

NISQ devices 

(large number of 

qubits for QA with 

high connectivity, 

low error rates 

and gate times for 

quantum circuit) 

Full size problem 

requires fully 

scalable error 

corrected 

quantum 

computers to be 

solved 
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4.3 Use case n°3: Optical Satellite Data Analysis 

4.3.1 Proposed algorithms 
 

4.3.1.1 Current performances of the selected algorithms 

In [Havlicek2018], one of the first work dealing with application of quantum kernels to Machine Learning 

(ML), a Support Vector Machine (SVM) employing a quantum-generated kernel managed to classify an 

artificially generated binary classification dataset with 100% accuracy. However, it is important to point 

out that the dataset was specifically designed so that it could be efficiently classified by the quantum kernel 

and that the training and test size were small, consisting of 20 samples each. In the study it was also shown 

that there are some quantum kernels that are conjectured to be hard to simulate classically thus setting the 

ground for potential quantum advantage in case such quantum kernels were shown to provide better 

prediction results. However, how and whether quantum kernels methods could provide advantage in terms 

of accuracy over classical ones is still an open area of research. 

 

More recently, in 2023, a study employing quantum kernels with Support Vector Machines to a cloud 

detection problem was conducted [Miroszewski2023]. In such a work different quantum kernel 

implementations were tested with datasets of different training sizes and the results compared with SVMs 

employing classical well-known kernels. As the training size increased (values ranging from 10 to 1280 

were considered) the accuracy of some quantum kernel implementation roughly matched the one achieved 

by the classical Radial Basis Function (RBF) kernel. The accuracy achieved, however, was still slightly 

lower than the accuracy achieved by current state of the art deep learning methods employing neural 

networks with convolutional layers. 
 

4.3.1.2 High-level description of algorithms implementation 

The aim of Quantum Kernel Estimation is to use Parametrized Quantum Circuits (PQC) to implement a 

kernel function that is then used with ML kernel classification models. In this setting the PQC, which in 

this case is also referred to as “feature map”, is used to encode the feature vectors in corresponding quantum 

states. The parameters of the feature map circuit are dependent on the feature vector entries and is therefore 

possible to associate to an input feature vector the corresponding encoded quantum state. The quantum 

kernel function value between two feature vectors from the dataset is then obtained by considering the 

fidelity between the encoded quantum states. The fidelity between quantum states cannot be accessed 

directly so it is necessary to estimate it through a sampling procedure.  
 

4.3.1.3 Bottlenecks 

One of the main bottlenecks of classical kernel methods is that they require a number of evaluations that 

scale quadratically with the training size. This characteristic is also inherited by the quantum kernel and 

thus potential quantum speed-ups are to be searched for in how the usage of a quantum kernel might provide 

advantage over a classical one in terms of performances rather than a speed-up in computational 

complexity. 

 

The number of qubits needed for the quantum kernel algorithm is strictly related to the number of features 

of the datapoints. When considering optical remote sensing images, the number of spectral bands is about 

a few tens whereas for some hyperspectral images it might reach a few hundred bands. Usually, the 
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encoding of the feature map is structured such that the number of qubits equals the number of features of 

the data points.  

 

To efficiently implement a feature map that cannot be easily simulated classically many 2-local qubit gates 

are usually needed, thus requiring a high qubit connectivity that is not available in current superconducting 

architectures [Russo2023]. 

 

Due to the sampling error that arises when estimating the fidelity through sampling, the Gram matrix, i.e. 

the matrix storing the kernel function evaluations between all data points, might not be positive semi-

definite as required by kernel theory. Therefore, some post-processing is needed to regularize the obtained 

matrix into a positive-definite one [Hubregtsen2021].  

 
4.3.1.3.1 Original kernel simplification for NISQ applications 

The number of qubits required in a circuit to implement a quantum kernel depends on several factors. 

Among the main ones are the number of features of the training samples, the encoding procedure defined 

by the feature map and the strategy used to estimate the fidelity between quantum states that is used as 

kernel function evaluation. In some cases, therefore, it might be useful to perform feature reduction in order 

to reduce the number of required qubits. 

4.3.2 Hardware machines and roadmaps 

4.3.2.1 Scaling of the proposed algorithm 

The required number gate operations to implement a quantum kernel depends on the circuit structure of the 

feature map. Moreover, to achieve entanglement in the encoded state, the number of two-qubits gate 

operations scales with the number of qubits. The order of the scaling depends on the feature map: for 

example, the implementation of the ZZ feature map by IBM Qiskit allows to choose different encoding 

strategies having linear or polynomial scaling in the number of gates to achieve entanglement in the encoded 

state. The estimation of the fidelity between quantum states also affects the usage of auxiliary computing 

resources: the estimation through the adjoint circuit approach does not require extra qubits at the expense 

of doubling the circuit depth, whereas the SWAP test does not affect the depth of the circuits but requires 

a total of 2n+1 qubits, with n being the number of qubits in the feature map [Hubregtsen2021]. Moreover, 

since the fidelities between quantum states are obtained through a sampling procedure, the number of 

samples needed will depend on the precision that one wants to achieve. Finally, as mentioned earlier, the 

quantum kernel inherits the quadratic scaling in the number of kernel evaluations from classical kernel 

methods. 

 
4.3.2.1.1 Cost of computing 

It is not possible to estimate, in general, the cost of computing for every quantum feature map, as it depends 

on the circuit structure of the map itself. We therefore chose to estimate the cost of computing for the ZZ 

feature map as defined in the Qiskit software library as an example. We chose a structure of the feature 

map with one repetition, meaning that the circuit is only repeated once, and a full entanglement structure 

which entails a quadratic scaling of the number of CNOT gates needed. 
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Figure 6. (a) Error rate produced by the CNOT gates in the ZZ feature map with one repetition and full 

entanglement strategy, as a function of the number of the number of qubits.  (b) Time to execute the 

ensemble of all 2-qubit gates in the circuit as a function of the number of qubits 

 

In Figure 6 the error rate and the execution time are shown as a function of the number of qubits for the 

considered feature map. The total number of CNOT operations required for this specific feature map 

architecture scales quadratically with the number of qubits.  

 

The number of repetitions of the feature map circuit does not affect the nature of the scaling since it will 

correspond to a scalar factor in the computational cost function. 

 

Regarding the hardware implementation, since for quantum kernels the number of qubits required is not 

particularly high, the ion trap hardware might be a good choice since it currently provides better error rates 

than superconducting qubits, however, the ion trap hardware also entails a higher execution time.  

 

4.3.2.2 Expected time availability 

 

Minimum size 

problem 

Full size 

problem 

Quantum 

maturity within 

15 years 

Timeline 

Up to 5 years Up to 10 years Up to 15 years 

Learning problem 

with 1000 training 

samples. The 

nature of the data 

points affects the 

size of the image 

being investigated  

 

Possible 

implementation: 

NISQ-compatible 

Superconducting 

Ion-traps/cold 

Typical image size 

has few thousand 

pixels per row and 

column 

 

Challenges: 

Large number of 

quantum state 

fidelities that need 

to be estimated 

(scales 

quadratically with 

dataset size) 

(High) 

Superconducting 

qubits QC QTRL 

8-9, 

Ion traps QC 

QTRL 8 

Optimistic: 

Larger problems 

with several 

thousand qubits 

might be solved 

with real 

hardware 

Medium size 

problem 

implemented on 

NISQ devices 

Full size problem 

might be possible, 

but the compute 

time might still be 

very high due to 

the high number 

of fidelities to be 

estimated.  
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atoms (low gate 

error rates and all-

to-all connectivity), 

Superconducting 

qubits QC (fast 

gate operations) 
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4.4 Use case n°4: SAR Raw Data Processing 

4.4.1 Proposed algorithms 

4.4.1.1 Current performances of the selected algorithms 

Quantum Fourier Transform (QFT) has been a well-known quantum algorithm for decades. Small 

implementations of the QFT have been validated on real or simulated quantum devices. Acceptable levels 

of fidelity can be reached with a 6-qubit circuit, considering realistic estimates of current hardware noise 

[Martin2020]. Nevertheless, a direct advantage cannot be reached with respect to the classical Fourier 

Transform when used independently as part of an algorithm operating on classical data. For this reason, a 

full-quantum Range Doppler Algorithm (RDA) for the selected use case is proposed. The algorithm is still 

defined at a high level and no experiments have been performed. Nevertheless, its feasibility is strictly 

dependent on the feasibility of QFT. 

 

4.4.1.2 High-level description of algorithms implementation 

A definition of the quantum RDA is shown in Figure 7. 

 
Figure 7. High-level scheme of the proposed quantum Range Doppler Algorithm (RDA). 

 

The total number of pixels is 𝑁𝜏 × 𝑁𝜂. Encoding the complex values as quantum state amplitudes requires 

𝑛𝜏 + 𝑛𝜂 qubits, with 𝑛𝜏 = log2(𝑁𝜏) and 𝑛𝜂 = log2(𝑁𝜂). A multidimensional QFT can be separated into 

multiple QFT circuits applied to specific dimensions (range, azimuth) [Pfeffer2023]. The remaining 

correction operations required in the RDA are encoded as quantum circuits applied to the amplitudes. Their 

precise and efficient definition is not analyzed here, as it is expected to have a lower impact on the feasibility 

of the circuit compared to amplitude encoding and QFT. 

 

4.4.1.3 Bottlenecks 

The number of qubits required is logarithmic with respect to the size of the image. This can affect the 

scalability of the algorithm for large signal acquisitions when the number of available qubits is limited. 

However, the main bottleneck is the circuit depth, as a result of stacking multiple processing steps. It is 

known that the number of CNOT gates required to implement a QFT are Θ(𝑁2) [Plesch2011], whereas an 

amplitude encoding circuit requires Θ(2𝑁) CNOT gates [Nielsen2010]. The need for such a deep circuit 

goes far beyond the algorithmic trend in the NISQ era that considers small variational circuits. 
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4.4.1.3.1 Original kernel simplification for NISQ applications 

Smaller areas can be analyzed, which then decrease the number of qubits needed to encode the total number 

of pixel values, and in turn reduce the circuit depth. A full-size image could be divided into multiple tiles 

separately processed. However, this affects the quality of the correction steps and the obtained image. The 

circuit cannot be further simplified from an algorithmic perspective, as the Range Doppler Algorithm 

contains the basic steps required to apply corrections to the acquired signal. Some circuit design methods 

can help develop quantum circuits with a lower depth at the cost of more ancillary qubits. 

4.4.2 Hardware machines and roadmaps 

4.4.2.1 Scaling of the proposed algorithm 

The scaling depends on the chosen architecture. Superconducting qubits and ion traps are considered. 

 

For the full processing pipeline to be executed, a sufficiently reliable hardware implementation, in terms of 

coherence time and gate fidelity, is ideally required. However, in the considered setting, this cannot be 

achieved in the near future. For this reason, scalable Quantum Error Correction (QEC) is a more realistic 

requirement. This mechanism can achieve reliable performance on machines with a large number of qubits, 

suggesting that superconducting qubits could be the main choice. The number of qubits is currently not a 

limiting factor, as the 8 qubits requirement for the minimum problem can be already achieved by both 

technologies. 

 
4.4.2.1.1 Cost of computing 

 
Figure 8. (a) Error rate produced by the estimated number of CNOT gates in QFT and amplitude 

encoding, as a function of the number of qubits, for different computing technologies (b) Time to execute 

the ensemble of all 2-qubit gates in the circuit as a function of the number of qubits, for different 

computing technologies. Highlighted are the estimated minimum and full-size problem values. 

 

An estimate of the error rate and the execution time of the proposed circuit is shown in Figure 8. The 

performance of the different computing technologies takes into account the current SotA. These estimates 

are computed to highlight only the trend of execution time and their order of magnitude. They do not stand 

as real execution time values. The CNOT here are assumed to be executed one after the other, but the 

proposed circuit is inherently parallel. The contribution of the intermediate algorithmic blocks for 

correction is not included. The time overhead of a QEC algorithm cannot be estimated. 
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From the estimates, it can be seen that QEC is crucial for the execution of the algorithm. Despite the better 

error rates for trapped ions, the technology is still not mature enough. However, the higher QTRL expected 

in 10 years could bring trapped ions into consideration. The total execution time is acceptable. Note that 

the circuit does not require variational training or a large number of multiple executions.  

 

4.4.2.2 Expected time availability 

 

Minimum size 

problem 

Full size 

problem 

Quantum 

maturity within 

15 years 

Timeline 

Up to 5 years Up to 10 years Up to 15 years 

Image formation of 

a 16x16 patch 

(specific object and 

location) 

 

Possible 

implementation: 

Ion-traps/cold 

atoms (low gate 

error rates and all-

to-all connectivity), 

Superconducting 

qubits QC (fast 

gate operations) 

Image formation of 

a 10000x10000 

patch (Sentinel-1 

acquisition) 

 

Challenges: 

Large amount of 

data thus large 

number of qubits 

required, very low 

error rates and 

fast gate times 

needed for the 

deep circuit 

(High) 

Superconducting 

qubits QC QTRL 

8-9, 

Ion traps QC 

QTRL 8 

No feasible 

implementation 

envisioned 

Optimistic: 

Minimum size 

problem 

implemented on 

NISQ devices 

(ion-traps) 

Pessimistic: 

Minimum size 

problem 

implemented on 

NISQ devices 

(ion-traps) 

 

Optimistic: 

Full size problem 

solved on fully 

scalable error-

corrected 

quantum 

computers 

(superconducting) 

 

4.4.3 Bibliography 
 

[Martin2020]   Martin, A., Lamata, L., Solano, E., & Sanz, M. (2020). Digital-analog quantum algorithm for 

the quantum Fourier transform. Physical Review Research, 2. 

https://doi.org/10.1103/PhysRevResearch.2.013012 

[Pfeffer2023]   Pfeffer, P. Multidimensional Quantum Fourier Transformation. ArXiv, 2023. 

[Plesch2011] Plesch, M., & Brukner, Č. Quantum-state preparation with universal gate decompositions. 

Physical Review A, 83(3), 032302, 2011. 

[Nielsen2010] Nielsen, M. A., & Chuang, I. L. Quantum computation and quantum information. Cambridge 

university press, 2020. 

 

 

 

 

https://doi.org/10.1103/PhysRevResearch.2.013012


    

REFERENCE : 

DATE : 

D4:QC4EO Study 1 

18/11/2023 

ISSUE :    1.1 Page : 29/31 

 

5 Conclusion 
 

5.1.1 Use case 1: Mission Planning for EO Acquisitions 

In scenario 1a, we have proposed a formulation of the mission planning problem as an optimization 

problem, for which attainable solutions exist on both a general-purpose quantum computer utilizing the 

Quantum Approximate Optimization Algorithm (QAOA) and a Quantum Annealer (QA), or an analog 

quantum simulator. The primary challenge inherent to this problem stems from the extensive qubit 

resources it demands. 

Although photonic platforms could potentially accommodate a greater number of qubits, our focus is 

primarily on forthcoming platforms such as superconducting qubits (quantum computers and quantum 

annealers), ion-trap quantum computers, and Rydberg atoms confined within an optical lattice. 

We anticipate that the minimum-size problem can be addressed within the next 3 to 5 years using an 

analog approach, while the gate-based formulation will necessitate 5 to 10 years due to the substantial 

number of qubits and gates required. However, the timeline for solving the full-size problem extends 

beyond 15 years for both approaches. 
 

In scenario 1b, we have focused on a hybrid classical-quantum method based on a Quantum Neural 

Network (QNN) to address the mission planning problem. Promising results have already been obtained 

from the simulation of a small-scale instance of the problem in previous works. The main advantage of this 

approach is the limited number of qubits required for its quantum part, no matter the size of the problem 

considered.  

Therefore, we expect that emerging quantum hardware technologies such as ion-trap quantum computers 

and superconducting qubits may be used to solve the full-size problem within the upcoming decade if 

their developments allow for the realization of very low error rates and fast gate time. Even though no 

quantum advantage has been demonstrated theoretically, further studies on the design of an optimal QNN 

could be an interesting direction to follow in view of obtaining a quantum speedup and/or a better quality 

solution to the problem. 

5.1.2 Use case 2: Multiple-view Geometry on Optical Images 

We have addressed the keypoint extraction and the feature matching problem using an optimization 

formulation and by utilizing both gate-based quantum computers and quantum annealers. 

We envision that ion-trap quantum computers and superconducting quantum computers and annealers 

are the most promising platforms for this use-case considering the needs for high qubit connectivity and 

for a large number of qubits.  

The small size problem, which addresses images of tens of pixels, can already be solved efficiently using 

this quantum approach even though no clear advantage is demonstrated. However, extracting keypoints 

directly from the original image of a full-size problem would require a substantial amount of qubits and 

high connectivity from the hardware architecture chosen. Such achievements seem unrealistic without 

scalable error corrected quantum computers and thus extend beyond 15 years. Nevertheless, an 

iterative approach that consists in solving the keypoint extraction problem on batches of medium-size 

images seems very promising. While the solution quality might slightly differ from that of the original 
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approach, this process reduces greatly the resources needed for practical implementation on real hardware 

and may be possible within 5 to 10 years. 

5.1.3 Use case 3: Optical Satellite Data Analysis 

We have proposed a study on the potential application of quantum kernel methods, which are 

implemented by encoding an input feature vector into a corresponding quantum state. The algorithm can 

be implemented on various quantum hardware platforms such as superconducting and trapped ion 

hardware. 

The number of qubits needed for this approach is strictly related to the number of features of data points 

and is not particularly high, requiring a few hundred qubits for hyperspectral data with many acquisitions 

at different spectral bands. The main obstacle for this approach is the computational time that is needed 

to calculate the kernel function evaluations between the data points. We anticipate that a full-size problem 

might be possible to solve within the 15 years’ time frame. However, it is not yet clear whether the 

quantum kernel implementation might provide an advantage compared to classical solutions. 

5.1.4 Use-case 4: SAR Raw Data Processing 

We have proposed a quantum circuit version for the Range Doppler Algorithm, based on the Quantum 

Fourier Transform. SAR imaging is a highly relevant data-intensive approach in the context of Earth 

Observation, due to its effectiveness with different weather conditions. An algorithmic speedup can 

potentially be achieved when the whole processing pipeline is performed in the quantum domain. The large 

circuit depth poses a challenge for NISQ devices, as they would require relatively low gate error rates 

and long coherence times. Ion-trap devices may be able to solve a minimum size problem in the future, 

but scalable Quantum Error Correction can realistically be achieved only by superconducting devices. 

Optimistic forecasts envision this achievement within the next 15 years, also due to the low number of 

logical qubits required. Additional studies on the feasibility of the approach and its specific circuit 

implementation are required.  

5.2 Graphical timeline 
 

Comparing the industrial roadmaps of quantum computing platforms with the expected size of these use 

cases we can estimate an hypothetical timeline for the use cases: 
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5.3 Few directions and next steps (for the next 3 years) to start working 
 

In order to demonstrate the advantage of a quantum approach on Earth Observation applications, further 

studies have been identified as interesting directions to start working, among which: 

 

• Studies on the design of an optimal QNN in view of obtaining a quantum speedup and/or a 

better quality solution to the mission planning problem, 

• Iterative approach that consists in solving the keypoint extraction problem on batches of 

medium-size images, 

• Studies to analyze whether the quantum kernel implementation might provide an advantage 

compared to classical solutions for optical satellite data image classification, 

• Additional studies on the feasibility of the Quantum Fourier Transform approach and its 

specific circuit implementation. 
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