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1 Scope of the document and terminology 
 

Beginning with the compilation of Use Cases (UCs) identified in Work Package (WP) 1, the primary aim 

of this document is to provide an initial quantitative evaluation of the quantum computers and simulators 

required for each specific UC. This effort aligns with the overarching objective of the QC4EO project, 

which seeks to create a roadmap delineating the timeframe during which Quantum Computing (QC) can 

deliver advantages in addressing critical challenges within the field of Earth Observation (EO). 

 

The consortium methodology involves the formulation of a "template" wherein each partner contributes 

their expertise to determine the sizing requirements for each UC. The sizing process begins by 

instantiating the classical problem, considering the number of variables and parameter ranges. 

Subsequently, the sizing proceeds by formulating an appropriate quantum instance that encompasses the 

necessary number of qubits and other hardware resources for the efficient execution of quantum 

algorithms. The assessment of machine sizing involves estimating resources such as the number of qubits, 

their connectivity, error rates, coherence times, and other relevant key performance indicators. This 

document presents a selection of targeted platforms, which will undergo further refinement in subsequent 

WPs. 

 

The structure of this document is as follows: 

 

• Chapter 2 provides a comprehensive bibliography encompassing all the information 

utilized in evaluating the various scenarios. 

• Chapter 3 elucidates the adopted methodology employed to define the quantum 

instance within the framework of machine sizing. 

• Chapter 4 establishes the template employed for the sizing process for each UC. 

• Chapter 5 comprises the inventory of UCs alongside references to their 

corresponding mathematical descriptions as refined in the deliverable of WP1. 

• Chapter 6 represents the primary output of this document, presenting the machine 

sizing particulars for each UC. 

• Chapter 7 presents a concise summary table incorporating the sizing outcomes and 

the targeted platforms. 
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2.1 Applicable documents 
 

[AD-1] QC4EO Study Statement of Work 

[AD-2] Proposal submitted for QC4EO 

[WP1-del] Deliverable of WP1 

2.2 Acronyms 
 

AQC Adiabatic Quantum Computation 

AR Acquisition Request 

BAQ 

DFT 

Block Adaptive Quantization 

Discrete Fourier Transform 

DLO Downlink Opportunity 

DTO Data Take Opportunity 

EO Earth Observation 

FFT Fast Fourier Transform 

InSAR Interferometric SAR 
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INFN Istituto Nazionale di Fisica Nucleare 

IFFT Inverse Fast Fourier Transform 

FZJ 

LULC 

LHZ 

Forschungszentrum Jülich 

Land Use Land Cover Classification 

Lechner-Hauke-Zoller 

MCF Minimum Cost Flow 

ML Machine Learning 

NISQ 

PCA 

PPO 

PQC 

PRF 

QA 

QAOA 

Noisy Intermediate-Scale quantum 

Principal Component Analysis 

Proximal Policy Optimization 

Parameterized Quantum Circuits 

Pulse Repetition Frequency 

Quantum Annealing 

Quantum Approximate Optimization Algorithm 

QC4EO Quantum Computing for Earth Observation 

QFT 

QKE 

QML 

QNN 

Quantum Fourier Transform 

Quantum Kernel Estimation 

Quantum Machine Learning 

Quantum Neural Network 

QPU 

qRAM 

Quantum Processing Unit 

quantum Random Access Memory 

QUBO 

RCMC 

RDA 

RL 

RSF 

Quadratic Unconstrained Binary Optimization 

Range Cell Migration Correction 

Range Doppler Algorithm 

Reinforcement Learning 

Range Sample Frequency 

SAR Synthetic Aperture Radar 

SIFT Scale Invariant Feature Transform 

SotA State-of-the-Art 

SVM Support Vector Machine 

TASI Thales Alenia Space Italy 

TASF 

TN 

TXPL 

TTN 

Thales Alenia Space France 

Tensor Network 

Transmitted Pulse Length 

Tree Tensor Network 

TWMP Tree Weighted Message Passing 

UC Use Case 

VHR Very High Resolution 

WP Work Package 

3 Perimeter of the analysis 
 

In order to explore the potential applications of quantum computing in the Earth Observation (EO) field, 

we have identified four specific cases during the first work package (WP1) that cover all stages of a 

satellite-based EO mission, including mission analysis, data acquisition, processing, and data analysis. 

This study focuses on comparing quantum solutions to these identified problems in relation to the current 
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approaches employed by the consortium's companies or how the researchers involved have benchmarked 

their algorithms. 

 

In this document, we initially present the mathematical models for each problem and provide the sizing of 

classical instances in terms of the number of variables and parameter ranges. These instances reflect real-

world problems commonly addressed using standard classical approaches. Subsequently, we analyse the 

viable quantum algorithms, including hybrid and quantum-inspired ones, for each computational instance. 

We also provide a brief overview of the quantum devices that can currently be employed to tackle these 

problems, encompassing both quantum simulators and general-purpose quantum computers.  

 

The process of identifying the potential optimal quantum computing architecture(s) within the given 

reference timeframe (3-5 to 15 years) involves evaluating the sizing of these architectures using Key 

Performance Indicators (KPIs). These KPIs must effectively differentiate between the chosen quantum 

platforms while considering the problem level of complexity. For this reason, we define different 

quantities for quantum simulators as opposed to quantum computers. The outcome of this work will be a 

summary of the relevant machine sizing information for the selected UCs, accompanied by a proposal of 

the targeted quantum platform(s) for each use case.
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4 Machine sizing description 

This section details the information utilized in determining the machine sizing for each of the identified 

use cases: 

 

Problem instance: This refers to a comprehensive representation of the variables and parameters 

necessary for the classical implementation of the problem in real-world scenarios, considering its 

actual size. 

Quantum algorithms: A detailed description of the selected quantum algorithm(s) employed for solving 

the problem. 

Quantum instance: In the context of machine sizing for quantum computing, a quantum instance refers 

to the mathematical formulation of a quantum problem, encompassing its parameters and variables. 

This quantum instance comprises various elements, including the number of qubits involved, their 

connectivity or couplings, the specific quantum gates utilized, as well as the initialization procedures 

and measurement operations employed for executing the quantum algorithm. 

Quantum platforms: These denote the actual devices or platforms where the algorithm can currently be 

implemented. 

Number of qubits: The number of qubits required to represent the problem and execute the algorithm at 

a real-scale level. This involves understanding the problem size and complexity and mapping it to the 

appropriate qubit representation. 

Key Performance Indicators (KPIs) for digital quantum computing: This encompasses metrics such 

as circuit depth, the order of magnitude for 2-qubit gates, and the order of magnitude for 

measurements (or Pauli terms). 

KPIs for quantum simulators: These include factors like connectivity and the local/global addressing of 

qubits within the simulator. 

Tensor Network (TN) approaches: This entails the contribution of quantum-inspired methods based on 

tensor network representations. 

Proposal of the targeted quantum platform: This outlines the rationale behind the selection of a 

specific quantum platform for the next 15 years. It is crucial to consider that available platforms may 

have limitations and constraints, such as restricted qubit connectivity, a limited gate set, or limitations 

on measurement capabilities. The proposal for the quantum platform must account for these 

constraints and leverage the choice based on the available roadmaps. 
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5 List of use cases 
 

The following table lists the use cases which have been already selected and analyzed in the report 

delivered by WP1. References to the corresponding mathematical formulations are provided. 

 

 

SCENARIO 

NUMBER 
USE CASE TITLE 

MATHEMATICAL 

DESCRIPTION 

1 Mission Planning for EO Acquisitions See Section 5.1 [WP1-del] 

2 Multiple-view Geometry on Optical Images See Section 5.2 [WP1-del] 

3 Optical Satellite Data Analysis See Section 5.3 [WP1-del] 

4 SAR Raw Data Processing See Section 5.4 [WP1-del] 

Table 1 List of selected use cases. 

6 Use cases definition and sizing 
 

This chapter contains the machine sizing for each UC according to the criteria previously defined. 

Starting from the mathematical formulation of the problem, we first provide the range of variables and 

parameters expected for realistic-size problems solved with classical techniques. To proceed with the 

sizing first, we describe the selected quantum algorithm and then, define the corresponding quantum 

instance and the quantum platforms now available to address the specific problem. With this information, 

we proceed with the sizing following the KPIs selected above. Based on this evaluation, each use case 

study proposes a target quantum platform aiming to provide an effective solution in the next 15 years. If 

possible different algorithms will be considered as well as the corresponding sizing. This analysis will be 

deepened in the next WP3. 

6.1 Use case n°1: Mission Planning for EO Acquisitions (TASI, TASF, INFN, FZJ) 

6.1.1 Problem instance 
 

Mission planning is a crucial aspect of Earth Observation (EO) as it involves optimizing and scheduling 

the acquisition requests from end-users. The current methods employed to address this problem utilize 

deterministic and metaheuristic algorithms, which can generate (optimal) solutions for existing 

constellations consisting of a few satellites (Zhang , et al., 2021). However, with the growing deployment 

of large constellations comprising numerous small satellites (N > 100), the search for optimal solutions 

becomes more challenging in terms of both time and quality. Consequently, the concept of quantum 

speedup takes into account not only the computational time required but also the quality of the resulting 

solution. 

The mission planning problem deals with the optimal scheduling of satellite observations for a given list 

of user requests. This optimization problem can be written in terms of a knapsack problem. For each 

satellite and for each “Acquisition Request” (AR) there are several “data take opportunities” (DTOs) and 

“downlink opportunities” (DLOs): the optimizer must return a time ordered short-list of those 
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observations and downlinks that are possible when several constraints are considered. We report here the 

cost function defined in the documents released by WP1: 

 

𝐹(𝑥, �⃗�) =  ∑ ∑  ∑  ∑ (𝛼𝑡𝑖,𝑗
𝑘 𝑥𝑖,𝑗

𝑘 + 𝛽𝑠𝑖,𝑗
𝑟 𝑦𝑖,𝑗

𝑟 − 
𝛾

𝑚
𝑥𝑖,𝑗

𝑘 )
𝜎𝑖

𝑟=1

𝜃𝑖,𝑗

𝑘=1
 

𝑚

𝑗=1
 

𝑛

𝑖=1
 

 

where the decision variables 𝑥𝑖,𝑗
𝑘 ∈  {0, 1} and 𝑦𝑖,𝑗

𝑟 ∈  {0, 1} are binary variables describing the DTOs and 

the DLOs respectively: if the AR 𝑗 is scheduled by satellite 𝑖 at the opportunity 𝑘, then 𝑥𝑖,𝑗
𝑘 = 1; otherwise 

𝑥𝑖,𝑗
𝑘 = 0, and similarly for the DLO variables 𝑦𝑖,𝑗

𝑟 . The following parameters appear in the above cost 

function as inputs to the optimizer: 

 

• 𝑛 ∈  ℕ the number of satellites; 

• 𝑚 ∈ ℕ the number of ARs; 

• 𝜃𝑖,𝑗 ∈  ℕ the number of opportunities of satellite 𝑖 w.r.t. the AR 𝑗; 

• 𝜎𝑖 ∈ ℕ the number of available downlink opportunities of satellite 𝑖; 

• 𝑡𝑖,𝑗
𝑘 ∈ ℝ the acquisition time of the DTO of the AR 𝑗 from satellite 𝑖 at the 

opportunity 𝑘; 

• 𝑠𝑖,𝑗
𝑟 ∈ ℝ the acquisition time of the DLO of the AR 𝑗 from satellite 𝑖 at the 

opportunity 𝑟; 

• 𝛼, 𝛽 , 𝛾 ∈ ℝ weights associated with the problem. 

 

The goal in this scenario is to minimize 𝐹(𝑥, �⃗�) subject to the following constraints: 

 

1) One acquisition attempt per target: 

∑  𝑛
𝑖=1 ∑ 𝑥𝑖,𝑗

𝑘𝜃𝑖,𝑗

𝑘=1 − 1 = 0    ∀𝑗 ∈ [1, 𝑚]  

 

2) One download attempt per target: 

∑  𝑛
𝑖=1 ∑ 𝑦𝑖,𝑗

𝑟𝜎𝑖
𝑟=1 − 1 = 0    ∀𝑗 ∈ [1, 𝑚]   

 

3) Each acquisition must be downloaded: 

∑ 𝑥𝑖,𝑗
𝑘𝜃𝑖,𝑗

𝑘=1
−  ∑ 𝑦𝑖,𝑗

𝑟𝜎𝑖
𝑟=1 = 0    ∀𝑖 ∈ [1, 𝑛],   ∀𝑗 ∈ [1, 𝑚]  

 

4) Target acquisition precede download: 

∑ 𝑥𝑖,𝑗
𝑘 𝑡𝑖,𝑗

𝑘𝜃𝑖,𝑗

𝑘=1 − ∑ 𝑦𝑖,𝑗
𝑟 𝑠𝑖,𝑗

𝑟𝜎𝑖
𝑟=1 ≤ 0    ∀𝑖 ∈ [1, 𝑛],   ∀𝑗 ∈ [1, 𝑚]  

 

5) Sufficient preparation time between two acquisitions: 

𝑥𝑖,𝑠
𝑘 𝑝𝑖,𝑠

𝑘 − |𝑥𝑖,𝑠
𝑘 𝑡𝑖,𝑠

𝑘 − 𝑥𝑖,𝑗
𝑘′

𝑡𝑖,𝑗
𝑘′

| ≤ 0    ∀𝑖 ∈ [1, 𝑛],   ∀𝑗, 𝑠 ∈ [1, 𝑚]  

                                                                ∀𝑘 ∈ [1, 𝜃𝑖,𝑠],   ∀𝑘′ ∈ [1, 𝜃𝑖,𝑗]         

 

 



    

REFERENCE : 

DATE : 

D1: QC4EO Study 1 

18/11/2023 

ISSUE :   5 Page : 14/48 

 

  

6) Sufficient preparation time between two downlinks: 

 𝑦𝑖,𝑔
𝑟 𝑑𝑖,𝑔

𝑟 −  |𝑦𝑖,𝑔
𝑟 𝑠𝑖,𝑔

𝑟 − 𝑦𝑖,𝑗
𝑟′

𝑠𝑖,𝑗
𝑟′

| ≤ 0    ∀𝑖 ∈ [1, 𝑛],   ∀𝑗, 𝑔 ∈ [1, 𝑚] 

                                                                    ∀𝑟 ∈ [1, 𝜎𝑖],   ∀𝑟′ ∈ [1, 𝜎𝑖]         

 

7) Available memory on board: 

∑ (∑ 𝑥𝑖,𝑗
𝑘𝑘′

𝑘=1 − ∑ 𝑦𝑖,𝑗
𝑟𝑟′

𝑟=1 )𝑞𝑖,𝑗 − 𝑞𝑀 ≤ 0    ∀𝑖 ∈ [1, 𝑛],   ∀𝑘′ ∈ [1, 𝜃𝑖,𝑗] 𝑚
𝑗=1   

                                                        ∀𝑟′ ∈ [1, 𝜎𝑖] ∶  𝑡𝑖,𝑗
𝑘′ ≤ 𝑠𝑖,𝑗

𝑟′  

 

where other parameters are introduced: 

 

• 𝑝𝑖,𝑗
𝑘 ∈ ℝ the preparation time to gain the DTO of the AR 𝑗 from  

satellite 𝑖 at the opportunity 𝑘; 

• 𝑑𝑖,𝑗
𝑟 ∈ ℝ the preparation time to perform the DLO of the AR 𝑗 from 

satellite 𝑖 at the opportunity 𝑟; 

• 𝑞𝑖,𝑗 ∈ ℝ the needed memory to gain the AR 𝑗 from satellite 𝑖; 

• 𝑞𝑀 ∈ ℝ the total memory available on satellite 𝑖. 

 

Information on the realistic range of variables and parameters in the mathematical model are listed in the 

following tables. 

 

 

PARAM ID DESCRIPTION DOMAIN 
RANGE 

VALUES 
NOTES 

𝐧 Number of satellites ℕ [1, 1000] Average ~ 30 

𝐦 
Number of ARs in the 

horizon time window 
ℕ [200, 50k] 

- Horizon time window of 24 hrs. 

- 200 ARs per satellite. 

- Saturation of 50k ARs is 

independent of constellation 

size. 

𝜽𝒊,𝒋 

Number of DTOs of 

satellite 𝑖 to acquire 

the AR 𝑗 in the 

horizon time window 

ℕ [2, 50] Horizon time window of 24 hrs. 

𝝈𝒊 

Number of DLOs of 

satellite 𝑖 in the 

horizon time window 

ℕ [10, 100] Horizon time window of 24 hrs. 

Table 2 Mission planning problem variables and parameters. 
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PARAM ID DESCRIPTION DOMAIN NOTES 

Objective function variables 

𝒕𝒊,𝒋
𝒌  

Instant acquisition time of 

the 𝑗 − 𝑡ℎ target from the 

𝑖 − 𝑡ℎ satellite at the 𝑘 −
𝑡ℎ opportunity 

ℝ 

This value includes the 

duration of acquisition: 2-

15 min. 

𝒔𝒊,𝒋
𝒓  

Instant downlink time of the 

𝑗 − 𝑡ℎ target from the 𝑖 −
𝑡ℎ satellite at the 𝑟 − 𝑡ℎ 

opportunity 

ℝ 

This value includes 

duration of downlink 

dependent on the visibility 

of the GS and on the data-

rate of DW. 

Constraints variables 

𝒑𝒊,𝒋
𝒌  

Preparation time of the 𝑖 −
𝑡ℎ satellite to gain the 𝑗 −
𝑡ℎ target at the 𝑘 − 𝑡ℎ 

opportunity 

ℝ 

This parameter could 

consider reconfiguration 

and manoeuvre times: 10 

sec – 60 sec. 

𝒅𝒊,𝒋
𝒓  

Preparation downlink time 

of  the 𝑖 − 𝑡ℎ satellite to 

gain the 𝑗 − 𝑡ℎ target at 

the 𝑟 − 𝑡ℎ opportunity 

ℝ 

This parameter could 

consider reconfiguration 

and manoeuvre times. 

𝒒𝒊,𝒋 

Required memory to gain 

the 𝑗 − 𝑡ℎ target from the 

𝑖 − 𝑡ℎ satellite 

ℝ 

Memory size for 1 

acquisition.   

SAR Raw product: 5-300 

Gbit. 

On average ~ 40 Gb. 

𝒒𝒊
𝑴 

Total memory available on 

satellite 𝑖 
ℝ 

[10Gb, 1.5 Tb]. 

On average ~ 1000Gb. 

Table 3 Mission planning problem variables and parameters 

 

Other information from TASI will complete the problem instantiation: 

 

1. Average revisit time (constellation): hourly 

2. Average acquisition time (mean access duration) [m]: 2÷15 

3. Downlink data rate [Mbit\s]: ~ 500 

 

The problem instance of mission planning is addressed also in the framework of classical Reinforcement 

Learning (RL). We refer to Section 5.1.3.2 in [WP1-del] for the definition of the problem and its 

instantiation. 

 

A second approach making use of Machine Learning (ML) to solve the optimization of the scheduling of 

satellites observations for a given list of requests can be considered. A RL formalism can be followed to 

associate to each satellite a maximum number of requests that can be acquired. In the following, a 

Proximal Policy Optimization (PPO) algorithm is used. For a given satellite, the state of the environment 
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is described by a subset of the total number of requests (𝑁𝑟 requests among the 𝑁𝑅  in total) along with 

variables that define the completion status of each request, the reward (binary) variable and the satellite 

position at the given time. The policy network consists in a neural network whose initial neurons contain 

the following features for 𝑁𝑟 requests: 

 

• DTO start/end times; 

• Current request start coordinates; 

• Last request end coordinates; 

• Satellite position; 

• Satellite ID number. 

 

The next step consists of the choice of the action taken by the agent. For the satellite considered, one of 

the nearest requests that can be completed is chosen (if possible), otherwise none is completed/chosen. 

The learning process is done by using gradient descent to calculate the expected value of each action at a 

certain state space and by selecting the action that has the likelihood of the highest reward. The equation 

for the PPO algorithm is given by: 

 

𝐿𝐶𝐿𝐼𝑃(𝜃) = �̂�𝑡[min(𝑟𝑡(𝜃)�̂�𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)�̂�𝑡)] 
 

that computes the current expected value of the policy of parameter 𝜃 and hyperparameter 𝜖. �̂�𝑡 is the 

estimated advantage proposed by the PPO at time 𝑡, and 𝑟𝑡(𝜃) the importance sampling ratio. 

Finally, the state space is updated in such a way that the new 𝑁𝑟 requests studied are ones that are yet to 

be completed. 

The quantum contribution consists in adapting the policy model by integrating a parameterized quantum 

circuit to further reduce the number of features used and access potentially more interesting outputs 

before the action selection process. 

6.1.2 Quantum algorithm 
 

The mission planning problem is approached using two distinct strategies: one involves transforming the 

optimization problem into a QUBO problem, denoted as UC1a, while the other utilizes a QNN algorithm, 

denoted as UC1b. Both approaches are detailed in the following Sections. 

 

6.1.2.1 UC1a: Quantum Annealing 

 

Quantum annealing (QA) is an approach closely related to adiabatic quantum computation (AQC) 

(Das & Chakrabarti, 2008) (Albash & Lidar, 2018) proposed in 1988 by Apolloni et al. (Apolloni & 

Falco, 1988). It relaxes the requirement of adiabaticity, resulting in a heuristic variational quantum 

algorithm. For this reason, QA can be used, for instance, to find the ground state of Ising models 

(Barry, Mccoy, & Wu, 2013), a known NP-hard task (Barahona, 1982), even though not necessarily in 

polynomial time. It is well-established in literature how to transform canonical NP-hard and NP-

complete combinatorial optimization problems into forms suitable for quantum annealers (Lucas, 

2014). Currently, state-of-the-art QA hardware does not allow for universal quantum computation. 

Nonetheless, it has been shown that increased control, e.g., non-stoquastic Hamiltonian terms 

(Ozfidan, et al., 2020) of the annealing path can significantly improve the quality of results obtained 

while still in the absence of universality.  
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The quantum algorithm first prepares the system in the ground state of the initial Hamiltonian, 𝐻𝑖, 

which is known and easy to prepare. Then, the system evolves according to a time-dependent 

Hamiltonian that slowly changes in time such that the contribution of 𝐻𝑖 is slowly reduced while the 

magnitude of the target Hamiltonian, 𝐻𝑓, encoding the optimization problem, is increased. The so-

called annealing schedule is defined by the monotonic functions 𝐴(𝑡) and 𝐵(𝑡), with 𝐴(0) =
1, 𝐵(0) = 0, and 𝐴(𝑇) = 0, 𝐵(𝑇) = 1 , and 𝑡 ∈ [0, 𝑇]. Typically, a transverse field in 𝑥-direction is 

used as the initial Hamiltonian 𝐻𝑖 = ∑ 𝜎𝑖,𝑥𝑖 , where 𝜎𝑖,𝑥 is the 𝑥-Pauli matrix acting on the 𝑖-th qubit. 

Initially, the system is prepared in the ground state |Ψ(0) = |++. . . +⟩ with |+⟩ = 1/√2(|0⟩ + |1⟩). 

Then, the system evolves towards the ground state |Ψ(𝑇)⟩ of the final Hamiltonian, 𝐻𝑓 = ∑ ℎ𝑖𝜎𝑖,𝑧𝑖 +
∑ 𝐽𝑖𝑗𝜎𝑖,𝑧<𝑖,𝑗> 𝜎𝑗,𝑧 , that encodes the solution of the optimization problem. As the magnitude of 𝐻𝑖 

decreases, the quantum dynamics of the qubits slow down until at 𝑡 = 𝑇, when the system reaches a 

purely classical state. Finally, qubits are measured. 

 

Maintaining the condition of adiabaticity in practical settings poses challenges due to the presence of 

background noise and thermal fluctuations. Consequently, the quantum system may be perturbed by 

the environment, causing it to deviate from its ground state. Additionally, achieving the condition of 

slowly varying the Hamiltonian evolution is demanding, as the rate of change relies on the low-energy 

states and spectral gaps of 𝐻(𝑡), which are not known beforehand. For these reasons, QA can be 

regarded as a relaxation of AQC wherein the annealing schedule, determining the transition time from 

𝐻𝑖 to 𝐻𝑓, is heuristically determined, then relaxing adherence to adiabatic conditions. As a result, 

instead of a deterministic quantum algorithm, QA yields a heuristic optimization algorithm in which a 

non-zero probability of remaining in the ground state is maintained throughout the annealing process. 

 

QA can be viewed to implement a very similar logic to simulated annealing, but where the thermal 

fluctuations are replaced by quantum fluctuations. In this setting, the search algorithm gains the ability 

to escape local minima with superposition and quantum tunneling thus allowing for a direct transition 

between states even if there is a high energy barrier between them (Razavy, 2003). These effects have 

been successfully demonstrated in simple experiments (Lanting, et al., 2014), while it is not clear how 

these properties translate to an important role in the optimization process in large ensembles of qubits 

(Vasil, et al., 2016). 

 

QA methods have been tested for numerous real-world applications, from traffic flow optimization and 

job-shop scheduling to machine learning, portfolio optimization, protein folding, molecular similarity, 

and computational biology. The solution strategy involves formulating QUBO problems, which 

usually imply fully connected interactions between Ising variables. The mapping from these dense 

logical graphs to the sparse connectivity in QPUs prevents efficient computation in the current 

generation of quantum annealers. This is probably the most crucial and common bottleneck of QA for 

real-world applications. 

 

Quantum annealing (QA) has also been examined in the context of Earth Observation (EO) 

applications. Specifically, the focus has primarily been on the mission planning problem, with a 

particular emphasis on scenarios involving a single satellite. Stollenwerk et al. (Stollenwerk, 2021) 

explored the challenge of acquiring high-value images while adhering to the satellite maneuvering 

constraints. In this case, the solution by the quantum annealer is comparable to the operational 

heuristic method for small-scale problem instances. However, this quality deteriorates rapidly due to 

the limited precision of the quantum annealer. On the other hand, Dave et al. (Dave, 2023) optimized 
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the mission schedule with QA and obtained enhanced performance compared to simulated annealing 

and the Gurobi optimizer in selecting high-priority targets while satisfying all imposed constraints. 

These studies illustrate the exploration of quantum algorithms in EO mission planning, showcasing 

their potential benefits and highlighting areas for improvement in terms of solution quality and 

scalability. 

 

6.1.2.2 UC1a: gate-based quantum computing algorithm for optimization 

 

In addition to quantum annealing the mission planning problem can be solved in principle with gate-

based quantum computers. For fault tolerant quantum computers, Grover’s algorithm can be used, 

leading to a quadratic speedup in the best-case scenario. For NISQ devices, the quantum approximate 

optimization algorithm (QAOA) (Fahri, 2014) can be used to find approximate solutions. The 

algorithm can be derived from QA by discretizing the time evolution which yield an alternating pattern 

of operations derived from the cost function and the initial (or driver) Hamiltonian. A potential 

quantum advantage of this algorithm is still subject to active research but can only be quadratic at 

most. Similar to quantum annealing a QUBO formulation is needed in the default version of QAOA. 

Therefore, sophisticated constraints as they appear in real-world problems like mission planning, lead 

to significant demands for the quantum resources, with potential negative impact onto the 

performance. An alternative approach is the Quantum Alternating Operator Ansatz (Hadfield, et al., 

2019) which incorporates the constraints directly into the algorithm, by using tailored driver 

Hamiltonians that are symmetric with respect to the constraints. 

 

6.1.2.3 UC1b: Quantum Machine Learning 

 

Quantum Machine Learning (QML) is an approach in which expensive subroutines of classical 

machine learning algorithms are adapted to run on a quantum computer (Schuld, Sinayskiy, & 

Petruccione, 2015). Typically, a QML algorithm establishes an input-output relation from a given set 

of data (classical or quantum) in order to predict the output from the initial data of interest. The 

learning process can be done in a supervised manner, in which case the training phase of the algorithm 

is executed with a set of input data whose outputs are known a priori; or in an unsupervised manner in 

which case the training phase consists of parameters optimization problem. 

 

In practice, QML exists in a variety of forms and techniques such as clustering methods, quantum 

neural networks (QNN), optimization of parameterized quantum circuits (PQC) (Benedetti, Lloyd, 

Sack, & Fiorentini, 2019), or evaluation of kernel maps by estimating the distance between two feature 

vectors (Cerezo, Verdon, Huang, Cincio, & Coles, 2022). 

 

The use of variational algorithms for QML has been considered in view of potential quantum 

advantages accessible in the near future (Mitarai, Negoro, Kitagawa, & Fujii, 2018) (Schuld, 

Bocharov, Svore, & Wiebe, 2020). This hybrid quantum-classical approach makes use of 

parameterized quantum circuits to approximate nonlinear functions, classify and fit relatively large 

quantum systems. Typically, the parameters are tuned iteratively, using a gradient-based optimization 

method such as the parameter-shift rule to reduce the depth of the circuit otherwise very large. The 

potential advantage relies in the exponentially large feature space the quantum circuit provides as well 

as the circuit expressivity (Sim, Johnson, & Aspuru‐guzik, 2019). The latter is determined by the 

frequency spectrum of the quantum model (Schuld, Sweke, & Meyer, 2021), it strongly influences the 

circuit ability to represent the Hilbert space, and thus the functions the circuit can model. In their 
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paper, Sim et al. (Sim, Johnson, & Aspuru‐guzik, 2019) have done a deep study of this characteristic 

for multiple quantum circuits (ansatzes). 

In general, the ansatz contains a first encoding part to map the classical data into an initial quantum 

state, followed by one or multiple layers of encoding and entangling operations (also called encoding 

and variational layers). Encoding operations are usually performed via 𝑅𝑋, 𝑅𝑌 or 𝑅𝑍 gates where the 

rotation angles are given by the pre-processed classical data or parameters to be optimized. Entangling 

gates (CZ or CNOT) are necessary to take advantage of the high dimensional Hilbert space. A 

potential quantum advantage may result from these operations, but further studies are required to better 

understand potential correlations. Having many layers usually improves the expressivity of the circuit 

but it requires expensive resources in terms of circuit depth and number of two-qubit gates. 

 

Another technique for QML is to implement quantum neural networks (QNNs) from existing classical 

neural networks (feed-forward, convolutional) (Allcock, Hsieh, Kerenidis, & Zhang, 2020) (Kerenidis, 

Landman, & Prakash, 2019) (Henderson, Shakya, Pradhan, & Cook, 2020). This method is particularly 

suited for classification and image recognition applications. Theoretical works have shown that such 

quantum algorithms can provide computational speedups when compared to their classical counterpart 

(Allcock, Hsieh, Kerenidis, & Zhang, 2020). However, they rely on quantum Random Access 

Memories (qRAMs) (Giovannetti, Lloyd, & Maccone, 2008) and state preparation methods that are 

either not accessible yet, or very demanding in terms of resources. Alternative methods for efficiently 

encoding classical data into quantum states, such as a data loader, have been demonstrated 

experimentally (Johri, et al., 2021). The hybrid classical-quantum solution proposed by (Rainjonneau, 

2023) makes use of a Reinforcement Learning (RL) training algorithm where an agent interacts with 

an environment. It uses a reward function to assign values to the actions of the agent. The RL agent 

uses a policy model to decide which action to make given a state in the environment, thus transforming 

the state. The policy model is trained to select the action that maximizes the probability of achieving a 

positive reward. The policy model considered is a parameterized circuit to establish the input-output 

relation of the model and apply it to the context of mission planning. This quantum subroutine is 

performed after a classical pre-processing step based on classical neural network to reduce the number 

of meaningful features. Two approaches have shown promising results that outperform classical 

greedy methods: the hybrid-quantum Proximal Policy Optimization (PPO) and the hybrid AlphaZero 

algorithms. 

6.1.3 Quantum platforms 
 

6.1.3.1 Use case 1a: optimization problem 

 

The quantum platforms for solving the mission planning as an optimization problem are quantum 

annealers. Presently, the most widely employed QA devices are the D-Wave Systems annealers, which 

employ superconducting qubits. Promising alternative approaches, such as the Lechner-Hauke-Zoller 

(LHZ) (Lechner, Hauke, & Zoller, 2015) scheme or platforms employing cold atoms developed by 

Pasqal (Scholl, et al., 2021) or QuEra (Ebadi, et al., 2021) are also currently advancing significantly in 

terms of hardware development. However, these atomic-based QPUs can implement adiabatic 

protocols based on Rydberg atom Hamiltonians, which operate in an analog mode as opposed to the 

digital mode of quantum circuits (Wurtz, Lopes, Gemelke, Keesling, & Wang, 2022). 

On the other hand, gate-based approaches, such as QAOA, have been successfully implemented both 

on  IBM superconducting QPU (IBM Quantum Documentation) and IonQ device (IonQ Forte). 

https://quantum-computing.ibm.com/services/resources/docs/resources/manage/systems/processors
https://ionq.com/quantum-systems/forte
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6.1.3.2 Use case 1b: quantum machine learning 

 

The quantum platforms of interest for implementing quantum machine learning algorithm must be 

compatible with gate-based approaches. The focus is set on digital quantum computers. 

Due to the small size of the quantum circuit, both simulators and real quantum computing hardware 

could be used. However, accumulation of errors from decoherence in real devices strongly limit the 

performance of the circuit on a real device in the near future. The training of this QNN has been 

successfully conducted on QMware Quantum Cloud in (Giovannetti, Lloyd, & Maccone, 2008). 

The ansatz proposed in hybrid PPO and hybrid AlphaZero algorithms assumes a ring-shaped layout of 

qubits. The chosen quantum platform must allow for such interactions between qubits in order to avoid 

using additional gates and operations that would induce noise and errors in the computation. 

6.1.4 Quantum instance 
 

6.1.4.1 Use case 1a: optimization problem 

 

As we aim to harness quantum algorithms for finding the optimal solution to the mission planning 

optimization problem, a powerful method entails transforming the preceding mathematical formulation 

into a so-called Quadratic Unconstrained Binary Optimization (QUBO) problem. QUBOs represent 

one of the most widely used methods for solving optimization problems on quantum computers 

(Glover, Kochenberger, & Du, 2019) and consists in converting the linear-binary-cost function 

𝐹(𝑥, �⃗�) defined above from a constrained optimization problem to a corresponding unconstrained 

optimization problem, where the original constraints now appear as penalty terms. Constraints in the 

form of linear equalities (1, 2, 3) 

 

𝐴 𝑥 = 𝑏 
 

where 𝐴 represents the coefficient matrix defining the constraint, while 𝑥 denotes the vector of 

decision variables pertaining to the problem, are squared and added to the linear cost function as 

penalty terms 

 

𝑃(𝑥) = 𝜆(𝐴 𝑥 − 𝑏)2 
 

where 𝜆 > 0 is a penalty constant. If 𝑥 satisfies the constraint, then 𝑃(𝑥) = 0 and the penalty term 

doesn’t change the value of the cost function. Conversely, if x is such that 𝑃(𝑥) ≠ 0  then the penalty 

term will prevent this solution vector to be a minimum of the cost function, provided 𝜆 is appropriately 

chosen. Consequently, we can enforce constraints 1), 2) and 3) within the QUBO framework by adding 

the following penalty terms to the cost function: 

 

• One acquisition attempt per target: 

𝑃1(�⃗�) = 𝜆1 ∑ (∑ ∑ 𝑥𝑖,𝑗
𝑘

𝜃𝑖,𝑗

𝑘=1

𝑛

𝑖=1
− 1)

2𝑚

𝑗=1
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• One download attempt per target: 

𝑃2(�⃗�) = 𝜆2 ∑ (∑ ∑ 𝑦𝑖,𝑗
𝑟

𝜎𝑖

𝑟=1

𝑛

𝑖=1
− 1)

2𝑚

𝑗=1
 

 

• Each acquisition must be downloaded: 

𝑃3(�⃗�, �⃗�) = 𝜆3 ∑ ∑ (∑ 𝑥𝑖,𝑗
𝑘

𝜃𝑖,𝑗

𝑘=1
− ∑ 𝑦𝑖,𝑗

𝑟
𝜎𝑖

𝑟=1
)

2𝑚

𝑗=1

𝑛

𝑖=1
 

 

This procedure introduces two-site terms while leaving unmodified the number of binary variables: 

𝑁𝑣𝑎𝑟 =  ∑ ∑ (𝜃𝑖,𝑗 + 𝜎𝑖)
𝑚
𝑗=1

𝑛
𝑖=1 . 

When dealing with constraints in the form of inequalities (4, 5, 6, 7), the conventional approach 

involves converting them into equations and then proceeding as described above. This requires the 

introduction of auxiliary variables known as slack variables (Djidjev). For instance, a constraint 

 

𝐴 𝑥 ≤ 𝑏 

 

can be represented as 
 

𝐴 𝑥 + 𝑠 = 𝑏 
 

by introducing the new integer slack variable 𝑠 ≥ 0. In the absence of further information regarding 

the binary variables of the problem, the slack variable can potentially be as large as 𝑏, i.e., 0 ≤ 𝑠 ≤ 𝑏. 

Since the QUBO reformulation accept only binary variables, this entails introducing 

𝒪(log2 𝑏) auxiliary binary variables to encode the value of the integer slack variable 𝑠. In situations 

where the optimization problem has multiple inequality constraints, as for the mission planning 

problem, this approach can potentially result in a substantial increase in the number of variables. 

Therefore, if feasible, it is preferable to find alternatives that avoid the use of slack variables. 

Specifically, constraints 4), 5) and 6) can be reformulated as quadratic penalty terms and incorporated 

into the cost function without the need for slack variables. This can be achieved by carrying out a 

preprocessing step for each constraint. To elaborate further, let us consider constraint 4): for each 

satellite 𝑖 and target 𝑗, we have that the DLO variable 𝑦𝑖,𝑗
𝑟  can only be present in conjunction with 𝑥𝑖,𝑗

𝑘  

if 𝑡𝑖,𝑗
𝑘 ≤ 𝑠𝑖,𝑗

𝑟 . For this reason, we can identify the set of forbidden pairs of indices in a preprocessing 

step as 

 

𝒟𝑖,𝑗 = {(𝑘, 𝑟) | 𝑡𝑖,𝑗
𝑘 > 𝑠𝑖,𝑗

𝑟 } 

 
and we can enforce constraint 4) with the following penalty term: 

 

 

𝑃4(𝑥, �⃗� ) = 𝜆4 ∑ ∑ ∑ 𝑥𝑖,𝑗
𝑘 𝑦𝑖,𝑗

𝑟

(𝑘,𝑟)∈𝒟𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=1
 

 
This preprocessing will cost ∑ ∑ 𝜃𝑖,𝑗𝜎𝑖

𝑚
𝑗=1

𝑛
𝑖=1  steps. By applying the same reasoning to constraints 5) 

and 6) we derive the following penalties: 
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𝑃5(�⃗� ) = 𝜆5 ∑ ∑ 𝑥𝑖,𝑠
𝑘 𝑥𝑖,𝑗

𝑘′

(𝑠,𝑗,𝑘,𝑘′)∈𝒢𝑖

𝑛

𝑖=1
 

𝑃6(�⃗� ) = 𝜆6 ∑ ∑ 𝑦𝑖,𝑔
𝑟 𝑦𝑖,𝑗

𝑟′

(𝑔,𝑗,𝑟,𝑟′)∈𝒥𝑖

𝑛

𝑖=1
 

 
by introducing the two sets of indices 

 

𝒢𝑖 = {(𝑠, 𝑗, 𝑘, 𝑘′) | 𝑝𝑖,𝑠
𝑘 > |𝑡𝑖,𝑠

𝑘 − 𝑡𝑖,𝑗
𝑘′

|} 

𝒥𝑖 = {(𝑔, 𝑗, 𝑟, 𝑟′) | 𝑑𝑖,𝑔
𝑟 > |𝑠𝑖,𝑔

𝑟 − 𝑠𝑖,𝑗
𝑟′

|} 

 
where the preprocessing for constraint 5) takes ∑ ∑ 𝜃𝑖,𝑗𝜃𝑖,𝑠 𝑚

𝑗,𝑠=1
𝑛
𝑖=1 steps and the one for constraint 6) 

takes  𝑚2 ∑  𝑛
𝑖=1 (𝜎𝑖)

2 steps. Hence, also constraints 4), 5) and 6) introduce two-site interactions 

without altering the total number of binary variables.  

Concerning constraint 7), it is not feasible to employ the preprocessing step, and thus the introduction 

of slack variables becomes necessary to transform the inequality into an equality. This constraint 

requires the introduction of 𝑛 slack variables {𝑠𝑖}𝑖=1
𝑛  such that 

 

𝑠𝑖 ≤ 𝑞𝑖
𝑡𝑜𝑡 + ∑ |ℒ𝑖,𝑗|𝑞𝑖,𝑗

𝑚

𝑗=1
 

 

where |ℒ𝑖,𝑗| is the number of index pairs in the set 

 

ℒ𝑖,𝑗 =  {(𝑘, 𝑟)|𝑡𝑖,𝑗
𝑘 ≤ 𝑠𝑖,𝑗 

𝑟 } 

 
Each of these slacks will then require the introduction of  

 

𝒩𝑖
𝑠𝑙𝑎𝑐𝑘 = ⌊log2 (𝑞𝑖

𝑡𝑜𝑡 + ∑ |ℒ𝑖,𝑗|𝑞𝑖,𝑗

𝑚

𝑗=1
)⌋ + 1   ∀𝑖 ∈ [1, 𝑛] 

 
auxiliary qubits, which will increase the number of logical qubits relative to the binary variables in the 

original optimization problem. Different methods exist to reduce the required number of auxiliary 

qubits for representing slack variables. For instance, the scalar transformation of the inequality 

defining the constraint (Verma & Lewis) or the so-called augmented Lagrangian method (Djidjev) can 

be considered. However, the effectiveness of these approaches depends on the specific optimization 

problem. Exploring one of these methods to decrease the number of auxiliary qubits introduced by 

constraint 7) could present an intriguing advancement for implementing it on the existing D-Wave 

quantum computing platforms. 

Therefore, by solving the defined QUBO problem, it becomes feasible to acquire an (optimal) solution 

for the original constrained optimization problem. Explicitly, the QUBO solution corresponds to the 

optimized vector of decision variables, represented by the ordered bitstring: 

 

𝒙 = [… , 𝑥1,𝑗
1 , … , 𝑥1,𝑗

𝜃1,𝑗
, 𝑦1,𝑗

1 , … , 𝑦1,𝑗
𝜎1 , … , 𝑥𝑛,𝑗

1 , … , 𝑦𝑛,𝑗
𝜎𝑛 , 𝑥1,𝑗+1

1 , … , 𝑦𝑛,𝑗+1
𝜎𝑛 , … ], 
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where the binary variable 𝑥𝑖,𝑗
𝑘 ∈  {0, 1} refers to satellite 𝑖 aiming at the target 𝑗 for the 𝑘-th DTO, 

while 𝑦𝑖,𝑗
𝑟 ∈  {0, 1} refers to satellite 𝑖 downloading the image of target 𝑗 for the 𝑟-th DLO. This way 

the slowly varying index is the target one. A motivation for this arrangement can be found by looking 

at the matrix representation of the QUBO problem, see Figure 1. Further, the matrix representation 

allows the classification of the two-site terms based on the constraints. Here we consider a general case 

with 𝑛 = 3 satellites, 𝑚 = 3 targets, (𝜃1,1, 𝜃2,1, 𝜃3,1, 𝜃1,2, 𝜃2,2, 𝜃3,2, 𝜃1,3, 𝜃2,3,, 𝜃3,3) =
(2, 3, 2, 3, 2, 2, 2, 2, 3), and (𝜎1, 𝜎2, 𝜎3) = (2, 2, 2). 

 

 

 

Figure 1: Matrix representation of the QUBO formulation for the mission planning problem. 

Different colors correspond to different constrains. Bitstrings entries are arranged such that  

the target index is the slowest one. 

 

 

One can recognize that equation constraints (1,2,3) and inequality (4) do not couple variables 

corresponding to different targets. On the contrary, inequalities (5,6,7) introduce all-to-all terms across 

all the images. These considerations will help in designing an ansatz for solving this problem with a 

quantum (inspired) method, and the partitioning of the problem. Overall, the matrix is sparse. The 

initialization of parameters using real data will determine also the more relevant couplings. 

 

The typical problem size to be managed considering all the constraints above is 𝑁𝑣𝑎𝑟 ∼ 106 − 109 as 

current mission planning problems involve constellations with 𝑛 ∼ 102, 𝑚 ∼ 103 and 𝜃𝑖,𝑗 ∼ 𝜎𝑖 ∼ 1. 
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Current mission planning problems involves constellations with N ~ 100, M ~ 1000 while  𝜃𝑖,𝑗 , 𝜎𝑖 

depend on the specific problem, see Table 2. 

 

To turn the search of the minimum into a ground-state search of a quantum many-body problem, the 

QUBO problem is mapped into an Ising-like Hamiltonian, that contains only diagonal elements. 

Binary decision variables are promoted to spin operators: 

 

𝑥𝑖,𝑗
𝑘 ∈  {0, 1} → 𝜏𝑖,𝑗

𝑘 = 2𝑥𝑖,𝑗
𝑘 − 1 ∈  {−1, 1}, 

 

𝑦𝑖,𝑗
𝑟 ∈  {0, 1} → 𝑣𝑖,𝑗

𝑟 = 2𝑦𝑖,𝑗
𝑟 − 1 ∈  {−1, 1}. 

 

The ground state of this Hamiltonian encodes the solution of the initial problem. This additional 

mapping allows us to address the original optimization problem using quantum-inspired method, such 

as Tensor Network (TN) approaches (see paragraph 6.1.8). 

 

6.1.4.2 Use case 1b: quantum machine learning 

 

The reinforcement learning (RL) environment is a function of three variables: the state space 𝑆, the 

action space 𝐴 and a transition function 𝑃. The reward 𝑟 is attributed following a Markov decision 

process. Typically, the agent starts from a state 𝑠0, takes action 𝑎0 and gets the reward 𝑟0 in each step 

of the training. Eventually, the agent produces a trajectory 𝑇 = (𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, … ). Two 

environments are considered in (Rainjonneau, 2023). 

In the satellite-centred environment, the agent considers the 100 closest data points (in terms of DTO 

times) for each satellite. Each of these data points utilizes 10 parameters. In addition, three features are 

made available to the agent: the current time and the latitude/longitude coordinates of the starting point 

of the last completed request. Overall, the observation space has a dimension of 1003. 

In the request-centred environment, the agent decides which satellite is best suited to complete a given 

request. For a selected satellite, the 5 closest requests are considered and the one that requires the 

minimum execution time is chosen. The execution time is computed as the sum of the satellite 

timestamp, the manoeuvring duration, and the acquisition duration. 

In order to avoid redundancy, each data point is flagged with a boolean value to indicate whether it has 

been completed or not. 

In the hybrid PPO algorithm, a hybrid QNN is used as a policy model. A classical neural network first 

reduces the number of features to a small enough number of outputs that serve as inputs to the 

parametrized quantum circuit. The figures in Figure 2  (Rainjonneau, 2023) describe the structure of 

the algorithm, where the quantum circuit is added to the end of the classical network, just before the 

agent takes an action. 

 

The quantum part of the algorithm consists in a 4-qubit circuit composed of a first variational layer 

with parameterized 𝑅𝑋 rotations and ring-shaped CNOT gates. The same structure is repeated for 8 

additional layers in which features from the classical network are encoded as parameters of 𝑅𝑍 

rotations. This structure enables the encoding of 32 features. It becomes obvious that a trade-off is 

made between the number of features to be encoded in the quantum circuit and the resources needed to 

implement it in terms of 2-qubit gates and circuit depth. Finally, a measurement layer acting on the 

first two qubits returns two real values as outputs. 
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The ansatz (highlighted in green in Figure 2) has been studied in more detail in the work proposed by 

Sim et al. (Sim, Johnson, & Aspuru‐guzik, 2019). It is shown that its entangling capability is very high 

no matter the number of layers considered and that its “expressibility” is low when a single layer is 

considered. However, when multiple layers are added (4 or more), its “expressibility” converges to a 

high value. This indicates that this ansatz is expected to be efficient in the exploration of the entire 

Hilbert space. 
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Figure 2 (top) The RL model used to solve the mission planning problem (Rainjonneau, 2023). The 

state of the model consists of data from 100 requests which are fed into the agent to output an action, 

which then feeds into the environment (clip equation), generates an appropriate reward, and updates 

the state. (bottom) Quantum-hybrid RL model. A quantum circuit (left) is added to the beginning of 

the agent in the RL model (right) to incorporate quantum computation into the neural network. 
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In the hybrid AlphaZero algorithm, which outperforms both the hybrid PPO and the greedy algorithms, 

the same 4-qubit PQC is used. As for its classical part, this algorithm uses a computational tree of 

environment states whose values and probabilities result from the output of a value network (classical 

neural network composed of a single neuron in a fully connected layer) and a policy network (the 

previously described PQC). A descriptive schematic of the algorithm is given in Figure 3. The 

algorithm relies on the use of a Monte Carlo tree search combined with the policy network while the 

value network is processed in parallel. At the beginning of the tree search, the model accesses the 

optimal leaf by starting from the root and choosing the optimal child node. New child nodes are 

created from this leaf and the model completes the full path-finding process from this point. A 

backpropagation occurs to update the information of the nodes of the path as well as hyperparameters 

from the result obtained. 

 

 

 

Figure 3 The hybrid AlphaZero architecture used to achieve a near-optimal solution to the 

satellite mission planning. 

6.1.5 Number of qubits 
 

6.1.5.1 Use case 1a: optimization problem 

 

The number of qubits corresponds to the number of binary variables, including slack ones. As detailed 

in the previous section we compare the case with and without preprocessing of the data. To estimate 

the scaling with respect to the number of variables, we are considering 6 different constellations, each 

containing from 1 to 6 satellites. In this simplified model, number of targets 𝑚 is equal to 2 and 

satellites are indistinguishable each having 2 DTOs and 2 DLOs. Other parameters in the model, such 

as the acquisition and download times and the available on-board memory are chosen randomly in a 
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certain range. In Figure 4 we observe that both connections (couplings between pairs of qubits) and 

logical qubits scale linearly with the number of binaries. 

 

 

 

Figure 4 Scaling of logical qubits and connections with increasing constellation size. The  

effect of preprocessing is considered in the counting. In this simplified example number of 

targets, DTOs and DLOs are all fixed at 2. 

 

6.1.5.2 Use case 1b: quantum machine learning 

 

The number of qubits corresponds to the size of the inputs of the QNN. Having access to many qubits 

enables to reduce the classical part of the hybrid algorithm and increase its quantum part since less 

layers of the classical neural network are required. 

 

NUMBER OF 

QUBITS 

NUMBER OF 

LAYERS 

NUMBER OF 

ENCODED 

FEATURES 

4 8 32 

8 8 64 

16 8 128 

… … … 

𝟐𝑵 8 2𝑁+3 

Table 4 Number of qubits, layers and encoded features for the 

QML approach to the mission planning problem. 

 

 

Following the same structure for the quantum circuit, doubling the number of qubits and keeping the 

8-layer structure would enable to remove one layer of the classical network, as shown in Table 4. 

Indeed, the number of features encoded into the quantum circuit corresponds to the number of 
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parameterized Z-gates in this circuit. The number of parameterized Z-gates is exactly the number of 

qubits times the number of ansatz layers in the circuit. 

This structure may not be optimal. More generally, 2𝑓 features can be encoded using 2𝑞 qubits and 2𝑙 

layers with 𝑞 + 𝑙 = 𝑓. 

6.1.6 KPIs for quantum simulators 
 

6.1.6.1 Use case 1a: optimization problem 

 

In this study, we investigate the implementation of the Quadratic Unconstrained Binary Optimization 

(QUBO) formulation on the D-Wave hardware. To achieve this, we employ the ocean-sdk tool to 

perform minor-embedding on Pegasus topology (D-Wave Ocean). This embedding process enables us 

to map the QUBO problem onto the hardware topology. 

 

Figure 5 illustrates the scaling behavior in terms of the number of physical qubits required to embed 

different instances, where each instance only considers a single constraint. As anticipated, the primary 

contribution to the scaling arises from inequalities: both the original formulation and the one with 

preprocessing are considered. In the original formulation that incorporates all constraints, the resource 

requirements exhibit exponential growth. Preprocessing consumes at least five times less the number 

of qubits required by the original QUBO formulation. The Pegasus connectivity can accommodate 

problems with up to 72 variables to be embedded successfully. 

 

 

 

Figure 5 Scaling of the number of physical qubits required with the DW_Advantage 

(D-Wave Advantage) taking into account the data preprocessing. 

 

 

 

 

https://docs.ocean.dwavesys.com/
https://www.dwavesys.com/solutions-and-products/systems/
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6.1.7 KPIs for digital quantum computers 
 

6.1.7.1 Use case 1b: quantum machine learning 

 

As shown in the paper by S. Rainjonneau et al. (Rainjonneau, 2023), large scale problems (2 satellites 

and thousands of requests) can already be tackled using a narrow quantum circuit. This is done thanks 

to the classical neural network that significantly reduces the number of features to encode into the 

quantum neural network. Increasing the size of the quantum circuit does not necessarily enable solving 

problems larger than what can be done classically. Nevertheless, it is a direction to look into in order to 

observe whether a better solution (in term of quality of the solution) can be achieved or not. 

 

Multiple KPIs must be taken into account when addressing the implementation of an algorithm on a 

digital quantum computer. Let us denote as 𝑁 the number of qubits and 𝐿 the number of layers of the 

ansatz. The scaling of the main characteristics of the quantum circuit are described in Table 5. The 

scaling as a function of the number of qubits and ansatz layers, and thus the complexity, is directly 

deduced from the given structure of the algorithm as presented in the quantum circuit studied. It is 

assumed that the overall structure of the quantum circuit and its ansatz are kept the same despite 

increasing the size of the circuit. 

 

KPI 
SCALING W.R.T. THE 

NUMBER OF QUBITS 
COMPLEXITY 

Number of parameters to 

optimize (including features) 
𝑁(2𝐿 + 1) 𝒪(𝑁𝐿) 

Number of features encoded 𝑁𝐿 𝒪(𝑁𝐿) 

Number of 2-qubit gates 

(CNOTs) 
𝑁(𝐿 + 1) + 2 𝒪(𝑁𝐿) 

Circuit depth 𝑁(𝐿 + 1) + 2𝐿 + 3 𝒪(𝑁𝐿) 

Table 5 KPIs for QML approach to the mission planning problem. 

 

For a fixed number of layers, all key physical characteristics of the circuit scale linearly with the 

number of qubits. Note that features from the classical neural network are all encoded via 𝑅𝑍 gates 

while the parameters of all 𝑅𝑋 gates are to be optimized during training. Error rates of the quantum 

gates (rotations and CNOTs) are device-dependent and they strongly affect the quality of the solution 

obtained. 

6.1.8 Tensor Network (TN) approaches 
 

The matrix representation of QUBO formulation reported in Figure 1 highlights the long-range nature of 

the problem. TN methods and specifically Tree Tensor Network (TTN) ansatz provide an efficient tool to 

address these problems. 

 

TN methods have proven to be remarkably successful in treating many-body quantum problems using 

classical computers (Montangero, 2018) and they have quickly emerged as a leading numerical technique 

for studying low-dimensional systems (Eisert). TNs serve as a versatile information processing tool that 
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leverages correlations and entanglement, making them applicable to any problem involving correlation 

structures.  

 

TNs exploit the entanglement structure inherent in the quantum systems to provide an efficient 

representation of the quantum state. In quantum many-body physics, TTNs are a specific class of TN 

ansatz devised for representing the ground states of quantum systems (Felser, 2021). The underlying idea 

of TTNs involves decomposing the exponentially complex many-body wave function, which lives in the 

tensor product 

ℋ = ℋ1 ⊗ ℋ2 ⊗ … ⊗ ℋ𝑁 

 

of 𝑁 local Hilbert spaces ℋ𝑘, one for each quantum degree of freedom in the system under investigation, 

into a hierarchical arrangement of tensors, forming a tree-like structure wherein each tensor corresponds 

to a localized region in the system (see Figure 6). Entanglement between different regions of the system 

is captured through the auxiliary indices connecting the tensors within the tree structure. By suitably 

controlling the dimension of these auxiliary indices with the so-called bond dimension 𝜒, one can regulate 

the amount of captured information. In this manner, by adjusting the parameter 𝜒, TTNs enable efficient 

representation of quantum states, interpolating between a product state with 𝜒 = 1, where quantum 

correlations are neglected, and an exact but inefficient representation of the many-body wavefunction, 

which requires 𝑑𝑁 complex numbers, where 𝑑 is the dimension of each local Hilbert space ℋ𝑘. 

 

 

 
Figure 6 (Left) The TTN for one-dimensional systems. (Right) The TTN 

for two-dimensional systems. 

 

 

TTNs with their hierarchical structure can in principle be defined in any dimension, and provide enhanced 

connectivity for long-range interacting systems, with a logarithmic distance though the network structure, 

whereas simpler Matrix Product States (MPS) (Orús, 2019) have a linear distance between connected 

tensors. Additionally, TTNs can be optimized with lower computational complexity, scaling as 𝒪(𝜒4), 

compared to other TN geometries such as PEPS (Projected Entangled Pair States) (Silvi, et al., 2019) 

 

Hence, an alternative approach to the mission planning problem involves transforming the minimization 

of the QUBO cost function into a search for the ground state of an Ising-like Hamiltonian. This 

transformation involves converting binary variables into spin−
1

2
 variables, which are then promoted to 

quantum operators, i.e., qubits. The long-range nature of the interactions between binaries of the QUBO 
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manifests as all-to-all couplings between qubits. Given that TTNs are effectively many-body ansatzes for 

high-dimensional systems, they can potentially facilitate the efficient exploration of the ground-state 

search. 

 

By selecting a bond dimension 𝜒 > 1, the quantum search for the ground state is performed within the 

subspace bounded by 𝜒. Consequently, unlike classical optimization methods, the quantum representation 

of the TTN allows for the exploration of multiple overlapping classical solutions within a single 

optimization step. This capability enables the tunneling through higher, but reasonably subtle, potential 

energy barrier within the optimization landscape (Cavinato & et al., 2021). 

6.1.9 Proposal of targeted quantum platforms 
 

6.1.9.1 Use case 1a: optimization problem 

 

D-Wave hardware currently provides a substantial number of qubits and a satisfactory level of 

connectivity, which are already sufficient for solving the problem on a small scale with quantum 

annealing approaches. However, it is anticipated that alternative platforms such as those based on 

neutral atoms (such as PasQal and QuEra), may offer a strategic route to surpass the connectivity 

limitations by enabling easier manipulation of qubits. 

 

6.1.9.2 Use case 1b: quantum machine learning 

 

The targeted platforms are gate-based quantum computing platforms. IBM hardware seems promising 

as they expect a very fast pace of development for their technology. Superconducting qubits have the 

benefit  

of performing operations in a very fast manner, thus allowing for the execution of larger circuits given 

a certain decoherence time. CNOT gates are not native gates for all technologies. It is important to 

favour a technology that allows for an efficient implementation of such entangling gates in order to 

limit the overhead in terms of additional operations that would appear during the compilation of the 

circuit. While certain IBM processors (Falcon and Hummingbird) directly implement the CNOT 

operation, it is not the case of Eagle or Osprey processors. Yet, they allow for the realization of an 

entangling gate that corresponds to a CNOT gate up to single-qubit pre-rotations. 

 

Ion-based quantum computers such as IonQ Forte processor (IonQ Forte) also seems very promising. 

Such technology allows for very large decoherence times (10 to 100 seconds for T1, approximately 1 

second for T2) and particularly small gate error rates (0.4% for 2-qubit gates and 0.02% for single-

qubit gates) that are orders of magnitude lower than that of IBM processors for instance. The number 

of qubits is also reasonable (32 available now). This technology offers flexibility in the design of 

algorithms as all-to-all connectivity can be achieved as opposed to superconducting architectures. 

 

 

 

https://ionq.com/quantum-systems/forte
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6.2 Use case n°2: Multiple-view Geometry on Optical Images (TASF) 

6.2.1 Problem instance 
 

Multiple images of a given area of interest can be retrieved as satellites orbit around the planet. These 

images may be obtained from different satellites or from a single satellite during a long enough DTO 

window or multiple passes. An important task is to analyse the changes that have occurred on the area of 

interest as time has passed and perform terrain reconstruction. To do so, these images are compared with 

each other. However, the agility of the satellites and their different orbits result in the acquisition of 

different views of the area of interest: images may be rotated or translated, the illumination or scale may 

differ from one image to another. 

 

 

Figure 7 Example of multiple (6) views from a scene. 

 

This problem can be tackled with bundle adjustment, which consists in estimating the different changes 

by minimizing the re-projection error, a single functional with a high number of parameters due to the 

high number of degrees of freedom. These calculations must be executed in a limited time to allow for 

more accurate approaches for terrain reconstruction and reduce constraints on the satellite platform 

localization. 

This method is conducted by first extracting keypoints that characterize well the different images 

(typically described by SIFT descriptors), then by matching those that are common to multiple images 

Figure 7. Finally, a projection that aligns the coordinate systems of all images must be identified, 

followed by a transformation to align all images in a single plane (typically Direct Linear Transformation 

or eight-point algorithm). 

From there, image classification methods or other techniques allow for further study of the area of interest 

such as the identification of moving objects. 
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Mathematically, the problem can be formulated as follows: assume that 𝑛 3-dimensional points are 

visible through 𝑚 different views (e.g., 𝑚 = 6 in Figure 7) and let 𝑝𝑖𝑗 be the projection of the 𝑖-th point 

to the plane containing the 𝑗-th image. It could be possible that the 𝑝𝑖𝑗 does not lie in the image itself, so 

we define a binary variable 𝑏𝑖𝑗 which is 1 if and only if point 𝑖 is visible in image 𝑗. Furthermore, assume 

that the camera that created the 𝑗-th image can be characterized by a vector 𝑐𝑗, and every 3-dimensional 

point 𝑖 by a vector 𝑥𝑖. The objective is then to minimize the total re-projection error: 

 

𝑓𝐵𝐴(𝑐𝑗 , 𝑥𝑖) = ∑ ∑ 𝑏𝑖𝑗‖𝜋(𝑐𝑗 , 𝑥𝑖) − 𝑝𝑖𝑗‖
2

2
𝑚

𝑗=1

𝑛

𝑖=1

 

 

where 𝜋 corresponds to the predicted projection. Here, we use the camera pinhole model where camera 

aperture is described as a point and no lenses are used to focus light. That is, parameters c subsume the 

camera position, orientation in space, and focal length f. The projection of a 3-dimensional point 𝑥 =
(𝑥1, 𝑥2,  𝑥3) is: 

𝜋(𝑐, 𝑥) =
𝑓

𝑥3
′ (

𝑥1
′

𝑥2
′ ) 

 

where 𝑥′ = (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) are the 3-dimensional coordinates of 𝑥 relative to the camera centered 

coordinate system.  
 

 

Figure 8: Two 3-dimensional points (characterized by vectors xi), with their  

projections pij on images j = {1, 2}. cj is the vector characterizing the camera  

that created the j-th image. 
 

6.2.2 Quantum algorithm 

 

Quantum annealing and adiabatic quantum computing are two closely related approaches of the class of 

analog quantum computing. Both methods proceed in the same way by mapping an optimization problem 

into a target Hamiltonian. The solution to the problem is obtained by finding the ground state of this 

target Hamiltonian. Typically, the quantum system is initialized to be in the ground state of a first 

Hamiltonian that is easily implementable. This Hamiltonian is slowly evolved over a period of time in 

order to eventually match the target Hamiltonian. The adiabatic theorem (Born & Fock, 1928) states that, 

following these hypotheses, the system ends up in the ground state of the target Hamiltonian, i.e., the 
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lowest energy state of the system. The adiabatic approach is more restrictive in the sense that it requires 

the transformation of the Hamiltonian to be adiabatic. 

 

In practice, quantum annealers are particularly suited to solve problem formulated as quadratic 

unconstrained binary optimization (QUBO) problems, which are equivalent to Ising Hamiltonians: 

 

𝑧⋆ =  𝑎𝑟𝑔𝑚𝑖𝑛𝑧∈{0,1}𝑁 𝑧𝑇𝑄𝑧 + 𝑞𝑇𝑧. 

 

where 𝑁 is the number of qubits. It is known that combinatorial problems of complexity NP can be 

formulated as QUBOs (Lucas, 2014). Even though no theoretical quantum advantage has been 

demonstrated on such devices so far, they are of great interest for relatively large-scale problems in the 

near future. 

The quantum algorithm studied for keypoints extraction from optical images and feature matching heavily 

relies on the quantum annealing approach (Piatkowski, et al., 2022). The keypoints extraction procedure 

is conducted using two different clustering approaches: quantum k-medoids clustering and quantum 

kernel density clustering. In the first case, Thales Alenia Space and Fraunhofer Institute formulate the 

problem as a QUBO to select 𝑘 distinct objects located in the centre of the image. In the second case, they 

also formulate the problem as a QUBO but compute the kernel matrix by evaluating a quantum circuit on 

a gate-based quantum computer. Feature descriptors such as SIFT are added to gain more information 

about the different scaling and rotations between images before performing the feature matching 

operation that uses quantum annealing as well as the kernel matrix computed a priori. 

6.2.3 Quantum instance 
 

The formulation of a QUBO problem is obtained from the initial formulation of the optimization problem 

that consists in an objective function to minimize and additional constraints written as equalities or 

inequalities, all of which contain binary variables. The objective function as well as the initial constraints 

are squared and added together to form the QUBO. The terms that result from the transformation of 

original constraints are called penalties. 

For this problem, an image is encoded as a series of pixels 𝐼 = {𝑝1, 𝑝2, … , 𝑝𝑀} where each pixel is 

represented by its location and colour channels 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑟𝑖 , 𝑔𝑖 , 𝑏𝑖). For the quantum k-medoids 

approach to keypoints extraction, the idea is to minimize the distance between the keypoints and the rest 

of the pixels of the image while maximizing the distance between two distinct keypoints. In general, this 

leads to a selection of keypoints equally distributed within the image. The corresponding QUBO 

formulation is given by (Piatkowski, et al., 2022) 

 

𝑄 = 𝛾 𝟏M𝟏𝑀
𝑇 − 𝛼𝐷, 

 

𝑞 = 𝛽𝐷𝟏𝑀 − 2𝛾𝑘𝟏𝑀 

 

where 𝛼, 𝛽, 𝛾 are Lagrange multipliers, 𝟏𝑀 is the vector of size 𝑀 that consists of ones only, and 𝐷 is the 

matrix of distances such that 𝐷𝑖𝑗 = ‖𝑝𝑖 − 𝑝𝑗‖
2
. 

 

For the quantum kernel density clustering approach, the idea is to minimize the discrepancy between two 

feature map distributions by finding optimal cluster centroids. The probability densities of pixels are 

obtained from kernel density estimates: 
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𝜌𝐼(𝑝) =
1

𝑀
∑ 𝐾(𝑝, 𝑝𝑖)

𝑀
𝑖=1 , 

 

 𝜌𝐶(𝑝) =
1

𝑘
∑ 𝐾(𝑝, 𝑐𝑗)

𝑘

𝑗=1

 

 

where the set of 𝑘 cluster centroids is 𝐶 = {𝑐1, … , 𝑐𝑘} ⊂ 𝐼 and 𝐾 is a kernel function. It is assumed that 

there is a feature map such that  𝐾(⋅,⋅) = 〈𝜙(⋅), 𝜙(⋅)〉.  
The corresponding QUBO formulation is given by 

 

𝑄 =
1

𝑘2 𝜿 + 𝜆𝟏𝑀𝟏𝑀
𝑇 , 

 

𝑞 = −2 (
1

𝑘𝑁
𝜿𝟏𝑁 + 𝜆𝑘 𝟏𝑁) 

 

where 𝜿 is the kernel matrix with 𝜅𝑖𝑗 = 𝐾(𝑝𝑖 , 𝑝𝑗) and 𝜆 is a Lagrange multiplier. Instead of a classical 

Gaussian kernel (that has been mostly studied in the literature), a quantum kernel is considered. The 

quantum kernel studied is a problem-agnostic 4-qubit quantum circuit. 

 

 

A uniform superposition is prepared and transformed by a 𝑁-qubit unitary operator. The data are not used 

to encode the qubits, but they act as parameters for the unitaries representing the feature map. The kernel 

value 𝐾(𝑥, 𝑦) results from the estimation of the transition amplitude 

 

|〈𝜙(𝑥), 𝜙(𝑦)〉|2 = |⟨0𝑁|𝑉𝜙(𝑥)
† 𝑉𝜙(𝑦) |0𝑁⟩|

2

  

  

with 

𝑉𝜙(⋅) = 𝑈𝜙(⋅)𝐻⊗𝑁𝑈𝜙(⋅)𝐻⊗𝑁 

 

The choice of the 𝑁-qubit operator is not fixed. Nevertheless, a potential quantum speedup can only be 

obtained if the feature map cannot be efficiently simulated classically but no proof of quantum speedup 

Figure 9 Possible circuit to compute the fidelity between two 

feature vectors, retrieved from (Havlíček, et al., 2019) 
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has been shown so far. Typically, it is recommended to use an operator of the form given in (Havlíček, et 

al., 2019) 

 

𝑈𝜙(𝑥) = 𝑒𝑥𝑝(−𝑖 ∑ 𝜙𝑆(𝑥) ∏ 𝑍𝑣𝑣∈𝑆𝑆⊂[𝑀] )  

 

where 𝑆 is a subset of [𝑀] and 𝑍𝑣 is the Z-gate. In order to obtain the kernel matrix for 𝑀 data points, this 

circuit must be executed 𝑀(𝑀 + 1)/2 times. 

 

The feature matching part consists in identifying matches between keypoints of two distinct images 𝑝𝑖
(1)

 

and 𝑝𝑖
(2)

. To do so, feature descriptors (SIFT) enable to account for variations in scaling, rotation or 

illumination between the images. The kernel function can also be used to access a high dimensional 

feature space. The optimization problem is once again formulated as a QUBO problem. The two 

constraints in the initial formulation correspond to the fact that two keypoints from a given image cannot 

be matched to the same keypoint in the second image, and every keypoint can only be matched with 𝑘 

points in the second image at most. This last constraint being modelled by an inequality, binary slack 

variables are introduced when one considers the QUBO formulation. 

6.2.4 Quantum platforms 
 

The quantum algorithm for bundle adjustment using quantum clustering methods has been successfully 

implemented on D-Wave Advantage System 5.1 (5619 qubits) in 2022 (Piatkowski, et al., 2022) for small 

instances of the problem. The quantum kernel matrix has been computed from a state-vector simulation 

on IBM Falcon QPU. 

These platforms are well suited for experiments in the near future since D-Wave quantum annealers and 

IBM QPUs are currently the largest available even though qubit connectivity remains a major bottleneck. 

6.2.5 Number of qubits 
 

The full-size problem consists in performing bundle adjustment of large satellite images of 3099 × 2329 

pixels. However, such images would require solving a QUBO of dimension 7217571, which cannot be 

done on current hardware. In view of NISQ compatibility, keypoint extraction would be performed 

iteratively, from smaller scale sub-images up to the original image. Typically, the idea is to reduce the 

redundant information within the image so that the initial image becomes an image of 928 × 704 pixels. 

This reduced image is then split into 32 × 32 non-overlapping patches of 29 × 22  pixels. In a first step, 

10 keypoints are extracted from each of these individual patches. Then these patches are considered in 

8 × 8 small groups of 16 patches and, for each group, 20 keypoints are extracted from the previous 160 

existing keypoints. This gives 20 keypoints for each of the 64 small groups that compose the initial 

reduced image. The procedure is repeated by gathering 16 of these previous small groups in 2 × 2 sets. 

Thus, each of these four sets initially contains 320 keypoints. From these keypoints, 45 are selected to be 

the “final” keypoints that represent the initial image. Therefore, the final image is described by 180 

keypoints in total. 
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The real hardware allows for the extraction of 4 keypoints on patches of 8 × 8 pixels corresponding to a 

QUBO of dimension 64 but applications on a larger image can only be done using digital annealer for 

now. 

The quantum circuit considered in the computation of the kernel matrix acts on 4 qubits. Larger circuits 

can be implemented on IBM real hardware but the need to measure each qubit may quickly destroy any 

hope of obtaining a quantum speedup. Increasing the number of qubits would certainly increase the 

dimension of the feature space with no guarantee that better results could be obtained. This is particularly 

true if one considers only pairwise features in order to reduce the circuit depth. 

 

6.2.6 KPIs for digital quantum computers 
 

When it comes to the quantum circuit used to estimate the kernel matrix, the KPIs to take into account are 

the number of qubits, the circuit depth, the number of 2-qubit gates, error rates and decoherence times. 

For NISQ applications it has been shown that only pairwise interactions must be considered in order to 

significantly reduce the overhead in terms of swap operations and 2-qubit gates at the time of 

transpilation (rewriting of the circuit to match the connectivity structure of a specific QPU). In the 

formulation of the operator 𝑈𝜙(𝒙), this means that 𝑆 contains only 2 elements. 

 

 

 

 

 

 

 

Denote as M the number of data points in the image studied and 𝑁 the number of qubits for the 

implementation of the quantum circuit. Assuming that only pairwise features are considered, the scaling 

of the characteristics of the circuit is given in Table 6. 

 

KPI 
SCALING W.R.T. THE NUMBER 

OF QUBITS 
𝑵 = 𝟒 CASE 

Number of pairs of data points 𝐶𝑁
2 = 𝑁! (2(𝑁 − 2)!)⁄  6 

Number of 2-qubit gates 

(CNOTs) 
8𝐶𝑁

2 48 

Circuit depth 𝒅 (order of 

magnitude) 
4 + 6𝐶𝑁

2 ≤ 𝑑 ≤ 4 + 12𝐶𝑁
2 40 

Table 6 Scaling of circuit characteristics. 

 

A description of the physical performances of several types of IBM processors (IBM Quantum 

Documentation) is given in Table 7. The T1 (T2) decoherence time corresponds to the decay constant 

time after which an initial state |0〉 (|+〉) will evolve into an equal probabilistic mixture of the states |0〉 
and |1〉 (|+〉 and |−〉), such that one cannot confidently predict the state. The T1 time is often called the 

𝑒−𝑖 𝜙𝑖𝑗(𝒙)𝑍𝑖𝑍𝑗    → 

Figure 10 Implementation of the 2-qubit operation using 

CNOTs and Z-gates, retrieved from (Havlíček, et al., 2019) 

https://quantum-computing.ibm.com/services/resources/docs/resources/manage/systems/processors
https://quantum-computing.ibm.com/services/resources/docs/resources/manage/systems/processors
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relaxation time and T2 the dephasing time. The values presented are up to date as of June 15th 2023 and 

correspond to median times and error rates. 

 

 

 

 

 

 

PROCESSOR 

NUMBER 

OF 

QUBITS 

2-QUBIT 

GATE 

ERROR 

SINGLE-

QUBIT 

𝑺𝑿 GATE 

ERROR 

READOUT 

ERROR 
T1(𝝁𝒔) T2(𝝁𝒔) 

QUANTUM 

VOLUME 

Falcon (r5.11) 27 8.091𝑒−3 2.960𝑒−4 1.07𝑒−2 130.06 119.71 128 

Hummingbird (r3) 65 8.730𝑒−3 3.064𝑒−4 1.94𝑒−2 179.91 171.24 𝑁. 𝐴. 

Eagle (r3) 127 7.843𝑒−3 2.289𝑒−4 9.70𝑒−3 278.51 161.87 32 

Osprey (r3) 433 2.036𝑒−2 5.927𝑒−4 4.64𝑒−2 89.54 58.54 𝑁. 𝐴. 

Table 7 Performances of several IBM processors. 

 

An estimation of the scaling of these errors with respect to the size of the quantum circuit chosen 

previously is showcased in the following graph for each of IBM four processors. One can observe that 

errors due to the accumulation of 2-qubit gates contribute the most to the total error. To give an order of 

magnitude, on IBM Falcon device, the 4-qubit circuit offers less than a 65% chance of returning a good 

result. 
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In addition, while the adiabatic transformation ensures the good convergence to the solution of the 

problem, it is important to be able to perform the computation quickly enough not to lose the encoded 

information due to decoherence. There is a trade-off between performing a slow evolution to obtain a 

good solution and decoherence time. Improving decoherence times and limiting errors due to thermal 

noise while keeping a good level of control of the Hamiltonian is a major challenge to be met by 

companies working with quantum annealing technologies (Gardas & Deffner, 2018). 

6.2.7 Proposal of targeted quantum platforms 
 

D-Wave hardware offers a large number of qubits and a reasonable connectivity, which are already 

satisfying to solve the bundle adjustment problem on a small scale. However, it is expected that other 

platforms such as quantum annealers based on neutral atoms (PasQal and QuEra) may overcome the 

limitations in connectivity due to easier manipulation of qubits. 

 

For the computation of the kernel matrix on a digital quantum computer, IBM superconducting QPU, 

IonQ and AQT ion trapped technologies seem very promising. Their quantum volume are currently 

among the best and they keep achieving better performances on a fast pace. Currently, among IBM 

processors, the Eagle r3 seems to offer the best performances in terms of coherence times and error rates, 

with a rather large number of qubits compared to the Falcon devices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



    

REFERENCE : 

DATE : 

D1: QC4EO Study 1 

18/11/2023 

ISSUE :   5 Page : 41/48 

 

  

6.3 Use case n°3: Optical Satellite Data Analysis (FZJ) 

6.3.1 Problem instance 
 

The analysis of satellite images plays an important role in EO. Among the most important applications is 

Land Use Land Cover Classification (LULC), which aims at providing classification maps of the 

investigated area of observation. In a pixel-based classification scheme the problem consists in assigning 

to a set of pixels within an image a label from a finite set of classes by analyzing a set of features related 

to the pixel itself. Such features are usually spectral, i.e., consist of optical measurement acquisitions 

carried out at different wavelengths. In some instances, also measurements carried out at different times 

are considered as features (multi-temporal approach). 

From a theoretical point of view, therefore, pixel-based LULC amounts to a supervised classification 

problem: given a training set of N data points (𝒙𝒏, 𝒚𝒏), where 𝒙𝒏 is the vector containing the features 

related to a given pixel and 𝒚𝒏 its corresponding target label, the objective is to design a learning 

algorithm that given a new unseen feature data vector can infer the corresponding class label. 

6.3.2 Quantum algorithm 

 
6.3.2.1 Quantum Kernel Estimation 

The objective of Quantum Kernel Estimation (QKE) is to construct a kernel using Quantum 

Computing methodologies. Usually this is done by using a Parametrized Quantum Circuit (PQC). The 

Kernel function is then used to compute the Gram matrix, i.e., the matrix containing the kernel 

function evaluations between all training data points pairs. The Gram matrix can then be used in 

conjunction with ML kernel methods such as Gaussian Processes or Support Vector Machines (SVM). 

To implement the algorithm data is “encoded” in a quantum state using a data-dependent PQC that is 

applied to an initial reference state, usually |0⟩⊗𝑛 where 𝑛 is the number of qubits. 

The encoding procedure can be loosely interpreted as a mapping of a feature vector to a corresponding 

quantum state, in a similar way to what is done for classical kernels, in which through the kernel 

function feature vectors are implicitly mapped to a transformed feature space. The encoding procedure 

in QKE can be done with many different strategies and is currently an active area of research. In 

general, the values of the entries of the feature vector are used to determine the parameters of the 

quantum gates in the circuit. From a mathematical point of view, the encoded quantum state |𝜙(𝒙)⟩, 
associated to the feature datapoint 𝒙, is obtained by applying the data-dependent circuit unitary 𝑈𝒙, to 

the initial state |0⟩⊗𝑛. The quantum circuit performing the encoding procedure is also referred to as 

“quantum feature map”. 

The values of the feature vector might also undergo a preprocessing step before being used for the 

encoding: for instance, a feature reduction procedure implemented by a Principal Component Analysis 

(PCA) or an autoencoder might be applied. 

 

To calculate the kernel function evaluation between two feature vectors 𝒙 and 𝒚 the fidelity between 

the corresponding quantum states  |〈𝜙(𝒙)|𝜙(𝒚)⟩|2  is considered. The choice of the fidelity between 

the quantum states as a way to calculate the kernel function ensures that the quantum kernel defined in 

this way is a symmetric positive semi-definite function, as required by kernel theory (Schuld & 

Petruccione, 2021). The fidelity between quantum states, however, cannot be directly accessed and 

thus must be estimated through a sampling procedure. 
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A widely used strategy is to employ the so-called inversion test: by applying the circuit 𝑈𝒙
† 𝑈𝒚 to the 

initial state |0⟩⊗𝑛 and then performing a measurement in the computational basis it is possible to 

obtain an estimation of the quantity |〈0⊗𝑛|𝑈𝒙
† 𝑈𝒚|0⊗𝑛⟩|2 = |〈𝜙(𝒙)|𝜙(𝒚)⟩|2, which corresponds to the 

probability of obtaining the state |0⟩⊗𝑛 when performing a measurement on the state 𝑈𝒙
† 𝑈𝒚|0⟩⊗𝑛 on 

the computational basis. Other estimation methods can be used, such as the Swap test. The kernel 

matrix obtained in this way, however, might not be positive-definite because of the sampling error and 

therefore some extra processing on the matrix is needed to obtain a well-defined Gram matrix. 

 

Some implementations of Quantum Kernel algorithms also include parameters of the feature map that 

can be variationally optimized, such as the works presented in (Hubregtsen, et al., 2022) and 

(Miroszewski, 2023), in which the feature map was optimized with respect to a Kernel Alignment loss 

function. The optimized kernel is then used in the training phase of a ML kernel algorithm. 

6.3.3 Quantum instance 
 

The choice of the feature map used to carry out the encoding is an object of research in the QML 

community. In QML the feature map is commonly composed of alternating rotation gates and 

entanglement-inducing gates. Among the most popular feature maps used in QML research are the Pauli 

Feature Map (Havlíček, et al., 2019)  and the real amplitudes feature map. 

6.3.4 Quantum platforms 
 

Superconducting, ion trap and photonic hardware are the most widespread QPU technologies. In the 

available literature, kernel methods have been developed on different platforms, mostly superconducting 

QPUs and simulators (Gujju, Matsuo, & Raymond). A 2-qubit quantum kernel circuit has also been tested 

on photonic hardware (Bartkiewicz, Cernoch, & et al., 2020). 

6.3.5 Number of qubits 
 

The number of qubits needed to implement the QKE algorithm depends on several factors such as the 

dimensionality of the feature vectors and their processing, if applied. 

Another factor that plays a role in determining the number of qubits is the technique used to estimate the 

fidelity between quantum states. 

6.3.6 KPIs for digital quantum computing 
 

The depth of the circuit depends on the structure of the employed feature map. Usually, when 

implementing a feature map consisting of alternating rotation and entanglement-inducing gates the basic 

circuit scheme is repeated for a specified number of times and therefore the choice of such number of 

repetitions will affect the circuit depth. The encoding scheme also affects the number of entangling gates 

and thus the total depth of the circuit. Moreover, the required depth depends on the technique used to 

estimate the fidelity between the quantum states: for instance, the routine estimating the fidelity by 

applying measurements in the state 𝑈𝒙
† 𝑈𝒚|0⟩⊗𝑛 requires a circuit depth that is double the depth of the 

feature map circuit, whereas the Swap test requires in general a less depth overhead. 
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6.3.7 Proposal of targeted quantum platforms 
 

The main company providing commercial availability of quantum hardware have published some 

roadmap regarding the planned future development of their technology. For instance, IBM has recently 

announced its intention to build a 100000 qubits quantum computer by 2033, while PsiQuantum expects 

to launch its commercially available quantum computer by 2025. 

 

6.4 Use case n°4: SAR Raw Data Processing (FZJ) 

6.4.1 Problem instance 
 

Synthetic Aperture Radar (SAR) is an active imaging technique that has had a significant impact on 

remote sensing. In SAR imaging, microwave signal pulses are sent to the analyzed area by an airborne or 

spaceborne radar system. Then, the backscattered echo signals are collected and sampled by the radar. 

The result of the acquisition phase is a 2-dimensional raw digital signal 𝑠(𝜏, 𝜂). For Sentinel-1, this signal 

is part of the Level-0 products. SAR image formation consists in generating an intensity image that gives 

a visual description of the physical properties of the analyzed area, starting from the acquired raw signal. 

 

A number of compression and correction steps related to the physical setting of the imaging system are 

applied to the raw signal. Multiple SAR image formation algorithms are available in the literature, which 

differ in time performance and image quality (Cruz, Véstias, Monteiro, Neto, & Duarte, 2022). The first 

algorithm designed for spaceborne image processing is the Range Doppler Algorithm (RDA). The current 

algorithm used for generating Sentinel-1 higher level products is based on RDA. The basic 

implementation consists in the following steps: 

● Range compression: a range Fast Fourier Transform (FFT) is performed on the raw 

signal 𝑠(𝜏, 𝜂), a frequency domain matched filter 𝐺(𝑓𝜏) is multiplied and the range 

inverse FFT is applied 

𝑠𝑟𝑐(𝜏, 𝜂) = 𝐼𝐹𝐹𝑇𝜏[𝐹𝐹𝑇𝜏[𝑠(𝜏, 𝜂)]𝐺(𝑓𝜏)] 

● Azimuth FFT: an azimuth FFT is applied to the obtained signal 

𝑠1(𝜏, 𝑓𝜂) = 𝐹𝐹𝑇𝜂[𝑠𝑟𝑐(𝜏, 𝜂)] 

● Range Cell Migration Correction (RCMC): a compensation added to signal, due to 

the fact that the distance between points on the ground and the receiving antenna 

(e.g., the slant range) is not constant, due to the azimuth movement of the platform. 

For small slant angles, RCMC can be implemented as an FFT, linear phase 

multiplier 𝐺𝑅𝐶𝑀𝐶(𝑓𝜏), and IFFT (Cumming & Wong, 2005) 

𝐺𝑅𝐶𝑀𝐶(𝑓𝜏) = 𝑒𝑥𝑝 {𝑗
4𝜋𝑓𝜏𝛥𝑅{𝑓𝜏}

𝑐
} 

● Azimuth compression: a frequency domain matched filter 𝐻𝑎𝑧(𝑓𝜂) is multiplied and 

the azimuth inverse FFT is applied: 
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𝑠𝑎𝑐(𝜏, 𝜂) = 𝐼𝐹𝐹𝑇𝜂[𝑆2(𝜏, 𝑓𝜂)𝐻𝑎𝑧 (𝑓𝜂)] 

The problem dimension is related to the dimension (𝑁𝜏, 𝑁𝜂) of the raw signal 𝑠(𝜏, 𝜂) that is used to form 

the final image. The signal dimension depends on multiple factors, i.e., extension of the analyzed area, 

transmitted signal, pulse repetition frequency (PRF), spacecraft configuration (velocity, angle, height), 

range sample frequency (RSF). The relevant parameters are summarized in Table 8. The value ranges are 

estimated if not otherwise specified. 

 

PARAM ID DESCRIPTION DOMAIN RANGE VALUES NOTES 

𝑁𝜏 

Number of 

samples of 𝑠(𝜏, 𝜂) 

in range domain 

ℕ [5k, 50k] 

Related to TXPL and 

RSF and generally 

larger than 

TXPL×RSF. 

Predefined parameter 

for the specific 

considered data slice. 

𝑁𝜂  

Number of 

samples of 𝑠(𝜏, 𝜂) 

in the azimuth 

domain 

ℕ [1, 100k] 

Related to PRF and 

spacecraft 

configuration. Not 

analyzed further, as it 

is complex to 

estimate, and it can be 

adapted by selecting a 

smaller or larger area 

of interest for each 

image formation run. 

TXPL 
Transmitted Pulse 

Length 
ℝ [0.00001 s, 0.0001 s] 

Time duration of the 

sent pulses and lower 

bound for the time 

duration of the 

received echo. 

RSF 
Range Sample 

Frequency 
ℝ [10 MHz, 100 MHz] 

Sampling frequency 

of the received echo. 

Generally higher than 

the signal maximum 

frequency (Nyquist 

condition). 

Table 8 Relevant parameters for multiple SAR data. 
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6.4.2 Quantum algorithm 

 
6.4.2.1 Quantum Fourier Transform 

The growing acquisition rate of SAR data would benefit from a computational speedup in data 

processing. Quantum computing has shown a significant potential in providing a speedup over 

classical computation in specific cases. In particular, QFT has shown a computational speedup and has 

been widely employed in the literature, mostly as a component of bigger quantum circuits. 

 

A FFT algorithm is a classical algorithm that performs the Discrete Fourier Transform (DFT) of a 

signal 𝑥0, . . . 𝑥𝑁−1 with lower complexity than the standard algorithm that follows its definition: 

𝑦𝑘 =
1

√𝑁
∑ 𝑥𝑗𝑒2𝜋𝑖𝑗𝑘/𝑁

𝑁−1

𝑗=0

 

The complexity of a FFT algorithm is 𝒪(𝑁𝑙𝑜𝑔𝑁) compared to the 𝒪(𝑁2) complexity of the DFT. 

Multiple FFT subroutines are employed in the above presented RDA. 

The QFT algorithm is the quantum counterpart of the FFT, where the coefficients of the basis states |𝑗⟩ 

are the values on which the Fourier transform is applied. An efficient implementation of the QFT is 

shown in Figure 11. 

 

 

 

Figure 11 An implementation of the QFT (Nielsen & Chuang, 2010) 

 

 

The complexity of the QFT is shown to be 𝒪(𝑙𝑜𝑔2 𝑁) (Musk & Sullivan, 2020). 

QFT has found its success as part of larger circuits, such as the circuit for quantum phase estimation. It 

is not meant as a way to compute Fourier transforms, as converting data between classical and 

quantum domain cancels the speedup. 

6.4.3 Quantum instance 
 

The chosen approach makes use of QFT by defining a larger circuit that performs the whole image 

formation pipeline in the quantum domain. After a preliminary analysis, the version of RDA described in 
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6.4.1 can be interpreted as a combination of unitary operators. The circuit scheme of a quantum RDA is 

shown in Figure 12. 

 

 

 

Figure 12 Quantum RDA: proposed quantum circuit approach 

 

6.4.4 Quantum platforms 
 

Being a new research direction, no existing implementations can be found. Superconducting, ion-trap and 

photonic hardware are potential quantum platforms for this purpose. 

6.4.5 Number of qubits 
 

The number of qubits required to execute the algorithm is related to the dimension of the raw signal. The 

total number of values is 𝑁𝜏 × 𝑁𝜂 . Considering the ranges included in Table 8, this number is bound to 

range [5𝑒3, 5𝑒9], with a higher likelihood of intermediate values in practical cases. Amplitude encoding 

requires a number of pixels that is the logarithm of the dimension of the classical data vector. Thus, the 

number of required qubits can be estimated in the range of [13, 32]. This estimation holds true when the 

whole image is encoded as a single vector, without separating the values in the range and azimuth 

domain. It is unclear whether the quantum gates, which operate differently on the two domains, can be 

easily implemented with this assumption. 

6.4.6 KPIs for digital quantum computing 
 

The specific implementation of the gates defined in the quantum circuit is ongoing research. This will 

give more insights on the circuit depth, which is expected to be the main bottleneck for this algorithm. 

6.4.7 Proposal of targeted quantum platforms 
 

In theory, the proposed circuit requires a relatively limited number of qubits to be executed. However, the 

depth and complexity of the circuit poses a requirement on error correction and qubit fidelity. Therefore, 

trapped ions or photonic qubits are expected to be the preferred choice. 
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7 Conclusions 
 

The following table summarizes the output of WP2 listing the quantum instance, the KPIs and the 

targeted quantum platforms for each UC. 

 

 

USE 

CASE  

QUANTUM 

ALGORITHM 
NUMBER OF QUBITS KPI 

TARGETED 

QUANTUM 

PLATFORMS 

UC1  

Mission 

Planning 

for EO 

Acquisitio

ns 

• QA 

QAOA 

• QNN 

• Tensor 
Network 

• Given by the number 

of binaries in the cost 

function (including 

slack). 

The connectivity of 

the problem scale 

linearly with the 

system size (better 

with preprocessing 

of problem 

constraints) 

• Size of the input in 

QNN reduced with a 

classical NN 

• Physical qubits scale 
polynomially with 

preprocessing. 

• Number of gates per 

layer is polynomial in 

the number of qubits.  

Layers scale 

logarithmically in the 

number of qubits. 

All characteristics of 

the circuit scale 

linearly in the number 

of qubits. 

• Superconducting 

Neutral atoms 

• Trapped ions 

UC2 

Multiple-

view 

Geometry 

on Optical 

Images 

• Quantum 

k-medoids 

• Quantum 

kernel 

density 

clustering 

• Smaller 

subimage: 4 

keypoints on 

8 × 8 pixels 

corresponding to 

64 binaries in the 

QUBO. 

• Kernel matrix: 4 

qubits circuit. 

• QUBO size depends 

on keypoints. 

• All characteristics of 

the circuit (number of 

2-qubit gates, depth) 

are quadratic in the 

number of qubits. 

• Superconducting 

Neutral atoms 

• Superconducting 

Trapped ions 

UC3 

Optical 

Satellite 

Data 

Analysis 

• Quantum 

Kernel 

Estimation 

• Depends on the 

dimensionality 

of feature vector 

• Depends on the 

feature maps 
• Superconducting 

UC4 

SAR Raw  

Data 

Processing 

• QFT 

• Related to raw 

signal 

dimension. 

Amplitude 

encoding scales 

logarithmically.  

Number of 

qubits in 

[12, 32]. 

• Circuit depth is 

expected to be a 

bottleneck, still under 

investigation. 

• Superconducting 

• Trapped ions 

Table 9 WP2 output summary table 
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