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Quantum and Classical Computing Paradigm

1 Computational Complexity, Quantum, and Classical Computing:

Computational complexity lies at the heart of computer science, serving as a fundamental concept in
understanding the efficiency and limits of problem-solving algorithms. It refers to the study of the resources
required by algorithms to solve computational problems, typically measured in terms of time and space.
Classical computing operates within the realm of classical physics, where computations are processed using
classical bits that can represent either a 0 or a 1. Classical algorithms are designed to tackle problems
efficiently based on their time and space complexity. However, as the scale and complexity of problems
continue to grow, classical computers face inherent limitations in solving certain types of problems within a
reasonable timeframe.

Quantum computing, on the other hand, takes advantage of the principles of quantum mechanics to offer
potential solutions to computationally challenging problems. Instead of classical bits, quantum computers use
quantum bits or qubits, which can represent both 0 and 1 simultaneously thanks to the concept of superposition.
This property allows quantum computers to perform parallel computations, potentially leading to exponential
speed-ups for specific problems. Quantum algorithms, such as Shor’s algorithm for factoring large numbers,
demonstrate the potential of quantum computing to solve problems that are currently intractable for classical
computers. However, harnessing the power of quantum computing remains a significant technical and
engineering challenge, as qubits are highly sensitive to noise and require careful control to maintain coherence
(see Figure 1).

Important Cases:

• Classical Computing:
– NP-complete problems: Examples include the Traveling Salesman Problem, Knapsack Problem,

and Boolean satisfiability problem.
– Sorting algorithms: Notable examples include Quicksort, Mergesort, and Heapsort.
– Graph algorithms: Important cases include Dijkstra’s algorithm, Prim’s algorithm, and Kruskal’s

algorithm.
• Quantum Computing:

– Shor’s algorithm: A quantum algorithm for factoring large numbers, which has implications for
breaking cryptographic protocols based on integer factorization.

– Grover’s algorithm: A quantum algorithm for searching an unsorted database with a quadratic
speedup compared to classical algorithms.

– Quantum simulation: Quantum computers can simulate quantum systems, enabling the study
of molecular interactions, material properties, and quantum physics phenomena.

2 Taxonomy for optimization problems

A taxonomy for optimization problems is a classification framework that categorizes different types of
optimization problems based on their characteristics and properties. It provides a structured way to analyze
and compare various problem domains, algorithms, and solution approaches. A taxonomy typically takes into
account factors such as problem structure, objective function type, constraints, and search space characteristics.

One common way to classify optimization problems is based on their problem structure. This classification
includes categories such as linear programming, integer programming, nonlinear programming, combinatorial

6



Figure 1: Computational complexity for easy and hard computational problems. Namely, the red star denotes
a class of computational problems which is hard for a classical computer but easy for a quantum computer,
that is, a polynomial depth quantum algorithm exists. Here, NP stands for non-deterministic polynomial time
problems, QMA stands for quantum Merlin-Arthur problems, the quantum version of the NP problems, P
stands for polynomial time problems, and BQP stands bounded-error quantum polynomial problems.

optimization, and multi-objective optimization. Each category represents a distinct problem structure and
often requires specialized algorithms and techniques for efficient solution finding. Another dimension of
classification is based on the type of objective function, such as minimization or maximization, and whether
the objective function is continuous or discrete.

Additionally, taxonomy for optimization problems may consider the presence of constraints, such as equality
constraints, inequality constraints, or both. Problems with constraints are often referred to as constrained
optimization problems, and they require specialized methods, such as constrained optimization algorithms or
mathematical programming techniques.

Overall, a taxonomy for optimization problems helps researchers and practitioners understand the charac-
teristics and complexity of different problem domains, and it provides a foundation for developing efficient
algorithms and solution approaches tailored to specific types of optimization problems.

• Linear Programming:
– Resource allocation: Determining the optimal allocation of limited resources to maximize or

minimize a certain objective, subject to linear constraints.
– Production planning: Optimizing production levels and resource allocation to meet demand

while minimizing costs.
– Portfolio optimization: Finding the optimal allocation of investments to maximize returns while

considering risk.
• Integer Programming:

– Traveling Salesman Problem: Determining the shortest possible route that visits a given set of
cities and returns to the starting point.

– Knapsack Problem: Selecting a subset of items with maximum value, considering a limited
capacity constraint.

– Facility Location Problem: Deciding the optimal location for facilities to minimize costs and
meet demand requirements.

7



• Nonlinear Programming:
– Function Optimization: Finding the minimum or maximum of a nonlinear objective function,

possibly subject to constraints.
– Parameter Estimation: Adjusting the parameters of a mathematical model to best fit observed

data.
– Optimal Control: Determining the optimal control inputs over time to optimize a dynamic

system’s performance.
• Combinatorial Optimization:

– Graph Coloring: Assigning colors to the vertices of a graph, such that no adjacent vertices
share the same color.

• Multi-objective Optimization:
– Pareto Front Exploration: Identifying a set of solutions that represents the trade-off between

multiple conflicting objectives.
– Multi-objective Resource Allocation in Project Management: Optimizing the allocation of

resources to multiple projects while considering time, cost, and resource constraints.
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Quantum Machines Assessment

3 The Assessment of Quantum Technology

The development of quantum computing encompasses a wide range of technologies from hardware systems
to software tools depicted in Figure 2. The quantum computing industry is still in its infancy and like the
early days of classical computing without well-defined interfaces between the various parts of the quantum
computer. The quality of a quantum algorithm is affected not only by the quality of the individual constituent
components (qubits, gates, measurements), but also by the interplay of global device and algorithmic
properties such as device topology, multi-qubit noise correlations, and circuit structures. Also, the quantum
compilers and middleware affect the algorithm performance to be run on certain hardware. Typically, the
machine instructions are optimised for execution on all hardware platforms. After the execution additional
postprocessing may also be employed to improve readout efficiency. These optimisations typically include:

1. depth reduction and logical transpilation: A sequence of compiler passes is used to mathematically
reduce the gate depth (e.g., T-gate count) of the quantum circuit and the logical operations in the
circuit are mapped to the native gates available on the hardware.

2. error-aware hardware mapping: Error-aware compilation is used to best select the appropriate subset
and logical assignment of qubits on a device.

3. elimination of circuit crosstalk: Dynamical decoupling sequences are incorporated to mitigate
various idling errors including dephasing and ZZ crosstalk at the algorithmic level.

4. optimised gate replacement: The process involves automated parsing of the device topology to
ensure parallel gate optimizations do not share qubits; and relevant single and or multi-qubit gates
are optimised.

QC’s usefulness is heavily dependent upon the achievable fidelities, and the number of qubits of the Quantum
Processing Unit (QPU). Scaling the quality and number of qubits will require advanced 3D architectures
and assembly techniques. Some estimates say that to achieve practical quantum advantage requires running
millions of parallel high-fidelity gates at high speed, as well as reading out millions of qubits in parallel. With
current error-correction overheads, practical quantum advantage will be achieved, albeit only for algorithms
with small I/O requirements and superquadratic (ideally exponential or quartic) speedups over their classical
counterparts Beverland et al. [2022].

Figure 2: Quantum stack by QuiC showing the software, middleware and hardware layers which have direct
impact on the use cases and their prospects.

In the current noisy intermediate-scale quantum (NISQ) era, the computation results are mostly limited by
errors in single- and two-qubit quantum gates. To succeed roughly half of the time in a 100-qubit circuit
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of depth five, one needs at least 99.9% gate fidelity. In practice, the number of qubits and especially the
gate depth required for useful NISQ advantage is likely higher, leading to a fidelity target of 99.99% for
all quantum gates, not yet demonstrated. Producing commercially viable QC’s requires technologies that
facilitate scalable manufacturing requiring manufacturing process efficiency and reliability, integration, and
packaging. Due to manufacturing variability some of the qubits may not be functional and available for use;
the exact number of qubits yielded will vary with each specific processor manufacturer. The enabling hardware
that connects to the QPUs, such as cryogenic coolers, electronic systems, and cabling, need also to be matured.
The widely accepted approach to remedy effects of noise and decoherence in quantum computers is the use of
quantum error correction (QEC) Fowler and Gidney [2019]. While the hardware requirements to implement
fault-tolerant (FT) quantum algorithms have not been met yet, the steady progress in the development of
quantum hardware has initiated the introduction of a set of techniques that we refer to broadly as quantum
error mitigation. These techniques immediately translate advances in qubit coherence, gate fidelities, readout
precision, and speed to measurable advantage in computation. Quantum error mitigation offers the continuous
path that will take us from today’s quantum hardware to tomorrow’s FT quantum computers. They might even
be applicable to enable near-term practical quantum advantage without the use of QEC for certain use cases.
A major use-case for near- to medium-term quantum computers is to accelerate existing HPC workflows. For
this, a tight integration between HPC and QC, beyond cloud-access or the operation as separate compute
systems, has been shown to be critical to avoid idle time either due to resource allocation or communications
latency. Following three current trends can be identified: (1) stay at "small" scales (below 100 qubits) and try
to solve coherence problems and create useful applications before scaling up; (2) go for large scales (over
1, 000 qubits) and try to implement quantum error correction for quantum advantage or superiority while
scaling up; (3) scale up and solve large-scale hardware (HW) and software (SW) integration at systems levels.

We mentioned in the previous chapter that QC hardware can be characterised by the kinds of computation
they can run into three categories:

1. Annealers. Quantum annealers are a kind of an analog quantum simulator relying on the adiabatic
theorem and mimicking an Ising Hamiltonian to solve quadratic unconstrained binary optimization
(QUBO) problems such as satisfiability problems and combinatorial search problems. QUBO
problems are solved by finding their global minimum over a given set of their candidate solutions
(candidate states), by a process using quantum fluctuations. In adiabatic computing noise- and
error-tolerance are higher, and so hard to create entangled states, the main resource for quantum
computational advantage over a conventional classical computer.

2. Analog Quantum Simulators. Analog quantum simulators are special purpose devices designed to
study quantum systems in a programmable fashion. They exploit superposition and entanglement to
provide insight about specific physics problems mimicking the Hamiltonian evolution of the system.
Analog quantum simulators are especially suited for simulating quantum physical systems, also
more general optimisation is possible. As the quantum interactions between quantum particles is a
built-in feature of quantum simulators, near-term quantum advantage is expected for the specific
class of problems that they can describe.

3. Digital Universal Quantum Computers, that is, fault-tolerant universal quantum computers.
The most powerful class of quantum machines, that directly exploit superposition, entanglement,
and wave-function interference and run quantum algorithms in a step-by-step procedure. A digital
universal quantum computer can, in principle, solve some computable problems, with the additional
advantage of up to exponential speed-up over classical computers. Digital quantum computers
operate using quantum gates, logical operations on the basic quantum information primitives. These
units are usually two-state quantum bits, qubits, but also continuous-variable (CV) approaches
are under development. Qubits can be implemented using several different technologies, e.g.,
superconducting, trapped ions, neutral atoms or using photonics, which all come with their unique
strengths and weaknesses. There are some differences in algorithms between discrete and continuous
quantum states, with CV approaches especially suited for, e.g., sampling and regression tasks.
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4 The qubit implementation techniques

There are plenty of approaches to develop scalable qubits with acceptable coherence time and error rate.
Some of the approaches are on a very low TRL level and it’s difficult to estimate their potential. In this
chapter we describe six most promising approaches based on published information Cheng et al. [2023a].
The connectivity of a quantum gate processor impacts on the depth of actual quantum circuits. During
transpilation, an input quantum circuit is compiled to a sequence of native gates or universal gate set such
that all operations agree with the qubit topology and noise properties of a specific quantum processor. The
signal-to-noise ratio impacts on the number of shots required to get a correct answer by recovering the signal.
By Increasing the gate fidelity by a little bit, the number of shots and runtime of a given algorithm may go
down drastically. Even a relatively modest 0.16 percentage point improvement in fidelity, could mean that
it runs in less than half the time. Building large circuits requires long coherent times of the qubit, strong
interqubit interaction for fast and high-fidelity two-qubit gates, and small to zero coupling between qubits
when no interaction is needed. Transmon qubits allow for a variety of coupling concepts, with various pros
and cons. Two of the most promising technologies are superconductors and ion traps. At the time of writing,
at most 433 and 20 qubits are available for superconducting and ion trap devices, respectively, that is, the
IBM Odsprey processor, USA and the AQT PINE processor, Austria. And at most 5627 qubits for quantum
annealing devices, i.e., D-Wave Advantage. According to the roadmap in 2023 Advantage 2™ quantum
system will incorporate a new qubit design that enables 20-way connectivity in a new topology containing
7000+ qubits and make use of the latest improvements in quantum coherence in a multi-layer fabrication
stack.

1. Superconducting circuits. Physical implementations of superconducting qubits reside on the chip
at fixed locations and are connected via a well-defined pattern, the so-called connectivity structure.
Structures are designed to minimise the possibility of frequency collisions and optimise the hardware
performances. The larger the number of neighbours of a qubit, the more frequencies are required
to realise two qubit gates using cross-resonance interaction. Current technology can turn off the
coupling of transmon qubits with close frequencies, but this is prone to crosstalk errors. With tunable
couplers, a more efficient pulse shape could be optimised to achieve a CZ gate with a higher fidelity
and lower unwanted leakage. Until recently, the mainstay devices have been fixed couplers with a
constant coupling strength, but attention is now turning to tunable couplers, which are seen as offering
the adjustable coupling strength necessary to improve performance. Roadmaps aim for increased
coherence, yield and reproducibility, enabling higher gate fidelity and consequently larger circuit
depth, on an equal footing with increased qubit number. Three-dimensional multi-chip allow massive
scaling of QPUs. It is also necessary to reduce variation of all critical parameters and tolerances
for all steps of chip fabrication and 3D integration. Chip engineering needs to consider signal
routing, the electromagnetic environment, quantum coherence, and robustness against variations
in device parameters. To advance the state of the art in quantum-processor performance require
development of novel components for fast and highly selective multiplexed readout, elements for
mid-circuit leakage detection, coupling schemes to accelerate parity measurements, conditional
and unconditional reset capabilities, and highly parallelizable two-qubit gates. To ramp-up and
operate large scale QPU requires also advancing the room-temperature electronic (RTE) systems
with sufficient number of control and readout channels and capability for real-time quantum error
correction.

2. Trapped ions. Ion traps use ions, single-charged atoms, as qubits. Information is encoded in
the electronic state of ions that are confined using electric fields. Operations are performed with
tailored laser pulses that modify the state of the ions. Ion-trap quantum computers provide optical
interfaces and high-fidelity local operations. Multiple ion-trapping potentials can be connected
deterministically by physically transporting ions across micro-scale segmented ion traps, which
forms an architecture for a scalable quantum information processor. Realising trapped-ion qubits
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requires the orchestration of several devices, including the ion source, dedicated lasers, several
optical components and sensors, a vacuum, cooling mechanisms, and control and measurement
electronics. The respective systems routinely operate with about 20-30 qubits but can be pushed
(at reduced levels of control) up to 50 qubits. The devices hold fully connected quantum registers,
which facilitate the implementation of quantum algorithms. For trapped ion qubits, the main noise is
not relaxation with time T1 but instead dephasing with time T2 induced by fluctuation of magnetic
fields. Also, the state-detection efficiency decreases with the motional heating of the ion without
laser cooling.

3. Photonic. Qubits are realised by processing states of different modes of light through both linear
and nonlinear elements. The fundamental building blocks include deterministic single photon
sources, integrated photonic circuits, and efficient single-photon detectors. Photonic systems have
the unique property that they can operate at room temperature and allow for easy transfer of quantum
information. The main disadvantage of photonic systems is that performing a precise interaction
between photons is a difficult task to achieve. In recent years a couple of programmable and scalable
architectures for photonic quantum computing were introduced and specific quantum algorithms
such as Gaussian boson sampling, molecular vibronic spectra and graph similarity were executed in
laboratories. Photonic circuits, due to properties of photons, have different features from qubit-based
systems from the point of view of computing and operations.

4. Neutral atoms. Qubits are realised by internal states of neutral atoms trapped in an optical lattice.
Like ion-trap systems, qubits can be programmed using the energy levels of the atoms. Light, or
electromagnetic radiation, can be used to trap and manipulate the quantum states of uncharged
(neutral) atoms. Multiple qubits that are nearby in space can be programmed to interact with one
another via two-qubit gates. This opens new possibilities for exotic quantum-computing circuit
topologies. Neutral atom platforms for quantum processing have a unique potential for scalability:
the size of the quantum register is only limited by the amount of trapping laser power and by the
performance of the optical system generating the optical tweezers.

5. Silicon spin. QPU integrates both qubits and control electronics and operates at a liquid helium
temperature (4K), which is higher than the usual millikelvin temperatures of superconducting qubit
systems. The higher operating temperatures result in lower quality qubits, but extensive and efficient
control electronics.

6. NV diamond. Qubits are realised by the electronic or nuclear spin of nitrogen-vacancy centres in
diamond. In these artificial diamond structures, a carbon atom has been replaced by a nitrogen atom
near a carbon atom gap. Qubit gates are implemented with microwaves, a magnetic field and an
electric field. Qubit readout is using a laser and fluorescence detection.

4.1 QPU performance consideration

To implement a functional quantum computer requires an integrated system consisting of a quantum processor,
its fabrication, packaging and wiring, room temperature electronics, enabling software, system integration,
application development and testing system. Increasing QPU performance means improving all the subsystems
and subcomponents of the machine individually and simultaneously, while ensuring all the systems continue
to work well together. Here we focus on the Quantum Processing Unit, QPU. There is not yet a standard to
assess the performance levels of the processor. Some of the approaches include benchmarking metrics such as
Quantum volume, Algorithmic volume and Randomised benchmarking. To keep the qubit error rates below a
certain threshold for fault-tolerant computation, it is crucial to extend the coherence time of qubits. Here we
list some current critical areas in Qubit implementation, Qubit control, Qubit calibration and Code running.
(operation times in the microsecond range, and qubits are more relevant for superconducting transmon qubits
or spin qubits.
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Table 1: Some dominating quantum machines in the global market offered by large organizations. See Figure
3 for the projection of the roadmap of some quantum machines and Table 2 for parameters of quantum
machines QRM.

Organizations Locations Technology Current qubits Projected qubits (3-5 years)
IBM USA superconducting 433 4, 158

Google USA superconducting 73 100

IQM FI superconducting 5 54

USTC CN superconducting 66 100

AQT AT trapped ions 20 200

IONQ USA trapped ions 29 256

Xanadu CA photonic 216 216

USTC CN photonic 113 300

D-Wave CA superconducting-annealing 5, 000 10, 000

QuEra USA neutral atoms 256 1, 000

Currently, only trapped ions and superconducting qubits satisfy the five required criteria for quantum
computing defined by DiVincenzo:

1. A scalable physical system with well characterised qubits;

2. The ability to initialise the state of the qubits to a simple fiducial state;

3. Long relevant decoherence times;

4. A “universal” set of quantum gates;

5. A qubit-specific measurement capability DiVincenzo [2000].

Typical physical indicators of quantum computers include T1, T2, single qubit gate fidelity, two qubit gate
fidelity, and readout fidelity. The aggregated benchmarks can help the user to determine the performance
of a quantum processor with only one or several parameters. The aggregated metrics can be calculated
with randomly generated quantum circuits or estimated based on the basic physical properties of a quantum
processor. Typical aggregated benchmarks include quantum volume (QV) and algorithmic qubits (AQ).
Specific attributes (e.g., faster gate speeds, higher fidelities, denser connectivity) can make certain machines
better at particular tasks than others, but not superior in absolute terms for the time being. Also, certain QPU
may then fit better on certain QC4EO use cases based on the problem they need to solve instead of an arbitrary
rating. For example, ion trap devices are able to make up for slower operation speeds with better connectivity,
while the superconducting systems with sparser connectivities are still competitive due to their much faster
operation times. Another point is that trapped ion qubits have very long coherence times, making them more
robust to mid-circuit measurement — a key requirement for error correction. However, the 1000x faster gate
speeds of superconducting are preferable for variational benchmarks like QAOA, which require millions of
sequential iterations Cheng et al. [2023a]. We presented example quantum machines in the Table 1.

4.2 Sizing quantum machines

Modern classical central processing units (CPUs) operate at around 3GHz clock cycle speed, i.e., that is,
around 0.30ns clock cycle time. Nowadays, computationally hard problems are even tackled on several
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Table 2: Sizing quantum machines: SC−superconducting QCs Acharya et al. [2023], T.ions−trapped ions
QCs Pogorelov et al. [2021], N.atoms−neutral atoms QCs Henriet et al. [2020], Photonic−photonic QCs
Bartolucci et al. [2023], S.spin−silicon spin QCs Stano and Loss [2022], NV−nitrogen vacancy in diamond
QCs Cheng et al. [2023a], CPUs− conventional central processing units. See also the Table 1.

Parameters SC T.ions Photonic N.atoms S.spin NV CPUs
Clock cycle 1MHz 1KHz 10Hz 1MHz 0.76MHz 1MHz 3GHz

Measurement 660ns 300µs x 200ms 1.3µs x x
2-qubit gate 34ns 200µs x < 100µs x 700ns x
1-qubit gate 25ns 15µs x x x 9ns x

Readout fidelity 99.4% 97.3% 50.0% 99.1% 99% 98% x
1Q fidelity 99.99% 99.99% 99.84% 99.83% 99.99% 99.99% x
2Q fidelity 99.97% 99.9% 99.69% 99.4% 99.5% 99.2% x

hundreds of parallel CPUs as well as general processing units (GPUs). The fastest QPU is currently a
superconducting-based QPU (see below table) in terms of the qubit and quantum gate operation time, that
is, clock cycle time. However, I/O speed is 10,000 slower in QC compared to CPU. Logical qubit/Magic
state distillation (creating more accurate quantum states from multiple noisy ones) are other restrictions, and
another restriction is high-bandwidth low-noise classical electronics. Hence, to beat CPUs, there is the need
to improve the speed of the whole I/O system in QPUs from register preparation to read-out. More than
exponential speedup is also required in the quantum algorithm Beverland et al. [2022], and only some of the
problems are meaningful to compare depending on their parallelizability on CPUs and GPUs (see Table 2
and Figure 3). Regardless of the qubit technology, there is the persisting challenge to scale logical error-free
qubits due to the quantum state generation having a high fidelity and classical electronics controls, to name a
few Cheng et al. [2023a].

4.3 Error mitigation and correction

Errors are generated by various interactions, electromagnetic or mechanical, between qubits and their
immediate environment and are associated with the phenomenon of quantum decoherence. Error removal
is progressing steadily but barely managing to gain one or two orders of magnitude in error whereas in an
ideal world, we would need ten orders of magnitude improvements. It is possible to correct errors, even by
using noisy gates, provided that the noise level remains below a certain threshold. The drawback is that it
requires huge overhead of physical qubits and classical information processing (see Figure 4 and 5) Fowler
and Gidney [2019]. There is an optimal “code size”, i.e. number of physical qubits per logical qubit, that
maximises the metric of performance— and beyond which more error correction degrades the computation
accuracy rates. Also, less noise mandates a bigger code and more physical qubits, but more physical qubits
give rise to more heat generation, hence more noise. To execute a quantum application successfully, QEC
must be used to build logical qubits that can be used to store and manipulate quantum information better
than raw physical qubits. This QEC capability is central to scalable quantum computers, but the costs are
formidable, often multiplying the number of qubits needed by a factor of thousands, and runtimes by a
factor of hundreds. One of the trends for improving the error correction rates characteristics is employing AI
models for this process. This would in turn allow us to reduce the number of quantum computation instances
needed before obtaining a reliable result, or decrease the number of physical qubits in QC systems. In Europe
there exists a start-up which develops a toolkit for providing this form of QC improvement. An important
metric for a QEC approach is its threshold, which specifies the maximum error rate that it can tolerate. To
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avoid prohibitive QEC overheads, physical error rates on Clifford operations below 0.1% (including qubit
preparations, measurements, and gates) are typically required. These values are possible to obtain only in
the setting where operations can be applied in parallel, which may pose a significant hardware challenge for
some platforms such as trapped ions. In many QEC schemes the non-Clifford gates (typically T gate) are
quite costly when requiring fault tolerance Gidney and Fowler [2019]. The required low error rate T states are
produced using a T state distillation factory involving a sequence of rounds of distillation, where each round
takes in many noisy T states encoded in a smaller distance code, processes them using a distillation unit, and
outputs fewer less noisy T states encoded in a larger distance code, with the number of rounds, distillation
units, and distances all being parameters which can be varied. This procedure is iterated, where the output
T states of one round are fed into the next round as inputs. T factories incur significant physical overheads,
requiring several thousand physical qubits and only producing new T states once every 10 to 15 logical time
steps Litinski [2019].

Microsoft (MS) has evaluated three use cases concluding that to achieve practical quantum advantage QC’s
need to be able both to control millions of parallel operations with low error rates, and to readout out those
millions of qubits in parallel to enable decoding of the errors at speed; all while ensuring the overarching
logical clock time is fast enough to complete the computation within a month runtime or less Reiher et al.
[2017]. MS concluded that logical gate times under 10µs, in turn requiring physical gate times around 100ns,
would be needed to complete the quantum chemistry algorithm within a month, using a few million physical
qubits. To execute syndrome measurements on these qubits and communicate the quantum measurements
to the decoder requires large quantum-classical bandwidth and processing power for decoding. The exact
estimates of bandwidth requirements depend on the choice of QEC code, system size and physical operation
times, but roughly, with a few million qubits, the estimation is that several terabytes per second of bandwidth
will be required between the quantum and classical plane. Furthermore, processing these measurements at a
rate that is sufficient to effectively correct errors demand petascale classical computing resources that are
tightly integrated with the quantum machine.

5 Investment in quantum computing

Across Europe and the World quantum computing is gathering investment from either states and organizations,
as well as private investors. In 2022, the investment in a quantum technology was globally around 30 billion
euro, and in 2023, the investment amounts to 36 billion euro. By 2028, the overall investment in a quantum
technology is projected to reach globally 53.2 billion euro, and quantum computing investment alone is
estimated to be around 17.6 billion euro RM. Several major players are Qinsider:

1. European Union - The EU Chips Act with a total budget of around 43 billion euro has a quantum
component included, and the European Quantum Flagship program invests around 1 billion euro in
quantum computing excluding other quantum technologies like quantum sensing.

2. USA-The USA Chips Act with a total budget of around 50 billion euro has a quantum component
included, and the US National Quantum initiative invests around 3.75 billion euro in quantum
computing alone.

3. China - The one of leading players in quantum computing alongside the USA. Its quantum initiative
invests around 15 billion euro in quantum computing.

6 When can we expect quantum advantage in Earth observation use-cases?

The United States is perceived as the leading player in quantum technology even though Europe has made
clearly the most public investments in the industry. In the United States, big technology enterprises such as
Microsoft, Google, Intel and IBM have driven commercial development efforts. In Europe, development has
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Figure 3: Quantum machines roadmap of some organizations which provide the open-data for their quantum
development projection.

been slowed down by fragmentation. Currently there are about 140 projects, less than half commercial. Many
of the groups listed are university or government labs, or departments within larger tech companies. Here we
can make distinction between two approaches:

• components provided addressing parts of the HW stack which then may be integrated using so-called
open architecture,

• a system integrator capable of bringing together and coordinating all the needed competences and
components that will make up a commercially viable quantum computer.

Superconducting qubit-based approaches are the most researched (and have received the most development
resources). Almost all the startups in this space are based on technology from university labs. To manufacture
a stable QC requires more than an exploratory chip. As of early 2023, there have been around a few dozen
successful attempts to build quantum computers around the world. There are some specialised companies
that are developing middleware for the calibration, management and optimization of quantum computers to
overcome some of the problems caused by errors.

Estimating if and when scalable and useful quantum computers will be available is a difficult art and science.
The opinion spread between optimists and pessimists is quite large. As published in their 2020 roadmaps,
Google, IBM and Amazon expect to achieve true quantum supremacy relatively quickly and create a quantum
computer with 100 logical qubits in less than a decade. On the other end there are some pessimistic views
saying that there is no hope to reach quantum speedup ever. There is not really any strong scientific obstacle
preventing the creation of reliable quantum computers. In the scientific community there is a belief that the
uncertainty is mostly a technological and engineering one and the pace to quantum usability is accelerating.
However, there is some pessimism about the ability to fix the noise that affects qubits, whatever their type. A
potentially exponential quantum speedup provided by quantum computers may vanish when there is big data
that needs to be loaded from classical data, or when the full solution vector should be read out. Generally,
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Figure 5: The trend line for physical and logical qubits in the future (beyond 2024) such that a single logical
qubit is represented by 75 physical qubits.

quantum computers are considered as practical for "big compute" problems on small data, not big data
problems. There is a growing number of informative end-to-end resource analyses, but typically these single
out very specific algorithms and hardware and make very different assumptions across the stack. Different
choices can result in different resource requirements. One can, for example, trade off more qubits against
shorter run times, or trade off faster qubit gate operations against lower fidelities. It is obvious that the
number of physical qubits and the duration of a logical time step reduce as physical error rates improve.
Entanglement has long been considered to play an essential role in quantum computing and promise for
exponential speedup of various quantum algorithms that require asymptotically fewer operations than their
classical counterpart. Specific examples where this is the case are quantum problems in chemistry and
materials science. Entanglement can be seen as the key feature that sets quantum computing apart from
classically simulable processes. Thus, the key metrics to follow the development should include the number
and quality of entangling gates provided. The GHZ states provide the strongest non-local correlations possible
for an n-particle entangled state. These GHZ states are very fragile, as loss of a single particle completely
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Figure 6: Estimation of quantum advantage in the Earth Observation using gate based computers. In the left
vertical axis is the number of physical qubits denoted by blue which can be in superposition. On the right
vertical axis is the number of logical qubits related to their physical qubits denoted by yellow over the years.

destroys the entanglement. Also, because all particles contribute to the phase evolution, the dephasing time
decreases with the particle number. Such states are challenging to create, requiring either many particles to
interact with each other or a series of two-particle interactions performed in sequence. Some of the recent
approaches to improve the SC qubit fidelities include

• redesigning the qubit geometries,
• use of new low-loss materials and
• optimising the control pulse that drives the quantum system.

Based on the current quantum volume indicator, which is a marketing simplification tool from IBM, current
quantum computers are more than easily emulable in a simple classical computer. In current NISQ-computers
the fully manageable number of qubits is somewhere below 25, way below 50 which is the limit for emulation.
Quantum volume sets limit to Hilbert’s vector space, i.e. the number of different superposed states that is
manageable from a practical point of view with a depth of computation equal to the number of corresponding
qubits. Based on the expert estimation we believe that starting in 2025, we see some relevant quantum
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advantages with actual data and useful algorithms running on NISQ hardware in the Earth Observation
domain. A quantum advantage can come from the computing time, system energetic footprint and/or the
precision of the outcome (metrics: time to solution, energy consumed to reach the solution and precision
of the solution). We estimate that the threshold of 150-ish high quality qubits, with a low error rate and a
long coherence time, will be needed to achieve any real quantum advantage. With these qubits it may be
possible to form about 10 logical qubits. However, entangled qubits are required for exponential speedup
and significant quantum advantage. We estimate that the number of maximally entangled logical qubits will
start growing exponentially around 2030 with advancement in the qubit engineering. We summarise this
development in the following graph in three phases (see Figure 6).

1. Late NISQ era: (100− 200+ physical qubits; 99.99%+ fidelities, especially 2Q gate fidelity; high
qubit connectivity) (3− 5 years from now).

2. Early Fault Tolerant QC era delivering significant advantage (< 10 maximally entangled logical
qubits) (5− 10 years from now).

3. Fault Tolerant QC era delivering exponential advantage (> 50 maximally entangled logical qubits)
(10− 20 years from now).
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Climate Adaptation Digital Twin HPC+QC
Workflow

Abstract
A Digital Twin is a virtual model of a given system or process, where one as accurately as
possible attempts to reproduce its behaviour. The goal is to model the time evolution based
on initial values and possible perturbations. Some of the most ambitious projects of this
type are found within the Destination Earth initiative, where digital twins of the Earth are
constructed. Modelling processes at this scale requires massive amount of computational
resources. Only now, with the advent of pre-exascale and exascale supercomputers, has
this become a realistic prospect. Here, we scrutinise the present state-of-the-art in climate
modelling, the Climate Adaptation Digital Twin (ClimateDT), which is currently being
prepared for running on the most powerful supercomputing infrastructures in the world. We
discuss the potential of quantum computers for further improving both the efficiency and
accuracy of the models, by combining high-performance computing (HPC) and quantum
computing (QC) in a hybrid HPC+QC manner. The biggest promise of quantum acceleration
comes from aiding machine learning models and from improving the climate models by
including processes that presently are computationally intractable due to their complexity.
These include, for example, chemical processes in the atmosphere.

7 Introduction

The Climate Adaptation Digital Twin (ClimateDT) is a project issued by the European Centre for Medium-
Range Weather Forecasts (ECMWF) in the Destination Earth initiative, where the goal is to develop a highly
accurate digital model of the Earth see Figure 7. The aim is to develop an accurate model of the Earth in
order to monitor and simulate the interactions between the natural environment and human activities with as
high precision as possible. Through this, the effects of various natural phenomena and human actions on the
climate can be studied. The underlying goal is to move from plausibility assessments of local and regional
climate to fully-developed risk assessments. The ClimateDT is being developed in response to the European
Commission’s Green Deal and Digital Strategy and it will make it possible to predict the effect of specific
climate actions, which will aid policy makers to make informed decisions on how to best mitigate the effects
of climate change.

Figure 7: Digital twins of the Earth attempt to replicate the behaviour of certain aspects of the planet based
on Earth Observation data and physical models.
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The ClimateDT is being developed around two Earth System Models (ESMs), the Max Planck Institute for
Meteorology’s (MPI-M) Icosahedral Nonhydrostatic Weather and Climate Model (ICON) and ECMWF’s
Integrated Forecast System (IFS), the latter coupled with two different ocean models: FESOM and NEMO.
Both of these ESMs have demonstrated the ability to run at grid scales finer than 5 km globally, coupled to an
ocean model. The Climate DT introduces the idea of a generic state vector (GSV), which is evolved by the
ESMs, quality controlled and interpolated to a common grid (5km or finer global mesh), and “streamed” to
applications. This creates an information system that can scale across an unlimited number of applications
that have access to all necessary data and achieve the long-sought goal of interactivity and new ways of
co-design.

The ESMs in ClimateDT are being developed in three configuration: a coarse 10 km grid resolution for
development, 5 km grid for production, and 2.5 km grid for prototyping subsequent Destination Earth phases.
The ClimateDT focuses on five use cases (with a couple of keywords) drawn from climate impact sectors:
forestry (wildfires, forest management), urban environments (heatwaves and heat island effect), hydrology
(river flows, fresh water availability), hydro-meteorology (extreme-events, flooding), and energy (changing
patterns of wind and sunshine, storm vulnerability). The ClimateDT is also complemented by other projects,
such as the biodiversity digital twin BioDT [https://biodt.eu/].

Accurate digital twins of the entire Earth have only become possible with the latest generation of supercom-
puters, that is, the pre-exascale and exascale systems. There are presently five supercomputers on the Top500
list (June 2023) that have a sustained performance of over 100 petaFLOPS, that is, the capacity to perform
over 1017 floating point operations per second (two of these, LUMI and Leonardo, are European). Even with
this impressive increase in data processing capacity, an increase of a factor of million over the last 25 years,
digital twins are an ambitious undertaking, and the models necessarily include approximations that affect the
accuracy and reliability of the predictions.

Here, we scrutinise the present state-of-the-art workflows for setting up digital twins for climate adaptation,
with the intent of identifying areas where quantum computing has a potential for speeding up or increasing the
accuracy of selected parts of the entire simulation. Further, we identify the sources of the largest uncertainties
in the model in the form of missing parameters or physics in the model, again with the aim to identify areas
where quantum computing could provide an advantage.

8 Climate Digital Twin Workflow Analysis

8.1 Present Classical Approach

The Climate Digital Twin workflow is presented in Figure 8. The workflow begins with the typical initialisation
and preparatory steps required by a climate or Earth System Model (ESM). In the Climate DT project, the
ESMs in use are ICON and IFS. In the workflow, the current model state, illustrated as a Model State Vector
(MSV), is propagated forward in time to produce a new state and, simultaneously, the model output or Output
State Vector (OSV). This output is streamed (not saved) through a processing pipeline – that introduces
additional diagnostic variables and handles interpolation, meta-data conversion and simple operations on the
fields – to generate a Generic State Vector (GSV). The GSV is saved directly to Fields DataBase, which is a
domain-specific object store developed at the ECMWF; another streaming approach is also being developed
with the use of Maestro (https://www.maestro-data.eu/). The GSV is then forwarded to the applications and
quality assessment and uncertainty quantification (AQUA), all of which can also utilise external data sources,
e.g., observations, climatologies and reanalysis.

The most resource-heavy and time consuming part of this workflow, i.e., the bottleneck, is the climate model
itself. Here we note, that the amount of data in a climate model is large. With a typical grid resolution of 10
km, the total number of grid points representing the atmosphere is in the hundreds of millions. Each grip
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Figure 8: Operational version of the ClimateDT workflow that will be developed during 2023.

point has several variables associated with it, such as air density, temperature, wind speed, humidity, etc. The
total parameter space is thus counted in the billions.

Figure 9 shows the relation between different processes in the ICON-Sapphire Earth system model Hohenegger
et al. [2023]. What can be seen is that different processes are updated at different intervals, that is with
different ∆t. This is partly due to the varying computational complexity for propagating specific processes in
time in the Earth and climate models. The shortest time steps are those of the dynamical core computations
that solve the fluid dynamics equations of atmospheric motions, while the radiative transfer computations
have the longest time steps. There is roughly a 1:30 ratio between the shortest and longest time steps. In the
latest climate models within ClimateDT, with a resolution of 10 km, the time steps for dynamics and radiation
are typically 60 s and 30 min, respectively. Presently, the wall-time for computing the individual time-steps
range from the subsecond regime to around 10 s on the LUMI supercomputer. We note that doubling the
resolution of the model typically requires halving of the time steps, following the Courant-Friedrichs-Lewy
condition Courant et al. [1928]. Thus, doubling the resolution, e.g., going from 10 km to 5 km increases the
computational complexity roughly by a factor of 8.

8.2 Quantum Perspective

From the previous section, we can identify two main challenges that hamper direct adoption of quantum
computing to climate modelling problems within ClimateDT:

1. ”big data” problem
2. short wall-time for individual calculations

First, the climate models work on a large amount of data, both as input and output. These ”Big data” problems
are, however, not directly suitable for quantum computers. The strength of quantum computers lies in being
able to solve problems with a moderate amount of both input and output variables, where the relation between
input and output variables is a highly complex equation that can be solved efficiently by some quantum
algorithm, exploiting quantum parallelism Hoefler et al. [2023]. In other words, quantum computing typically
requires problems that have a large potential solution space, but only a small set or even a single solution, with
the additional provision that the input parameters need to be of the same order of magnitude as the number of
qubits in the system.
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Second, for quantum computers to be able to show a wall-time advantage over classical computers, they need
to solve sufficiently complex algorithms. This means that the algorithms have to be sufficiently deep, that is,
the number of basic operations has to be high. In practice, this means that single useful quantum computing
calculations will take at least seconds to complete Humble et al. [2021]. Individual variational circuits can
and do take shorter time, but the wall-time to solution is of course much longer, as several iterations need
to be performed. On the other hand, already now, the shortest individual time-steps in the climate digital
twins take less than a second, and even the longest around 10 seconds. Further, the aim of the ClimateDT
initiative is to speed up the individual time steps significantly, with up to a factor of one hundred. This would
push all of the individual propagation calculations into the sub-second regime. Thus, quantum computers
cannot speed up these calculations further, as they already are faster than the fastest useful quantum computer
calculations.

Climate models would thus, at a first glance, seem to be rather unsuitable for quantum acceleration. In order
to gain some quantum advantage, we need to consider the problem at hand from a broader perspective. Simply
taking present classical algorithms and the approximations they include and rely on, and transforming these
to quantum versions of the same will not work. Instead, quantum advantage will be found by approaching the
problem from different, new angles, utilising the unique features of quantum machines.

A large part of the calculations in the current workflows are in effect Computational Fluid Dynamics (CFD).
Here, we have a direct connection to solving linear systems of equations. The HHL quantum algorithm for
linear systems of equations, named after its authors Harrow, Hassidim, and Lloyd Harrow et al. [2009], and
variations thereof, thus have the potential to speed up also CFD simulations. As noted by Lapworth Lapworth
[2022], classical algorithms running on supercomputers are highly efficient at solving matrix equations by,
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for example, side-stepping the need for matrix inversions. Quantum algorithms do not need to, even should
not rely on the same approximations as classical algorithms, however. Quantum algorithms like HHL and the
Quantum Singular Value Transformation (QSVT) Gilyén et al. [2019] can efficiently perform direct matrix
inversions, and should therefore be utilised for quantum advantage. The approach presented by Lapworth
Lapworth [2022] relies on fault-tolerant quantum computers, but also hybrid classical/quantum algorithms for
the NISQ era have been proposed and discussed Kyriienko et al. [2021].

8.3 Enhancing Machine Learning Approaches

The use of Machine Learning (ML) and Artificial Intelligence (AI) in climate modelling and related fields
is a hot topic of research Tuia et al. [2023]. ML and AI show promise for accelerating the resource
heavy calculations involved also in digital twins of the Earth Chantry et al. [2021]; Watson-Parris [2021].
Computational Fluid Dynamics (CFD), as discussed above, is central to climate models. A promising
approach is, e.g., to decrease the grid size without losing accuracy, by using ML for interpolation Kochkov
et al. [2021]. As the atmospheric events to a large part are rather smoothly changing, the speed-up from
machine learning can be expected to be significant.

The connection to quantum computing here comes at a general level. As discussed in other sections of this
report, quantum machine learning has potential advantages over purely classical machine learning. Also here,
we need to keep in mind that present-day classical machine learning approaches are immensely powerful.
Therefore, quantum algorithms will have a hard time directly competing with classical algorithms from a
pure speed-up perspective Schuld and Killoran [2022]. Instead of speed-up, quantum computers can possibly
increase the accuracy of the models or decrease the amount of training data required for building the models.
Here, the advantage arises from doing the training differently, not necessarily faster. For example, hybrid
quantum/classical neural networks, where a neural network consists of both classical and quantum layers,
has the potential to outperform purely classical and purely quantum approaches Xia and Kais [2020]; Arthur
and Date [2022]. As another example, Quantum Support Vector Machines (QSVM) have the potential to
perform classification tasks more efficiently than their classical counterparts Havlíček et al. [2019]; Schuld
and Killoran [2019]; Jäger and Krems [2023].

The understanding of where classical ML and AI can be utilised in climate modelling is thus being established
through significant global efforts. The next step is to identify those machine learning tasks that can benefit
from a quantum ingredient. This task is, however, highly empirical by nature. Only by testing, trial, and error,
can the most successful quantum machine learning approaches be identified and refined. At this stage, it is too
early to predict the future impact of QML on climate modelling. There is cause for careful optimism however,
especially for improving the quality of the models, if not directly the time required for establishing them.

9 Missing Physics in the Models

In this section, we discuss two of the major approximations in the present climate DT models: clouds and
atmospheric chemistry. Their inclusion is presently prohibitively expensive from a computational resource
point-of-view. Quantum algorithms and quantum computing could bring about the necessary reduction in
required computational resources in order to enable the inclusion of more parameters and additional physics
into the climate digital twins, also beyond these two examples.

9.1 Clouds

Cloud feedbacks and cloud-aerosol interactions are the most likely contributors to the high values and
increased range of equilibrium climate sensitivity in CMIP6 Meehl et al. [2020]. In the past, clouds have
been poorly represented in Earth System Models (ESMs) due to the complex cloud formation process and
because the models could not be run on the scales at which clouds form. Additionally, numerical cloud
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modelling has relied on the Eulerian continuous medium approach for all cloud thermodynamic variables.
However, recently modelling has shifted towards Lagrangian particle-based probabilistic approaches in small
and cloud-scale simulations. Clouds are being taken seriously – the World Climate Research Programme
has launched a Grand Challenge on Clouds, Circulation and Climate Sensitivity and NASA has a Grand
Challenge “Uncertainty Project” Fridlind et al. [2021] tackling cloud physics knowledge on ESMs.

Clouds are also a focus point for the DYnamics of the Atmospheric general circulation Modeled On Non-
hydrostatic Domains (DYAMOND) initiative, where a relatively recent review Stevens et al. [2019] proposed
a protocol for the first intercomparison project of global storm-resolving models. The review presents 40-day
global model simulations (these include ICON and IFS) with a grid resolution uniformly lower than 5km and
addresses both scientific aspects and computational performance analysis. The outlook is optimistic even
though the authors note that fully resolving shallow cloud systems, whose vertical (and hence horizontal)
scale may be only a few kilometers, requires substantially smaller grid distances. This ties in with machine
learning efforts for cloud cover modelling Grundner et al. [2022], and consequently with quantum machine
learning efforts discussed above. We expect cloud representation to improve in all ESMs, including ICON
and IFS; In the first phase, using purely classical supercomputing, and subsequently, by quantum-accelerated
HPC.

9.2 Atmospheric Chemistry

Li et al. report that “climate models indicate at least a 30% uncertainty in aerosol direct forcing and 100%
uncertainty in indirect forcing due to aerosol–cloud interactions” Li et al. [2020]. The accurate modelling
of atmospheric chemistry would thus be of crucial importance for increasing the reliability of the climate
digital twins. Atmospheric chemistry is highly challenging from a modelling perspective. Many of the
reactions involve radicals, and several are photochemical in nature. This necessitates the use of highly
sophisticated electron-correlation methods for describing the electronic structure of the molecular species.
Highly correlated quantum chemical wave-function methods are notoriously difficult for classical computers.
This is due to the expensive scaling of the so-called multi-reference methods that are required. These scale
exponentially with the size of the problem (effectively, the number of electrons) at the limit of sufficient
accuracy.

On the other hand, the electronic structure problem is naturally suited for quantum computers Cao et al.
[2019]. Quantum chemical simulation is one of the major areas of research and development on all platforms
of quantum computing, from quantum annealers, via quantum simulators, to general-purpose quantum
computers. Quantum phase estimation (QPE) can provide sub-exponential solutions to electronic structure
problems, but requires fault-tolerant quantum (FTQ) computers, due to massive circuit depth requirements.
For NISQ devices, several iterative, variational algorithms have been devised, and progress is rapid. The
importance of error-mitigation is recognised Glos et al. [2022]; Cai et al. [2023]; Kim et al. [2023], which
gives hope for notable quantum advantage in the simulation of highly correlated electronic structure problems
already before FTQ computing becomes a reality.

Having fast, highly accurate methods for simulating atmospheric chemistry is crucial, as the number of
possible reaction pathways also grows rapidly with the size of the molecules involved in the reactions. With
present-day supercomputers and modern classical quantum-chemical approximations, it is feasible to model a
limited set of possible reaction pathways for smaller individual molecules. This is sufficient for demonstrating
the importance of including chemical reactions and their interactions with the rest of the climate system
in the models. In order to be of predictive accuracy and for decreasing the related uncertainties, massive
improvements in modelling methods and capacity is, however, needed. Here, quantum algorithms and
quantum computers can play a decisive role.

On-the-fly calculations of chemical reactions in the atmosphere within the climate models will remain out
of reach for a long time, even with powerful quantum computers of the future. The run-time of individual
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quantum computing subroutines, including the necessary pre- and post-processing of data, will be significant,
especially for cases where any quantum-advantage can be expected.

For climate modelling, where the average wall-time spent on each time step in the state evolution needs to
be sufficiently short (below 1 second), atmospheric chemistry can be included in a parameterised manner
instead. For creating accurate ML approaches for atmospheric chemistry, huge amounts of training data is
required, and this can often only be obtained by performing quantum chemical calculations Kubečka et al.
[2023]. Then, the advantage of quantum computers would come from enabling unprecedented accuracy for
the data that forms the basis for the models.

10 Combining High-Performance Computing and Quantum Computing: HPC+QC

There are presently major ongoing efforts around the globe for connecting HPC infrastructure with quantum
computers. This is perhaps even somewhat surprising, considering that quantum computers presently cannot
solve any useful real-world modelling problem more efficiently than a single node of a supercomputer. At the
same time, it is testament to the potential, and the belief in the potential of quantum computing for scientific
modelling.

In Europe, the plans for making quantum computing relevant for research and development in academia and
industry alike have been outlined, with the goal of having a European quantum computing infrastructure
exhibiting quantum advantage by 2030. The first quantum simulators are already being integrated with HPC
infrastructure in the HPCQS project [https://www.hpcqs.eu/]. In June 2023, the EuroHPC Joint Undertaking
has signed hosting agreements for six different quantum computers to be placed in HPC centres around
Europe, with the plan to make these available to European users in 2024. These first quantum computers are
only the beginning, several updates and new procurements are already planned.

The actual (future) HPC infrastructure and its implementation needs to be accounted for. Already in the
near-term, it is expected that individual supercomputers will be connected to several quantum machines
of various types and implementations Johansson et al. [2021]. The initial setups, with individual QPUs
distributed throughout the continent, connected to an HPC system, can be seen as precursors to a future
where QPUs will be connected in parallel, either entangled or not. Plans for even tighter, on-chip integration
of QPUs with classical processing units already exist, and may well be the way for reaching fault-tolerant
quantum computing. With this in mind, more emphasis on developing parallel quantum algorithms, which
simultaneously utilise several QPUs, in an HPC+nQC manner, would seem appropriate. For time-evolution
problems like climate modelling, this can be a necessary development at a relatively early stage, in order to
enable the quantum processing part to keep up with the classical computing tasks at each time step.

Reassuringly, the importance of investing in software development for hybrid HPC+QC applications has been
recognised. These developments complement the efforts for developing purely classical software for exascale
supercomputers and beyond, exemplified by the Destination Earth initiative.

Here, it is apt to note that there is a need for significant classical software development alongside the quantum
algorithm research. Presently, pre- and post-processing tasks take up a significant portion of the total wall-time
of executing a quantum algorithm. As an example, the recent experiment on spin dynamics using IBM’s 127
qubit QPU, the actual time spent on the QPU was 5 minutes, while the wall-time of the experiment was a
hundred times longer, over 9 hours Kim et al. [2023]. These overheads will decrease in the future, but at the
same time, increasing qubit count will again increase the complexity of pre- and post-processing. Part of
this overhead lies within the domain of hardware development, e.g., qubit reset and readout. Much of this
is, however, classical computing routines, such as compiling, transpiling, qubit routing optimisation, error
mitigation, noise cancelling, to name a few. All of these will become computationally more demanding with
increasing qubit count, and will therefore require increasing amounts of classical computing power. Thus,
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efficiently operating the quantum machines of the future will require an HPC infrastructure in itself, as well
as the classical software to run on it.

For reaching quantum advantage as soon as possible, both in general and especially within climate modelling,
it is important to develop quantum algorithms keeping the immense, existing classical supercomputing power
in mind. This means for example taking full advantage of the available HPC infrastructure for performing
the necessary pre- and post-processing of data to and from the quantum machines. For electronic structure
problems, as in the case of modelling atmospheric reactions discussed above, HPC resources are needed for
providing an initial guess for the quantum computer; in other words, provide the best approximation to the
true electronic structure that classical methods can provide, and refine it further on the quantum computer.
This exemplifies the need for a broad, multidisciplinary approach to quantum advantage. We need to combine
expertise in quantum algorithms, classical HPC algorithms, computer science, AI/ML, and specific domain
expertise, also from the end-user side.

11 Sizing Quantum Machines for Climate Modelling

As discussed above, there are several means to achieve quantum advantage for the climate digital twins.
Different problems are suitable for different quantum machines and implementations. Efficient quantum
solutions for linear systems of equations and computational fluid dynamics have mostly been proposed for
gate-based quantum computers. (Hybrid) quantum algorithms for machine learning and quantum chemistry
have been proposed for all three major quantum machines classes, quantum annealers, quantum simulations,
and gate-based quantum computers. Thus, for climate digital twins, all three classes can potentially be useful.
It is important not to focus efforts too narrowly, say, only on gate-based algorithm development. Various
approaches should be explored for the different quantum machines, and also combination of approaches, like
digital-analog quantum computing and simulation.

We want to emphasise the difficulty in predicting developments of both quantum hardware and software,
quantum algorithms. The expectations on hardware are reasonable, but naturally come with large error
bars. Still, the progress can be expected to be rather smooth. A much larger uncertainty still comes from
the quantum software side, as new discoveries can truly revolutionise the utility of quantum machines. It
is completely possible that a novel “Shor’s algorithm” for climate modelling will be invented, or that new
algorithmic breakthroughs for relaxing the requirements on, say, coherence times for the qubits will be
developed. In the case of software, the progress can be smooth, but the possibility for (quantum) leaps in
efficiency is ever-present.

11.1 Present Day

We are still at the development phase of what is to become a mature supercomputing infrastructure incor-
porating quantum machines for climate modelling. The quantum hardware is becoming sufficiently stable
for performing real-world testing at small scale. Quantum machines are being incorporated with HPC
infrastructure in various manners, from cloud access models, via co-located installations, to truly distributed
approaches Johansson et al. [2021]. Standards are under development, but not yet in place, for the various
components of the full HPC+QC software stack. Different programming models are still developed in parallel.
This is a necessary step in the evolution of a fully mature quantum computing infrastructure: we need to
try out several different approaches, even through blunt trial-and-error, in order to learn which methods,
protocols, and models work best. We have to resist the temptation of unifying different models at a too early
stage, even if this complicates the life for hybrid HPC+QC software developers somewhat.

At the time of writing, none of the three platforms, annealers, simulators, or gate-based “universal” quantum
computers provide any computational quantum advantage over purely classical methods. All of them have,
however, demonstrated the potential for inching closer to the point of quantum advantage for problems
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resembling real-world use cases. The D-Wave “Advantage” quantum annealer has over 5600 spin qubits. The
largest available Pasqal neutral atom simulator presently has 100 qubits, with 200 planned for 2023 and 1000
for 2024. IBM’s “Osprey” gate-based QPU has 433 qubits, with a thousand-qubit QPU announced still for
2023.

In recent years, several demonstrations of experiments on quantum machines, performing tasks that would
be very hard for classical computers to simulate, have been reported. Keeping in mind that full simulation
of sixty fully entangled qubits is already far beyond the capacity of the worlds largest supercomputers, we
should be entering the regime of potential quantum advantage right now.

Naturally, qubit count is only one figure of merit, as discussed previously. Coherence times, operation fidelity,
and qubit connectivity are at least as important; arguably, already around a fifty qubits, these already become
more important than the physical qubit count. Presently, the state-of-the-art quantum computers feature
roughly a 99.9% fidelity on their operations. This means that on average, one in a thousand operations fail. In
order to be able to efficiently suppress errors, a minimum fidelity of 99.9999% is required Google Quantum
AI [2023]. We are thus presently roughly three orders of magnitude below target on fidelity, one of the main
reasons why useful quantum advantage has not yet been demonstrated.

11.2 3-5 years

Incremental advantage, or at least a convincing prospect of advantage over purely classical methods relevant
to ClimateDT should by this time be exhibited. The qubit count and quality of all three classes of quantum
machines should be such that reasonably reliable estimates of what types of algorithms can be expected to
show true quantum advantage can be made.

The availability of quantum computers will still be so low, that for production-scale climate modelling, purely
classical HPC infrastructure will be used. Benchmarking of hybrid HPC+QC methods for relevant machine
learning and electronic structure tasks will be underway, paving the way for models based at least partly on
data produced by quantum machines.

11.3 15 years

By this time, all surviving quantum machine classes would have sizes in the hundred-thousand to a million
physical qubit regime. This implies a logical qubit count of at least a hundred, possibly thousands, and would
be sufficient for executing sufficiently complex simulations or circuits for being directly relevant for climate
modelling.

The manner in which the quantum machines will be utilised depends heavily on the progress in “clock speed”:
how fast can the Hamiltonian evolution be driven, how short are the gate-operation times, and so on. We
estimate that execution speed will still be much too slow for incorporating quantum operations directly inside
the workflow of the digital twin, due to the strict and short wall-time requirements imposed on each time step,
which at this time would be counted in milliseconds.

It is possible that on-chip QPU technology will be implemented within 15 years, although we estimate that
sufficiently mature solutions would be some time away still. With quantum and classical processing on
the same chip, it may be possible to seamlessly execute short quantum-accelerated subroutines as part of a
more complex calculation. This would require efficiently integrated and error-corrected/mitigated quantum
coprocessing technology, in an analogous manner to floating-point units (FPUs) of standard CPUs. Tightly
integrated QPUs would have a major impact on time-step evolution problems, like ClimateDT, as they would
enable quantum acceleration within the individual time steps.

With a million physical qubits, or a thousand logical ones, highly accurate modelling of atmospheric reactions
of small molecules exhibiting complex electronic structures will be possible, which will increase the accuracy
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of the digital twins notably. We note that atmospheric chemistry is a prime candidate for early advantage
from quantum-accelerated electronic structure solutions, due to the relatively small size of the molecules
involved; the number of electrons that need to be described is very moderate compared to, say, enzymatic
reactions. The atmospheric reaction flows can then be included in the digital twins in a parameterised manner.
In the same vein, quantum-assisted machine learning will be used for training models relevant for various
parts of the digital twins that now rely on machine learning for speed and/or accuracy.

12 SWOT analysis

12.1 Strengths

• The climate modelling community has a deep understanding of the problem at hand, and the
bottlenecks present, both from the efficiency and accuracy points-of-view

• A recognised high-priority problem: resources available for finding solutions

12.2 Weaknesses

• Understanding of the applicability of quantum computing to climate modelling limited

• Quantum-acceleration presently not seen as a viable route, due to the “big data” nature of digital
twins

12.3 Opportunities

• Progress in QC hardware and software capacity can enable more accurate models

• Global drive for supporting hybrid HPC+QC software development

12.4 Threats

• Development of sufficiently powerful QC hardware/software delayed

• Lack of long-term funding commitment to development, in case near-term gains do not live up to
(inflated) expectations.

13 Conclusions

In their present form, digital twins of the climate are largely not amenable to quantum acceleration, due to
their reliance on large amounts of both input and output data, and very short wall-time of the individual time
steps. Despite this, quantum computers have the potential to both speed up current climate digital twins, as
well as increase their accuracy. The increase in accuracy follows both from enabling higher resolution of
the digital twins, and from the possibility of setting up a more complete physical model of the Earth and
the dynamic processes that govern the time-evolution of the climate. The build-up towards computational
quantum advantage is steady. In the medium term, within the next ten years, quantum computing can provide
incremental but notable improvements to the accuracy of the models.

In the longer term, with fault-tolerant, or at least near-FT quantum machines, the gains can be of decisive
importance. For computational quantum advantage in climate modelling, we estimate that this will require
at least 15-20 years of further hardware development. Digital twins of the Earth and climate will thus not
be among the first applications where notable quantum advantage will be found, but in time, also climate
modelling will experience a quantum revolution.
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Alongside the hardware, it is crucial to actively develop a diverse software ecosystem around the maturing
quantum machines. The problems and subtasks that make up ClimateDT will need to be reformulated in a
suitable manner in order to be amenable to quantum computing. The new quantum software will need to be
seamlessly integrated with existing workflows based on classical processing. Supporting software, such as
compilers, error mitigation and error-correction routines, even programming languages themselves need to be
created.

Even if we would have sufficiently mature and powerful quantum machines right now, they would be
practically useless for climate modelling, due to the lack of software. Just preparing the software framework
for efficiently running a climate digital twin partly on quantum machines can take a decade. The Destination
Earth initiative itself is about making existing classical software run efficiently on the latest supercomputers.
In essence, this largely means switching the code base from CPUs to GPUs, from one classical computing
platform to another. Switching from classical to quantum is a whole different level of hard. Therefore, we
need to start the transition now, in order for the software to be ready when the hardware is. If and when this
happens, it will boost information-based climate adaptation efforts significantly.

The software development will most likely require dedicated non-commercially motivated funding. Long-term
commitment is needed, and the problem to be solved, creating a highly reliable and efficient long-term climate
model, has little direct economic impact; much of the missing work is still fundamentally basic research. The
indirect impact on economy and society as a whole is, of course, immense.

It is crucial to recognise the massive computational power of already existing high-performance computing
(HPC) infrastructure. Direct replacement of classical methods by analogous quantum methods will not
bring significant speedup. We cannot just recompile existing classical subroutines in the ESMs to run on
quantum machines and expect any advantage. Instead, quantum computing needs to augment and enhance
present modelling procedures. By approaching the actual problem from new angles, presently used classical
subtasks and approximations can also be rendered obsolete. Quantum computing is different, and therein
lies its strength. By solving old problems in a new way, or enabling solutions to previously intractable
problems, quantum machines can accelerate HPC infrastructure in a meaningful way, complementing binary
supercomputers.

Here, we have identified two main approaches for gaining quantum advantage for the climate DTs: quantum-
enhanced machine learning approaches and the extension of the models to include presently missing physics
and chemistry, such as atmospheric reactions. These are naturally just two examples of latent quantum
advantage. Many more are expected to be uncovered by dedicated efforts. The futures of HPC and climate
digital twins are quantum-accelerated; how far ahead that future lies, depends on the combined efforts of
several fields of science and technology.
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Uncertainty Quantification for Remotely-Sensed
Datasets

Abstract
Deep learning (DL) models are extensively used to analyze and monitor the Earth’s sur-
face due to their scalability on large-scale EO datasets and their computational efficiency
compared to conventional statistical approaches such as Bayesian analysis. However, they
are not capable of explaining their predictions; namely, their outputs, given large-scale
datasets as input, are not trustworthy, reliable, and robust which can be measured using
uncertainty quantification. In fact, DL models are often considered as uninterpretable
black boxes with unknown uncertainties. In contrast, Bayesian analysis is a gold stan-
dard technique for uncertainty quantification in order to obtain trustworthy and reliable
predictions generated by models fitted small- or moderate-scale datasets (observations)
due to its high computational cost. Hence, DL models integrated with Bayesian analysis,
that is, Bayesian Neural Networks (BNNs), are slowly gaining great interest, since they
allow make their outputs interpretable together with trustworthy and reliable uncertainties.
However, BNN inference on large-scale datasets persists high computational cost even on
the HPC system, and commonly used methodologies to overcome this challenge are Monte
Carlo Markov Chain (MCMC) and variational inference (VI) approaches. Moreover, the VI
approach, returning approximate samples, can be scaled on big datasets in contrast to the
exact sampling MCMC. Therefore, this study assesses and examines quantum VI paradigm
for processing BNN inference on small-scale EO datasets (in our case, hyperspectral images
(HSIs)) to improve the sampling power of a conventional VI method. More importantly,
we estimate quantum resource required for some example quantum VI models in terms of
T-gates but not the implementation of quantum VI models on small-scale HSIs.

14 Introduction

Deep Learning (DL) models are employed for distinct tasks such as recognizing informative patterns in large-
scale, high-dimensional datasets (in our case, satellite images or remotely-sensed datasets) and discovering
their underlying distributions; here, large-scale, high-dimensional datasets can be denoted by either S =
{yi,xi}Ni=1 or S = {xi}Ni=1 depending on whether or not a learning task is to discover underlying distributions
generating datasets, where yi is their true labels, xi is their high-dimensional elements, and N refers to their
large-scale size. In general, these different tasks can be divided into two categories so-called supervised and
unsupervised learning paradigm Murphy [2012]; Goodfellow et al. [2016]. Supervised learning paradigm
refers to DL tasks for recognizing informative patterns in big datasets S = {yi,xi}Ni=1 in order to predict
labels ŷi with the highest probability p(ŷi|x̂i,θ) given x̂i such that the loss function Lθ(y, ŷ) between true
and predicted labels optimized over trainable parameters θ is at its minimum value, while unsupervised
learning paradigm is to approximately obtain the underlying distribution p(x) of S = {xi}Ni=1, where labels
yi are not provided as input, such that the approximated distribution q(x|θ) is closer to the true distribution
p(x) measured by optimizing some metrics over trainable parameters θ such as Kullback-Leibler divergence
(KL-divergence). Moreover, DL models are widely used to find solutions to real-world, data-driven and
model-driven problems in industry and science − even in Earth observation (EO) Cheng et al. [2020] − due
to their scalability on large-scale datasets and their computational efficiency on powerful computing resources
(i.e., GPU tensor cores) compared with conventional statistical methods such as intractable Bayesian analysis
Pandey et al. [2022]; Willard et al. [2020]. However, DL models are often perceived as uninterpretable
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black-boxes generating untrustworthy and unreliable predictions, while intractable Bayesian analysis outputs
predictions with trustworthy and reliable uncertainties Gal et al. [2022]. Hence, DL models with the help of
intractable Bayesian analysis are gaining great attention for designing novel learning models, that is, Bayesian
Neural Networks (BNNs). In fact, BNNs combining the best of both DNN and Bayesian analysis can be
scaled on large-scale datasets and computed cheaply on GPU tensor cores if an efficient sampling technique
for them is available while generating predictions with trustworthy and reliable errors/uncertainty estimates at
the same time Jospin et al. [2022]; Olivier et al. [2021].

In contrast to DNNs, BNNs still persist high computational cost for computing a posterior distribution p(θ|S),
directly proportional to the product of a likelihood p(S|θ) and a prior p(θ), and inversely proportional to
an evidence p(S), which is a probability distribution function integrating out parameter space Olivier et al.
[2021]; Zhang et al. [2017]. Moreover, the evidence is an intractable function due to its high dimensional
parameter space, and so the posterior (i.e., BNNs). To weaken this intractable BNN problem, the authors
of the articles MacKay [1992]; Neal [1995]; Blei et al. [2017] proposed a machinery so-called variational
inference (VI) which approximates the posterior by a tractable parametrized distribution. Another method
for tackling an intractable BNN is a Monte Carlo Markov Chain (MCMC) technique Brooks et al. [2011];
Hoffman and Gelman [2011] which, however, does not scale on big datasets as a VI method does. In fact,
both MCMC and VI are indispensable tools for generating samples efficiently from intractable posteriors
and for quantifying parameter uncertainty for safety-critical and human-centered EO tasks regardless of their
respective imperfection, i.e., MCMC does not scale well on large scale datasets but generates exact samples
from a posterior, while VI scales on large scale datasets but generates approximate samples from a posterior.

The emergence of quantum algorithms for accelerating some conventional algorithms attracts engineers and
scientists alike who persistently attempt to find solutions to intractable problems efficiently by inventing and
designing classical algorithms An et al. [2021]; Harrow et al. [2009]. Moreover, there exists the quantum
versions of MCMC and VI methods (for short, quantum MCMC and VI) which promise theoretical quantum
advantage for some computational problems over their classical counterparts due to the inherent probabilistic
nature of quantum machines, that is, a quantum annealer, a quantum simulator, or a universal quantum
computer Montanaro [2015]; Layden et al. [2022]; Benedetti et al. [2021]. However, no quantum advantage is
demonstrated for finding solutions to practically relevant problems since currently existing quantum machines,
that is, noisy intermediate-scale quantum (NISQ) computers, comprise a limited number of error-prone
quantum bits (qubits) ≤ 100 and quantum gates Preskill [2018a], while there is a theoretical guarantee
to build fault-tolerant quantum (FTQ) computers having error-free qubits > 100 and quantum gates for
demonstrating quantum advantage for real-world problems Preskill [1997].

Therefore, in this use-case study, we survey and examine theoretically a quantum/classical VI method due to
its scalability on large-scale datasets as opposed to a MCMC technique from the perspective of computational
complexity theoretic conjectures. More importantly, a quantum/classical VI method returns solutions to
BNNs with trustworthy and reliable uncertainty estimates more efficient than their classical counterparts,
while we apply BNNs to safety-critical and human-centered EO tasks specifically involving small-scale
real-world datasets, i.e., EO Use-Cases using small-scale hyperspectral image datasets DLR. In addition, we
provide the quantum resources required for computing BNNs on proof-of-concept-small (e.g., small-scale)
and operational-size-big (e.g., large-scale) EO datasets as we critically stick to the scalability and development
roadmap of quantum machines provided by industry and academia.

15 Problem Definition: Earth Observation Use-Case

Sensors on Earth observation satellites detect spectral signals reflected on natural and human-made objects
on Earth’s surface, and huge amounts of spectral signals in distinct wavelength ranges (Terabytes of data
per day) are archived in data storage devices day and night ESA. A hyperspectral imaging satellite, e.g., an
EnMAP satellite DLR, is imaging sensors mounted on a satellite for sensing spectral wavelengths in ranges
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of 420 nm to 1000 nm (VNIR) and from 900 nm to 2450 nm (SWIR). Its mission is to collect hyperspectral
imaging data in order to provide vital information for scientific inquiries, societal grand challenges, and key
stakeholders and decision makers relating to DLR

• climate change impact and interventions,

• hazard and risk assessment,

• biodiversity and ecosystem processes, and

• land cover changes and surface processes.

DNNs for data-driven tasks require big labeled datasets (i.e., a data-driven approach), while hyperspectral
images (HSIs) for e.g., hazard and risk assessment, are images with limited label information, namely, the
limited availability of training (benchmark) HSIs, compared to conventional benchmark remote-sensing
datasets like multispectral images Cheng et al. [2017]; Paoletti et al. [2019]. There is also the commonly
known limitation that DNNs do not yield their confidence level for making high stake decisions for hazard and
risk assessment. Hence, the persisting challenge is to invent and design inherently interpretable data-driven
models for HSIs together with error/uncertainty estimates due to both uninterpretable black-box DNN models
and (almost) lack of benchmark labeled-HSI datasets, since the answers to the above-questions are already
utilized to make high stake decisions − safety-critical and human-centered EO decisions Rudin [2018].

BNNs combining both DNN and Bayesian model are widely believed to be inherently interpretable data-
driven models for both small- and large-scale datasets only if the efficient sampling algorithms from them are
available due to their infeasible evidence Jospin et al. [2022]; Olivier et al. [2021]. More importantly, BNNs are
data-efficient models which can be trained on limited label datasets, since they provide uncertainty information
in their predictions and weights. The authors of the articles Alcolea and Resano [2022]; Joshaghani et al.
[2022] utilized and assessed BNNs for limited benchmark labeled-HSI datasets to generate predictions with
trustworthy and reliable uncertainties as they used classical MCMC and VI techniques to generate samples
from the posterior of BNNs. Both MCMC and VI sampling tools are far from perfect, and their imperfection
is inspected and analyzed numerically on limited labeled-HSIs, e.g., their scalability and precision, by the
authors of the article Ries et al. [2022]. Regardless of their imperfection, these sampling methods are base
algorithms to invent and benchmark novel sampling methods like Generative Quantum Machine Learning
Zoufal [2021], Evidential Deep Learning Sensoy et al. [2018], and Dempster–Shafer Theory of Evidence
Deng [2015].

Furthermore, the authors of the articles Layden et al. [2022]; Montanaro [2015]; An et al. [2021] conducted
a research on quantum MCMC and quantum-enhanced MCMC methods through the lens of theoretical
computational complexity in order to speed-up the conventional MCMC algorithm, while the authors of
the article Benedetti et al. [2021] focused on a quantum VI method to show quantum advantage over its
classical counterpart because of classically hard-to-simulate quantum circuits such as Instantaneous Quantum
Polynomial (IQP) circuits Bremner et al. [2010] and Quantum Approximate Optimization Algorithm (QAOA)
sampling Farhi and Harrow [2016]. IQP circuits are quantum circuits equivalent to a so-called partition
function, not efficiently simulable on conventional computers. More importantly, the impact of these quantum
algorithms will be enormous for processing BNNs on limited benchmark labeled-HSI datasets for making
high stake decisions− safety-critical and human-centered EO decisions when we have an access to reasonable
noisy intermediate-scale and fault-tolerant quantum computers (QCs) integrated with supercomputers, high
performance computing (HPC): That is, HPC+QCs for computational problems of practical significance.

This Earth Observation Use-Case (EO UC) study surveys and examines a quantum VI tool together with a
hybrid approach (i.e., HPC+QCs) for the limited HSIs while assessing distinct quantum computers including
a quantum annealer, a quantum simulator, or a universal quantum computer by critically sticking to their
scalability and development roadmap provided by industry and academia. In addition, we provide our
pseudo-algorithms for processing BNNs via the quantum VI technique on high stake problems listed above.
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16 Classical Bayesian Neural Networks

Classical Bayesian Neural Networks, for short, Bayesian Neural Networks (BNNs), are referred to as
stochastic Deep Neural networks (DNNs) trained using Bayesian analysis on datasets. BNNs generating
probability distributions of predictions and parameters (i.e., weights) are natural data-efficient and inherently
interpretable models thanks to their respective uncertainties, that is, uncertainties in predictions and weights
Jospin et al. [2022]; Koller et al. [2022]. In contrast, conventional DNNs considered as uninterpretable black-
box models require big labeled datasets, and even they are needed to be trained and tested on sub-datasets
including training, test, and validation sets, while one does not need to divide datasets into training, test, and
validation sets for training BNNs. For limited labeled datasets, this division of a dataset raises a challenge
for training DNNs but not for BNNs Olivier et al. [2021]. Moreover, DNNs yield also point estimates of
predictions with point weights lacking their uncertainty, i.e., lacking explainability due to the uninterpretable
black-box paradigm Rudin [2018].

Furthermore, BNNs combine DNNs and Bayesian analysis in order to quantify uncertainties in their predic-
tions and weights, since they better utilize the available dataset, either small or big datasets. Namely, they are
DNN models analyzed using Bayesian analysis while their weights and predictions follow certain probability
distributions. To design BNNs, we first choose an appropriate DNN model Fθ = Fθ(·) for a given dataset
S = {yi,xi}Ni=1. Secondly, its weights and predictions are needed to be defined according to some prior p(θ)
and likelihood p(S|Fθ) distributions:

θ ∼ p(θ) = N (0, σ2I),

p(S|Fθ) = p(Sy|Sx, Fθ) = N (Sy;Fθ(Sx), σ2I);
(1)

where weights θ are sampled from a normal distribution N (0, σ2) with zero mean and known uncertainty σ2.
Sy and Sx denote labels {yi}Ni=1 and input data points {xi}Ni=1 for BNNs, e.g., Fθ(Sx). We note that one
can represent a prior and likelihood by any probability distribution function instead of a normal distribution.
For simplicity, we utilized a normal distribution N (·). To quantify uncertainties in predictions and weights,
BNNs utilize the Bayes’ theorem:

p(Fθ|S) =
p(S|Fθ)p(θ)

p(S) ←→ p(θ|S) = p(S|θ)p(θ)
p(S) , given p(S) =

∫

Ωθ

p(S|θ)p(θ)dθ; (2)

here p(θ|S) is the posterior, and p(S) is the evidence integrating over parameter space Ωθ. Finally, after
computing the posterior distribution expressed by Eq. (2), we can calculate a probability to predict a label ŷ
given a test data point x̂ and dataset S, that is, a predictive posterior:

p(ŷ|x̂,S) =
∫

Ωθ

p(ŷ|x̂,θ)p(θ|S)dθ. (3)

In particular, the posterior p(θ|S) gives uncertainties in weights − this uncertainty is called an epistemic
uncertainty, while the predictive likelihood p(ŷ|x̂,θ) yields uncertainties in predictions − this uncertainty
is called an aleatoric uncertainty. Therefore, the predictive posterior p(ŷ|x̂,S) generates total uncertainties
in predictions by leveraging both epistemic and aleatoric uncertainties Hüllermeier and Waegeman [2021];
Gawlikowski et al. [2022]. By convention, the epistemic uncertainty related to the random noise (randomness)
in a dataset can be reduced by increasing the size of a dataset, while the aleatoric uncertainty associated with
a lack of knowledge in a model θ is an irreducible uncertainty even by increasing the size of a dataset.

The parameter space Ωθ of modern DNNs includes several thousands to millions of tuneable parameters
θ. This high dimensional space of parameters raises a challenge to integrate the evidence p(S) as well
as predictive posterior p(ŷ|x̂,S) over Ωθ; namely, computing the evidence and predictive posterior is an
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intractable problem Arora and Barak [2009]. Thus, the posterior p(θ|S) is a hard-to-compute function on
conventional computers due to the intractable evidence.

In order to tackle these intractability challenges, studies proposed several different techniques including
so-called variational inference (VI) MacKay [1992]; Neal [1995]; Blei et al. [2017] and Monte Carlo Markov
Chain (MCMC) Brooks et al. [2011]; Hoffman and Gelman [2011]. VI is a method to approximate the
posterior p(θ|S) by a tractable variational distribution qc(θ;λ) via some distance metric over a variational
parameter λ, and to collect samples from this tractable distribution, while MCMC returns (almost) exact
samples directly from the posterior p(θ|S) via like the No-U-Turn Sampler Hoffman and Gelman [2011].
Note that these techniques have their own advantages and imperfections for approximate sampling and
scalability on big datasets Ries et al. [2022]. In particular, the VI method returns approximate samples and
scales well on big datasets (i.e., computationally cheap), while the MCMC generates almost exact samples
and poorly scales on big datasets (i.e., computationally expensive). Thus, it is of great importance to design
and assess the quantum VI instead of the quantum MCMC due to its scalability on big datasets in order to
make it better on approximate samples.

16.1 Classical Variational Inference

Variational inference (VI) is a machinery to approximate the posterior written in Eq. (2) by some easy-to-
sample distribution qc(θ;λ). To define a easy-to-sample distribution, we optimize a reverse Kullback-Leibler
divergence (KL-divergence) as done for training conventional DNN models Jospin et al. [2022]:

argminλKL(qc(θ;λ)||p(θ|S))

=
∑

λ

qc(θ;λ) log

(
qc(θ;λ)

p(θ|S)

)
= Eqc(θ;λ)

[
log

(
qc(θ;λ)

p(θ|S)

)]
,

(4)

where KL(qc(θ;λ)||p(θ|S)) is equal to zero or minimized if and only if qc(θ;λ) ≈ p(θ|S). If we expand
the above KL-divergence by using the posterior expressed in Eq. (2) and rearrange it then we have:

KL(qc(θ;λ)||p(θ|S)) = −
(
Eqc(θ;λ) [log(p(S|θ)p(θ))]− Eqc(θ;λ) [log qc(θ;λ)]

)
+ Eqc(θ;λ) [log p(S)] .

(5)
We easily notice that the KL-divergence is still a hard-to-optimize function, since it includes a log evidence
log p(S) where the evidence p(S) is an intractable distribution function. To overcome the hardness of
computing the KL-divergence, we utilize the fact that KL(qc(θ;λ)||p(θ|S)) ≥ 0, and so:

Eqc(θ;λ) [log p(S)] ≥ Eqc(θ;λ) [log(p(S|θ)p(θ))]− Eqc(θ;λ) [log qc(θ;λ)] (6)

where the expression on right hand side is called an evidence lower bound (in short, ELBO):

ELBO(p(S,θ)||qc(θ;λ)) = Eqc(θ;λ) [log(p(S|θ)p(θ))]− Eqc(θ;λ) [log qc(θ;λ)]

= Eqc(θ;λ)

[
log

p(S,θ)
qc(θ;λ)

]
= L(λ,θ;S). (7)

More importantly, the ELBO is a tractable metric function compared with the KL-divergence, and the
following condition is satisfied:

argmaxλL(λ,θ;S) = argminλKL(qc(θ;λ)||p(θ|S)). (8)
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For scaling and optimizing the ELBO on small- and large-scale datasets S = {yi,xi}Ni=1, stochastic
variational inference (SVI) is extensively utilized for scaling BNNs on datasets, and it is a machinery to
randomly generate M mini-batches and to optimize the ELBO on those batches:

L(λ) = N

M

M∑

i=1

L(λi,θ;Xi), argmaxθ,λ L(λ). (9)

We refer to the article Blei et al. [2017] for the interested readers for detailed discussions on the SVI optimizing
algorithm. In general, the SVI algorithm returns approximate samples of variational parameters {λi}Ni=1 and
model weights θ.

17 Quantum Bayesian Neural Networks

Quantum Bayesian Neural Networks (QBNNs) are BNNs boosted by quantum algorithms which are designed
to solve efficiently some hard computational problems on quantum computers Benedetti et al. [2021]. More-
over, they promise to generate solutions to a class of computational problems much faster than conventional
computing resources, and quantum computers (i.e., quantum circuits) are even able to represent classically
intractable probability distributions due to their inherently probabilistic nature and non-classical correlation
property, that is, quantum circuits with large entanglement Bremner et al. [2010].

There are some proposals to design QBNNs based on quantum DL techniques Allcock et al. [2020] combined
with BNNs Berner et al. [2021], and computing the VI approach on a quantum computer Benedetti et al.
[2021]. Namely, it is a machinery to approximate the posterior by a tractable distribution qc(θ;λ) by
optimizing the ELBO measure expressed in Eq. (7). Indeed, this approximation makes BNNs scalable on
large-scale datasets but generates approximate samples − not exact samples. Therefore, we propose to utilize
a parametrized quantum circuit (PQC) which represents a family of probability distributions qQ(θ;λ) in
order to make the VI technique better on generating good approximate samples. Some PQCs used to generate
samples even are known to be not simulable on a conventional computer Bremner et al. [2010]; Farhi and
Harrow [2016]. Hence, we approximate the posterior by the quantum variational distribution qQ(θ;λ) due
to its representational power over the classical variational distribution qc(θ;λ) Benedetti et al. [2021]. This
quantum approximation can be dubbed “quantum BNNs” or “quantum variational inference”.

17.1 Quantum Variational Inference

Quantum variational inference (QVI) is referred to as representing a variational distribution qQ(θ;λ) and
sampling it on quantum machines:

qQ(θ;λ) = |⟨θ|ψ(λ,xi)⟩|2, (10)

where xi and λ denote an input data point and trainable parameters, respectively. Namely, given a quantum
learning model, Ô(xi)H⊗nÔ(λ), where data encoding quantum gate Ô(xi) and an initial quantum state
|0⟩⊗n, the final quantum state is prepared in the state |ψ(λ,xi)⟩ by an evolution Ô(λ)H⊗nÔ(xi) |0⟩⊗n, and
then we measure it in the basis |θ⟩; here, Ô(λ) is a PQC model, and H⊗n are Hadamard gates. In fact, this
basis measurement outputs θ samples with their corresponding probabilities qQ(θ;λ) Bremner et al. [2010];
Benedetti et al. [2021].

To obtain the variational parameters λ of the PQC, we can optimize, e.g., the ELBO expressed in Eq. (7)
while replacing its classical variational distribution qc(θ;λ) by the quantum variational distribution qQ(θ;λ):
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|0⟩ U3(λ0, 0, 0) • U3(λ5, 0, 0) • U3(λ10, 0, 0) • U3(λ15, 0, 0)

|0⟩ U3(λ1, 0, 0) • U3(λ6, 0, 0) • U3(λ11, 0, 0) • U3(λ16, 0, 0)

|0⟩ U3(λ2, 0, 0) • U3(λ7, 0, 0) • U3(λ12, 0, 0) • U3(λ17, 0, 0)

|0⟩ U3(λ3, 0, 0) • U3(λ8, 0, 0) • U3(λ13, 0, 0) • U3(λ18, 0, 0)

|0⟩ U3(λ4, 0, 0) U3(λ9, 0, 0) U3(λ14, 0, 0) U3(λ19, 0, 0)

Figure 10: A real-amplitude quantum circuit having depth-one is transpiled into the Clifford+T gate set. It is
used to demonstrate the power of QML models by the authros of the article Abbas et al. [2021].

|0⟩ • • • • • • • • U2(0, π) • • U2(0, π) U2(0, π)

|0⟩ U1(λ1) U2(0, π) U1(λ5) U2(0, π)

|0⟩ U1(λ2) U2(0, π)

|0⟩ U1(λ3) U2(0, π)

|0⟩ U1(λ4) U2(0, π)

• • U2(0, π) U2(0, π) • • U2(0, π) U2(0, π) • • U2(0, π)

U1(λ6) U2(0, π)

U1(λ7) U2(0, π)

U1(λ8) U2(0, π)

Figure 11: An energy-based quantum circuit having depth-one is transpiled into the Clifford+T gate set. This
QML model is proposed for the NISQ device by the authors of the article Farhi and Neven [2018].

ELBO(p(S,θ)||qQ(θ;λ)) = EqQ(θ;λ)

[
log

p(S,θ)
qQ(θ;λ)

]

= LQ(λ,θ;S).
(11)

The ELBO function LQ(λ,θ;S) can be maximized on quantum computers thanks to quantum differen-
tiable programming paradigm identical to classical differentiable programming one, namely, automatic
differentiation for AI models Bergholm et al. [2022].
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Figure 12: A strongly-entangling quantum circuit having depth-one is transpiled into the Clifford+T gate set.
This QML model is proposed to build a powerful quantum learning model in the article Schuld et al. [2020].
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Figure 13: A hardware efficient quantum circuit having depth-one is transpiled into the Clifford+T gate set.
This PQC is used for quantum variational inference in the article Benedetti et al. [2021].

18 Sizing Quantum Machines

For training PQC models on limited benchmark labeled-HSI datasets, we utilize a classical layer for reducing
the dimensionality of the features of the HSI datasets due to a limited number of input qubits. However,
how much one needs to reduce the dimensionality of the given HSI dataset depends on quantum computers
utilizing, that is, whether we have an access to a NISQ device having error-prone qubits ≤ 100 or a fault-
tolerant quantum (FTQ) computer having error-free qubits > 100. In particular, the classical machine plays a
less role for pre-processing the HSI dataset, and we can feed many informative features to quantum computers
(less dimensionality-reduction) as the number of the error-free qubits of quantum machines increases. In
particular, we assume that we use EnMAP HSIs with 230 spectral bands and 145× 145 spatial dimensions,
that is, a size of the dataset. Moreover, EnMAP HSIs having 21, 205 data points and 230 features are a
small-scale image dataset compared with conventional multispectral images for training DL models. To
execute the PQC model on NISQ machines having ≤ 100 input qubits, we either reduce the spectral bands
of the EnMAP HSIs from 230 to at most 100 or select the most of informative 100 bands to be compatible
with the input qubits by utilizing a classical machine. Instead, for FTQ machines having more than 100 input
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qubits, we persevere more spectral bands of EnMAP HSIs when performing the dimensionality-reduction or
feature selection technique in their spectral bands by using a classical machine.

Towards quantum resource estimation, we assess four different PQC models expressed by the Clifford+T gate
set (see Figures 10-13). The Clifford-T gate set is defined by U1, U2, U3, and CNOT gates:

U1(λ) =

(
1 0
0 eiλ

)
, U2(λ, ϕ) =

1√
2

(
1 −eiϕ
eiλ ei(λ+ϕ)

)
,

U3(λ, ϕ, γ) =

(
cos(λ/2) −eiγ sin(λ/2)

−eiϕ sin(λ/2) ei(ϕ+γ) cos(λ/2)

)
,

(12)

where, for example, U1(π/4) = T , U1(π/2) = S, U2(0, π) = H . Hence, the Clifford-T gate set is {U1(π/2),
U2(0, π), CNOT, U1(π/4)}. Given a HPC+QC system, the four PQC models shown in the Figure 10-13
comprise several parametrized U1(λ) gates. We can execute them on the HPC instead of QCs, and quantum
resource required for executing them on QCs is then O(1) (constant time) if there is either no sign of T-gates
or a small number of T-gates. In particular, we deploy them on either HPC or quantum computers depending
on the existence and a number of T-gates in their configuration during the training phase via stochastic
variational inference (SVI) expressed by the equation (8). Furthermore, a number of T-gates defines quantum
resource required for deploying QML models on NISQ and FTQ computers. To determine the number of
T gates, we use the concept of symmetry breaking of conventional neural networks Fok et al. [2017]. We
strongly emphasize that QML models also breaks the symmetry in their weights in order to decrease their
redundant parametrized quantum gates and to generalize better on unseen data points than conventional neural
networks. In particular, each weights within a quantum layer must have different digital values for capturing
particular features. Hence, we assume that each layer of QML models must have at most a single T-gate
at each learning iteration. Hence, our QML models having depth-one can have only one T-gate. Towards
quantum resource required for executing them on digital quantum computers Fowler and Gidney [2019]:

1. If our PQCs have 108 T-gates and five logical qubits then we need 158, 431 physical qubits (i.e.,
9, 375 state distillation qubits and 149, 056 physical qubits) on the surface code distance of d = 25,
and our QML models then take around 5 hours.

2. If our PQCs have three T-gates and five logical qubits then we need 50, 700 physical qubits (i.e.,
14, 400 state distillation qubits and 36, 300 physical qubits) on the surface code distance of d = 11,
and our QML models then take around 8 hours.

3. If our PQCs have one T-gates and five logical qubits then we need 15, 135 physical qubits (i.e.,
14, 400 state distillation qubits and 735 physical qubits) on the surface code distance of d = 7, and
our QML models then take around 2 hours.

Quantum resource estimation demonstrates that some QML models can not be simulated on the HPC system if
a number of T-gates is sufficiently high at the quantum ISA level, and otherwise, we deploy them on quantum
computers Beverland et al. [2022]; Reiher et al. [2017]. In addition, we present the scaling of physical qubits
and surface (code) distance with respect to the gate error rate in the Figure 14, since our PQC models require
the logical error rate denoted by P_L of around 10−15 and the gate error p of 10−3 given the threshold error
rate p_th of 0.57 (the green line in the Figure 14). See also the chapter 3 for the detailed discussion on the
assessment and quantum development roadmap of quantum machines.

18.1 Present Day

Superconducting-based quantum machines in the current market comprise around 100 error-prone qubits
and depth-5 faulty quantum gates, while quantum learning models require more than depth-5 quantum gates.
Hence, quantum variational models can be only implemented as a proof-of-the-concept, when the elements in
HSIs have no more than 5-10 percent overlap.
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Figure 14: Quantum resource estimation for different logical error rates P_L.

18.2 3-5 years

In 3-5 years, quantum machines begin to have 100 error-prone input qubits and depth-100 faulty quantum
gates. Quantum variational inference models can be executed on those quantum machines, while the elements
in HSIs could be overlapping up to 10-30 percentage.

18.3 15 years

By this time, quantum machines will have around thousands of error-corrected input qubits and more than
depth-100 quantum gates. Quantum variational inference models then can be implemented for operational-
sized HSIs having more than 30 percentage overlap in their elements on fault-tolerant quantum machines.
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19 SWOT analysis

19.1 Strengths

• Quantum machines could be applied to generate data samples from classically difficult distributions
Coyle et al. [2020].

• Proved exponential speed-up in at least one scenario Liu et al. [2021].

19.2 Weaknesses

• Data loading is a major obstacle for achieving exponential speed-up of some QML algorithms Tang
[2021b].

• Measurement error mitigation is limited very strongly by the number of qubits and the circuit depth.
Quek et al. [2022].

• Quantum machines can be difficult to train due to the error-correction scheme Stilck França and
García-Patrón [2021].

19.3 Opportunities

• Major shift in the quality of quantum computers. NISQ machines may be available with less 100
high-quality error-prone qubits in the reference time-frame of 3-5 years, and FTQ machines available
with more than 100 fully error corrected qubits in the reference time-frame of 15 years.

• New applications of classical machine learning for quantum computing: compiling, mapping, control,
error correction.

19.4 Threats

• Fundamental lack of ability to control, mitigate and correct sources of noise in the quantum machines.

• Novel classical algorithms inspired by quantum computing may outperform some pure quantum
algorithms.

20 Conclusion

Deep Learning (DL) models are extensively applied to process big EO datasets due to the powerful computing
machines like GPU tensor cores and availability of benchmark labeled-datasets. They are often considered as
uninterpretable black-box models with dubious uncertainties: their outputs are not trustworthy and reliable
estimates for making high stake decisions involving EO datasets. As opposed to DL models, classical Bayesian
statistical approaches are inherently interpretable models generating trustworthy and reliable predictions
with error/uncertainty estimates but there is the challenge that they do not scale well as the size of datasets
increases or computationally expensive. This challenge can be tackled by combining the best of both DL
model and Bayesian analysis, that is, Bayesian Neural Networks (BNNs); namely, DL models scale well
on increasing the size of benchmark labeled-datasets, while Bayesian approaches generate the trustworthy
and reliable predictions with their confidence level. However, BNNs are still computationally expensive
due to their intractable posterior distributions. To weaken BNNs, variational inference (VI) paradigm
approximates the intractable posterior by a tractable variational distribution function by optimizing the
ELBO metric. Hence, BNNs become scalable interpretable models as the size of benchmark label-datasets
increases. More importantly, they generalize well on small-scale datasets compared with DL models. There
persists, however, the imperfection that the tractable variational distribution returns approximate samples for
uncertainty quantification − not exact samples.
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Hyperspectral image (HSI) datasets obtained by hyperspectral imagery satellites are used to make safety-
critical and human-centered EO decisions such as hazard and risk assessment (that is, EO Use-Case). In
contrast to conventional benchmark labeled-multispectral satellite images, there is the limited availability
of benchmark HSIs, namely, there is either the lack of labeled-HSI datasets or small-scale benchmark
labeled-HSIs, while DL models require large-scale datasets as input. Hence, we propose to apply BNNs to
small-scale benchmark labeled-HSIs for making high stake decisions, since they provide the confidence in
their predictions measured by error/uncertainty estimates. In addition, to estimate their uncertainties with
high precision, we utilize a quantum variational inference instead of its classical counterpart. For quantum
variational inference paradigm, we replace a classical variational distribution function by a parameterized
quantum circuit (PQC). According to computational complexity theoretic conjectures, PQCs can not be
sampled on a conventional computer. This fact proves that quantum variational inference exhibits so-called
quantum advantage over its classical counterpart. The quantum variational distribution approximates the
intractable posterior better and generates more superior samples for uncertainty quantification than ones
generated by the classical variational distribution − closer to exact samples. In particular, the PQCs can be
executed on superconducting- and photonic-technology machines integrated with a classical HPC workflow;
HPC+QCs paradigm. The classical part selects informative features from limited labeled-HSI images and
performs the dimensionality-reduction on them depending on NISQ machine (3-5 years) or FTQ machine (15
years). The larger and more error-free the qubits, the less the classical resource usage for pre-processing HSI
datasets.
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Quantum Algorithms for Earth Observation
Image Processing

Abstract
Satellite-based Earth observations have a broad range of applications, such as natural
disaster warnings, analysis of global temperature impacts, weather conditions analysis,
and land-use classification. However, current machine learning techniques for land-use
classification are costly in terms of time and energy. There two possible approaches to
solving this problem. The first one are Variational Quantum Algorithms. They are a
class of quantum algorithms that is aimed at the application in the Near Intermediate-
Scale Quantum computing era. These algorithms employ jointly parametrized quantum
circuits and classical optimization techniques for finding quantum circuits or states that
have desirable properties from the point of a given application. VQAs find applications
typically in finding low energy states of quantum Hamiltonians, solving approximately
Quadratic Unconstrained Binary Optimization problems and training Quantum Neural
Networks. In the area of Earth observations, the most promising area of applications lies
with QNNs since the application of VQAs allows for the creation of new classification
methods that employ quantum information processing tools. The second approach is to
use quantum computers for a hybrid machine-learning approach utilizing an autoencoder
for dimensionality reduction and a quantum algorithm powered by quantum annealer to
reduce training costs. The autoencoder, using conventional deep learning techniques, is
executed on GPUs, while the Deep Belief Network is run on a D-Wave quantum annealer.
This hybrid approach allows for independent training of both modules, partially reducing
the time and energy required to retrain the model.

21 EO use-case problem description

Distinct sensors on the satellite platforms and aircraft monitor Earth’s surface day and night. They produce
and transfer several terabytes of raw EO data to data storage on the ground. The stored data are only
relevant when processed. Currently, deep learning becomes an indispensable tool for extracting informative
information from raw EO datasets. Unfortunately, training large deep-learning neural networks is costly
and consumes a significant amount of energy. Therefore, it is desirable to assess the possibility of the
application of quantum computers for tasks related to processing EO data. Typical tasks related to EO data
processing are mostly related to image classification or segmentation. It was shown that quantum algorithms
can perform these tasks on EO data Gawron and Lewiński [2020]; Gupta et al. [2022, 2023]. In particular,
Variational Quantum Algorithms are suitable and applicable in the area of EO data classification. It was
shown rigorously Gyurik and Dunjko [2022] that quantum machine learning methods can have advantages
over their classical counterparts. Therefore, there may exist substantial advantages for their application for
EO data processing.

Satellite-based Earth observations have a broad spectrum of use cases Kansakar and Hossain [2016], Zhao
et al. [2022]. This naturally leads to a wide range of potential real-life applications. Those include tasks
related to various important “how to” questions such as how to

1. warn people against natural disasters (e.g. floods, fires),

2. analyse the impact of rising global temperatures on ocean levels and rate of glacier melting.
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3. analyse weather conditions (e.g., for optimizing the localization of green energy installations)

4. analyze the structure of crops,

5. perform assessment of forest area in different countries and identification of areas of heavy defrosta-
tion.

Potential answers/solutions, especially those leading to sustainable development, require a constant flow
of information regarding environmental changes. Currently, machine learning techniques for land-use
classification of the Earth’s surface often employ (deep) neural networks. While those networks are very
efficient in a variety of human-like tasks, they are very costly to train (in terms of time and energy). This
naturally calls for an investigation to what extent it is possible to offload the training process to a quantum
computer to reduce the training costs.

22 Vartiational quantum algorithms

22.1 Introduction

Variational quantum algorithms (VQA) are a class of quantum-classical heuristics that employ both classical
computers and quantum computers to perform optimization of a function computed using a quantum computer.
The main idea behind VQA is as follows. The algorithm designer chooses a class of parametrized quantum
circuits that can be executed on a quantum computer and an observable that can be measured on this computer.
The goal of computation is to find such parameters of the quantum circuits that generate the state for
which the expectation value of this observable is optimized. The optimization procedure is performed by
iterative varying of the parameters, executing the quantum circuit, and measuring the expectation value of the
observable. This procedure is controlled by the classical computer and repeated until a given stop criterion is
reached.

Variational quantum algorithms can be applied to:

• solving (approximately) Quadratic Unconstrained Binary Optimization (QUBO) Farhi and Harrow
[2016] problems using Quantum Adiabatic Optimization Algorithm (QAOA) Farhi and Harrow
[2016],

• minimizing the energy of quantum Hamiltonian — Variational Quantum Eigensolver (VQE) Peruzzo
et al. [2014], and

• training Quantum Neural Networks (QNNs).

22.2 Technical description

The mathematical formulation of a VQA is the following. Given an initial state |ψ⟩ ∈ Cn, parametrized
quantum circuit U(θ) ∈ Cn×n, an observable O ∈ Cn×n the goal is to find such a set of parameters θ that
minimizes the expectation value of observableO in the state U(θ) |ψ⟩ i.e. ⟨O⟩U(θ)|ψ⟩ = ⟨ψ|U†(θ)OU(θ) |ψ⟩.
The optimization is performed using a classical computer by varying the parameters θ and minimizing the
function f(θ) := ⟨O⟩U(θ)|ψ⟩.

There exist variations of the abovementioned algorithm that can be adapted to a variety of tasks.

22.2.1 Parametrized quantum circuits

A common technique to implement Variational Quantum Algorithms is to employ Parametrized Quantum
Circuits (PQC). PQC U(θ) = (U(θi))

N
i=1 is a sequence of N quantum gates that depend on one or more
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real-valued parameters θi. Once the parameters are defined the PQC becomes an ordinary quantum circuit
that can be—in principle—executed on a quantum machine.

22.2.2 Variational Quantum Eigensolver

The Variational Quantum Eigensolver is the most important example of VQAs because it provides an
approximate solution to the problem of finding the ground state of a quantum Hamiltonian that can be
expressed in the following way. Given Hamiltonian H find its minimal eigenvalue Emin (minimal energy) and
minimizing eigenvector |ψmin⟩ (minimal energy state). It is known that for any quantum state |ψ⟩ ≥ Emin.
Therefore, one can find an approximate value of Emin by minimizing ⟨H⟩U(θ)|0⟩ by varying parameters θ of a
PQC U(θ). To perform this operation on a quantum the Hamiltonian H has to be decomposed into a linear
combination H =

∑
α hαPα of Pauli strings Pα = σα1

1 ⊗ σα2
2 ⊗ . . . ⊗ σαN

N with σji ∈ {1i, σxi , σyi , σzi },
so that ⟨H⟩U(θ)|0⟩ =

∑
α hα ⟨Pα⟩U(θ)|0⟩. The quantum circuit U(θ) should ideally dependent on a few

parameters θ, be able to explore the Hilbert space of the quantum system, and be efficiently implementable
on the quantum computer.

22.2.3 Quantum Neural Networks

Quantum Neural Networks (QNNs) are a class of machine-learning models that can be evaluated on a quantum
computer. QNNs, similarly to classical neural networks are parametrized functions that can be trained using
data to perform common machine learning tasks such as classification, regression, sampling from a complex
probability distribution or generating new data. QNNs can be composed—in the mathematical sense—with
classical neural networks forming hybrid quantum-classical NNs and jointly trained using backpropagation.

The visual representation of a quantum variational algorithm that employs both data x and parameters θ is
presented in Fig. 15. In the figure, the quantum computer is driven by the classical computer that is responsible
for transferring the data x and parameters θ to the controller of the quantum computer that uses these pieces
of information to generate quantum circuits U (k)

load(x) and U (k)
var (θ) that encode data and model respectively.

After those circuits are executed measurements of quantum observables Oi is performed and the outcomes
of the measurements fi(x, θ) are returned to the classical computer and combined jointly using—possibly
parametrized—function fclassical(f1(x, θ1), . . . , fI(x, θI), θclassical).

A typical implementation of the forward part of the training of a quantum neural network is presented in
Algorithm 1.

Algorithm 1 Forward algorithm for a quantum neural network.
procedure FORWARD(x, θ)

for k = [K] do ▷ Repeat for each QNN layer
APPEND(Qtape, U (k)

var (θ)) ▷ Append the variational circuit to the tape
APPEND(Qtape, U (k)

load(x)) ▷ Append the data loading circuit to the tape
APPEND(Qtape, O) ▷ Append observable O to the tape
f(x, θ)← QCRUN(Qtape) ▷ Execute quantum tape and measure results
return f(x, θ)

Data encoding Classical data can be encoded on the computational basis of quantum states—as binary
strings, amplitudes of the quantum states or observables.

Quantum neural network architectures Quantum neural networks can be implemented in a variety of
architectures. The simplest case is when the quantum evolution is completely unitary e.g. Figure 16b presents
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Figure 15: A simple depiction of QNN main quantum loop.

Uload(x)

|0〉 Rx(x1) |x1〉

...

|0〉 Rx(xn) |xn〉

(a) QC for loading of classical data to a quantum
computer.

U
(k)
var (θ)

R(θ1)

R(θ2)

R(θ3)

R(θ4)

(b) An example of a quantum neural network
layer.

an example of a simple layer of a quantum neural network with general parametrized qubit rotations being
controlled by the model parameters.

Other architectures can introduce mid-evolution measurements and classically controlled gates or extending
the number of used qubits in subsequent layers of QNN.
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22.2.4 Quantum Adiabatic Optimization Algorithm

Quantum Adiabatic Optimization Algorithm QAOA uses the VQA principle to solve, possibly approximately
Quadratic Unconstrained Optimization (QUBO) problems. The algorithm does it by simulating the adiabatic
quantum computing process.

There exist several issues related to each of the steps of the above algorithm. The architecture of a quantum
computer and the structure of a particular problem have to be taken into account while designing and executing
a VQA. Additionally, it is important to take into the account the interplay between the classical computing
systems: storage, information transfer and compute units with the quantum computer.

22.3 Sizing quantum machines for VQAs

Authors of an in-depth overview Bharti et al. [2022] provide an overview of the current state of quantum
computers concerning implementations of VQAs as well as an outlook for the future. They divide the
future into two main eras: one of near intermediate-scale quantum computer NISQ and one of the fully
error-corrected quantum (FEC) computers. Unfortunately, they do not attempt to provide any concrete
timeline for the possible future development of VQAs. Since the efficiency of variational quantum algorithms
depends on multiple factors, such as:

• number of qubits,
• qubits connectivity,
• single-qubit, two-qubit or multi-qubit gate fidelities,
• measurement errors,
• quantum system coherence time,
• execution time of operations reset, gate, and measurement,
• scalability of the quantum computing hardware platform,
• precision of control pulses,
• possibility to perform mid-quantum computing measurement and classical computing,
• classical optimization method,
• ansatze,

the following sizing assessment is an educated guess about the timeline for future VQAs applicability to
real-life problems related to EOs.

We can use the method for defining practical quantum advantage and application readiness levels (ARLs) as
presented recently by Herrmann et al. [2023]. The authors define quantum advantage using the notions of
quantum utility or quantum dominance, where the former notion requires that a quantum (possibly hybrid)
system “(i) requires less computing time, or (ii) requires less power, or (iii) yields more accurate results [. . . ]
to the best classical device of similar size, weight, and cost.”, and the latter notion requires that points (i)–(iii)
are “compared to any other classical device”.

The authors of Herrmann et al. [2023] define five levels of application readiness levels:

• ARL 1: concept with unknown potential,
• ARL 2: beneficial in small idealized systems,
• ARL 3: utility indicated by theory or resource estimations,
• ARL 4: simulated utility demonstration,
• ARL 5: utility demonstration on quantum hardware.
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Figure 17: Reproduction of Fig. 2 from Cheng et al. [2023b] presenting a selection of quantum computing
hardware. (CC-BY 4.0)

22.3.1 Currently

Currently-existing quantum computers belong to the NISQ era and can not claim any applicable advantage
over classical computers. Those are experimental devices testing the limits of the existing technology.
Decoherence, limited qubit connectivity, gate errors and measurement errors. The training of a QNN on a
quantum computer is currently very difficult and not efficient.

We have currently reached ARL level of one for most VQAs applications. There exists several proposals of
applying VQAs for remote sensing data processing such as e.g. Gawron and Lewiński [2020]; Gupta et al.
[2022, 2023]; Nalepa et al. [2022]; Miroszewski et al. [2023]; Otgonbaatar and Datcu [2021b,c], and also for
EO mission planning Rainjonneau et al. [2023].
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22.3.2 3–5 years

It is unlikely that any neither useful implementation of a Variational Quantum Eigensolver or Quantum
Machine Learning algorithm will be demonstrated. The quality of the quantum computers will be too low.
But we can observe steady progress in the quality of quantum hardware, the development of new practical
algorithmic ideas, and the development of quantum software stack.

After the mark of five years, we should be able to achieve ARL of two or three for at least a couple of VQAs
use cases if major efforts are put into R&D activities.

22.3.3 15 years

While it is very difficult to predict the future of disruptive technology, such as quantum computing, 15 years
ahead one can hope for the existence of fully error-corrected quantum (FEC) computers with hundreds of
logical qubits. Such computers would be able to tackle machine learning problems that are impossible to be
solved today. Especially if supplied with coherent quantum information e.g. acquired from quantum sensors.

After the mark of 15 years, we can be hopeful to show ARL four or five for at least one or two use cases.

22.4 SWOT analysis

22.4.1 Strengths

• Quantum Neural Networks have larger effective dimensions than Deep learning models Abbas et al.
[2021].

• Quantum kernel methods can provide better classification results by transforming quantum encoded
features using projected quantum kernels than classical kernel methods Huang et al. [2021].

• Quantum Born machines could be applied to generate data samples from classically difficult distri-
butions Coyle et al. [2020].

• Proved exponential speed-up in at least one scenario Liu et al. [2021].

22.4.2 Weaknesses

• Data loading is a major obstacle for achieving exponential speed-up of some QML algorithms Tang
[2021b].

• Limited number of samples obtained from quantum devices leads to measure concentration Thanasilp
et al. [2022] and difficulty to train quantum kernel methods.

• Measurement error mitigation is limited very strongly by the number of qubits and the circuit depth.
Quek et al. [2022].

• VQAs can be difficult to train due to barren plateaus McClean et al. [2018].

• Noisy quantum devices have major limitations Stilck França and García-Patrón [2021].

22.4.3 Opportunities

• Major shift in the quality of quantum computers. Fully-error corrected quantum computer available
with ≈ 100 fully error qubits.

• New applications of classical machine learning for quantum computing: compiling, mapping, control,
error correction.
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22.4.4 Threats

• Fundamental lack of ability to control, mitigate and correct sources of noise in the QCs.
• Unlikely collapse of the complexity hierarchy will likely lead to a lack of quantum advantage.
• Potential new “no-go theorems”.

23 Hybrid approach

23.1 Introduction

We propose an autoencoder for the dimensionality reduction of input EO images, and a quantum algorithm
powered by the quantum annealer (quantum machines) to reduce the training costs. Ideally, in such a hybrid
machine-learning approach, one would want to combine at least two distinct modules. The first one is precisely
an autoencoder, with latent binary representation, that essentially prepares data to be used by the (quantum)
annealer. The second is a Deep Belief Network, a stack of Restricted Boltzmann Machines, which is used for
classification purposes Hua et al. [2015], Dixit et al. [2020], Dixit et al. [2021]. The crucial part related to
the training of every neural network is an update of all connections between neurons. This process involves
calculating many average values of specific functions (which are problem-dependent). The computation can
be accelerated if one can sample from a particular distribution, which again is problem-dependent. Then, and
only then, all complicated expectations values involving that distribution simplify to weighted sums. This is
precisely what a quantum annealer allows one to do. Independent samples can be drawn from the Boltzmann
distribution quickly (even in microseconds), accelerating the training stage. However, to take advantage of
such capabilities, one needs to (re)formulate the original classification problem using the Ising Hamiltonian
(a model of interacting spin-1/2 particles). How to perform such a mapping effectively is an open problem,
being part of this study. Interestingly, both modules of such hybrid architecture can be trained independently.
The autoencoder, which uses conventional deep learning techniques, can be executed on the GPUs, and the
second one — deep belief network — on the D-Wave quantum annealer. This separation allows us to partially
reduce the amount of time and energy needed to retrain the model.

23.2 Technical description

As a proof-of-concept of our approach, we also provide pretrained models for a selected set of data. The
solution consist of a machine learning system. The client will be able to request the training of its model
on the Sentinel-2 multispectral data they select and demand the land-use labels for a particular set of land
patches. The solution uses the D-Wave quantum annealer during the training process. The annealer is used
in the most difficult part of the machine learning pipeline. Namely, in generation of the multispectral data
representation and multilabel classification. We aim to use a two-stage data transformation process. In the
first stage, the data will be transformed from its natural representation into a binary sequence, which is more
natural for quantum machines. This binary string should encode most of the relevant information about a
hyperspectral data cube patch.

The processing pipeline of the presented approach is as follows (see Figure 18).

First, the multispectral data is compressed into a binary representation using an autoencoder schematically
presented in Figure 19. We considered two autoencoders, like latent Bernoulli autoencoder (LBAE) and
Binary variational autoencoder (BVAE). The LBAE model is used as an example in the compiled version of
our solution. As such, it will be discussed in greater detail in the following.

Then the compressed data are used to train a restricted Boltzmann machine (RBM). We consider three possible
training backends for this process:

• Contrastive divergence (run on a classical computer).
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Figure 18: Processing pipeline of hybrid machine-learning approach based on autoencoder and RBM.
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Figure 19: Processing pipeline of the LBAE training.

• Coherent Ising machine (CIM). This approach takes as an input an Ising optimization problem and
solves it using a system of dynamical equations resulting in a simulation of the behavior of an actual
quantum annealer. A general overview of CIM is presented in the following subsections.

• Quantum annealing backend. Currently, this backend uses the D-Wave annealer. A short note on
utilization of quantum annealers is presented in the following subsections.

In the next step of the weights obtained form the training of the RBM are used as weights for layers of a
neural network.

Lastly, we train the final layer of our network in a supervised manner. All other weights remain fixed. This is
the only supervised part of our training pipelie.

23.2.1 Latent Bernoulli autoencoder

The need for differentiability of each layer represents a challenge if one desires to train stochastic neurons or
other non-differentiable functions such as quantization Fajtl et al. [2020]. Sampling from and interpolating in
the discrete latent space is equally challenging. Unlike multimodal, Gaussian and many other real-valued
distributions, the multivariate Bernoulli distribution concentrates most of the information on the second and
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higher moments, since the marginals are strictly unimodal and entirely described by the mean. Given that
this model learns a distribution with unknown prior, and based on the aforementioned premise, the model
parametrizes the learned distribution by its first two moments. The main advantage of the model is the fact
that there is no sampling of pseudo-random numbers during the training step.

23.2.2 Coherent Ising machine

The coherent Ising machine is an iterative algorithm for sampling low-energy spin configurations in the
classical Ising model Goto et al. [2021]. It treats each spin value as a continuous variable from the range
[−1, 1]. Each iteration begins with calculating the mean field acting on each spin by all other spins. Then
the gradients for the spin values are calculated. Then the spin values are updated according to the gradients
and some chosen activation function. After multiple updates, the spins will tend to either -1 or +1 and the
final discrete spin configuration is obtained by taking the sign of the continuous variables. CIM has been
tested on a variety of problems. Implemented on a consumer graphic processor, this algorithm runs faster and
generates higher quality samples than many analogue and digital annealing processes. Typical results from
these simulations are presented below (see Figure 20).

Figure 20: Results from simulations of training a restricted Boltzmann machine with training backend based
on coherent Ising machine.

23.2.3 D-Wave annealer

The quantum annealer allows us to sample from the Boltzmann distribution, which is a crucial part of training
an RBM Dixit et al. [2021]. With the rapid advancement of this technology (see Figure 21) this shows a great
promise for acceleration of classical training.

The learning process is a hybrid of classical and quantum computation. The weights of the RBM are stored
on a classical computer and are updated based on samples from the Boltzmann distribution obtained from the
quantum annealer. This can be summarized as

53



Figure 21: Figure show comparison of parameters D-wave architectures like Chimera and Pegasus.
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23.2.4 Hybrid approaches with simulated bifurcation machines

Hybrid quantum-classical optimization is an approach that combines classical optimization algorithms with
quantum computing techniques to solve complex optimization problems more effectively. In the context
of Simulated Bifurcation Machines (SBM), the idea is to use SBM as a quantum-inspired technique to
complement classical optimization algorithms.

An (SBM) is a type of quantum-inspired computing technology designed to solve complex combinatorial
optimization problems. It was developed by researchers at Toshiba, and it is based on the concept of
bifurcation, which is a phenomenon in dynamical systems where a small change in a system’s parameters can
cause a sudden shift in its behaviour.

The SBM leverages a classical computer to simulate the behavior of a quantum system undergoing bifurcation.
It uses this behavior to explore the solution space of the given optimization problem more efficiently than
traditional classical methods. The key idea behind the SBM is to take advantage of the sudden transitions that
occur in bifurcation to jump between possible solutions, allowing the algorithm to converge to an optimal or
near-optimal solution quickly.

While the SBM is not a true quantum computer, it is inspired by and seeks to harness some of the benefits of
quantum computing. This technology has shown promise in solving a variety of optimization problems, such
as the traveling salesman problem, portfolio optimization, and drug discovery, among others. However, it is
important to note that the SBM has its limitations and is not a universal solution for all optimization problems.

The technical aspects of a Simulated Bifurcation Machine (SBM) involve a combination of classical computing
and concepts inspired by quantum mechanics. The underlying mechanism of SBM is based on the phenomenon
of bifurcation, which is characterized by sudden changes in the behavior of dynamical systems. Here are
some key technical aspects of SBM:

1. Hamiltonian dynamics: In SBM, the optimization problem is mapped to a continuous-time Hamilto-
nian system. A Hamiltonian function is used to describe the total energy of a system, which is the
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sum of kinetic and potential energies. The Hamiltonian dynamics is used to navigate the solution
space of the optimization problem Kalinin et al. [2021]; Goto [2021].

2. Simulated bifurcation algorithm: The SBM uses a simulated bifurcation algorithm that mimics
the behavior of quantum systems undergoing bifurcation. The algorithm leverages the classical
computer’s ability to simulate these quantum-like transitions, allowing for an efficient exploration of
the solution space Kalinin et al. [2021].

3. Adiabatic transitions: The SBM algorithm incorporates a concept similar to adiabatic quantum
computing, where the system transitions slowly between different energy levels, staying close to the
ground state. This allows the SBM to explore the solution landscape more efficiently Farhi et al.
[2000].

4. Parameter tuning: In the SBM, the Hamiltonian system’s parameters are carefully tuned to induce
bifurcation points. These bifurcation points cause sudden transitions between different solutions,
allowing the algorithm to jump from one solution to another and explore the solution space more
effectively Kalinin et al. [2021].

5. Near-optimal solutions: The SBM is designed to find near-optimal solutions to combinatorial
optimization problems. While it may not always find the absolute best solution, it can often find
high-quality solutions in a relatively short amount of time compared to classical optimization
algorithms Kalinin et al. [2021].

The Simulated Bifurcation Machine combines these technical aspects to provide an efficient, quantum-inspired
approach to solving combinatorial optimization problems. However, it is important to note that the SBM has
its limitations and is not a universal solution for all optimization problems Kalinin et al. [2021].

23.3 Sizing quantum machines for the hybrid approach

23.3.1 Currently

Currently-existing quantum annealers belong to the so-called NISQ era and can not claim any applicable
advantage over classical computers. The current state of the art annealers has 5640 qubits and 40484
connections Systems [2023]. The device is susceptible to noise and for large families of instances, the device
finds solutions far from the ground state.

23.3.2 3–5 years

D-Wave road map suggests that within 5 yeas the number of qubits will increase to around 8k and number of
connection around 80k D-Wave Systems Inc. [2021]. The devices will still be prone to noise but it is likely that
we will observe steady progress in the quality of the hardware. There will exist a hybrid (classical-quantum)
solvers to solve large problems 1M variables. Those solvers will utilize sophisticated classical methods
(simulated bifurcations) combined with quantum annealing.

23.3.3 15 years

In the forthcoming era, D-Wave quantum annealers will encompass 100,000 highly interconnected qubits,
empowering them to address intricate optimization conundrums D-Wave Systems Inc. [2021]. Utilizing
reversed annealing techniques will facilitate the generation of more sophisticated quantum states, while the
hybrid solver methodology will amalgamate classical and quantum computing paradigms to ascertain optimal
solutions. These cutting-edge developments will usher in unprecedented breakthroughs across domains such
as optimization, machine learning, and logistics.
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Figure 22: Figure shows sizing of quantum annealers

23.4 SWOT analysis

23.4.1 Strengths

• Quantum advantage: D-Wave annealers have the potential to process and analyze large amounts of
data (utilizng hybrid approaches) significantly faster than classical computers Systems [2023].

• Hybrid solver approach: By combining classical and quantum computing methods, D-Wave’s hybrid
solvers can efficiently navigate the solution space and arrive at optimal or near-optimal solutions
Systems [2023].

• Scalability: With 100,000 highly connected qubits, D-Wave quantum annealers can address in-
creasingly complex Earth Land Cover Understanding problems as technology advances Systems
[2023].

23.4.2 Weaknesses

• Noise sensitivity: Quantum systems, including D-Wave annealers, are susceptible to noise and errors,
which may impact the accuracy of the results Preskill [2018b].

• Limited availability: D-Wave systems are not yet widely accessible, and their usage requires
specialized knowledge and expertise Systems [2023].
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• Problem-specific applicability: D-Wave annealers are primarily suited for optimization problems,
which might limit their applicability in other aspects of Earth Land Cover Understanding Systems
[2023].

23.4.3 Opportunities

• Enhanced remote sensing: D-Wave annealers can be applied to process and analyze remote sensing
data, enabling more efficient and accurate land cover classification and monitoring Mallet and Bretar
[2009].

• Climate change research: Quantum computing can potentially improve climate models and predic-
tions, contributing to a better understanding of the impacts of land cover changes on the environment
Biamonte et al. [2017].

• Interdisciplinary collaboration: The use of D-Wave annealers in Earth Land Cover Understanding can
foster collaboration between researchers in quantum computing, remote sensing, and environmental
sciences, leading to new insights and innovations.

• Hybrid approaches: Possibility to utiliza quantum-classical problems are split between a classical
approach and the quantum annealer allows to tackle large problems.

23.4.4 Threats

• Competition: As more companies and researchers develop quantum computing technologies, there
will be increased competition for D-Wave annealers in the Earth Land Cover Understanding domain
Preskill [2018b].

• Technological obsolescence: The rapid pace of quantum computing advancements may render
current D-Wave annealer technology obsolete or less competitive in the future Preskill [2018b].

• Funding constraints: The high costs associated with quantum computing research and infrastructure
may limit the availability of funding for D-Wave annealer projects in Earth Land Cover Understand-
ing.

24 Conclusions and recommendations

The only recommendation that can be provided is that further research is needed. It is important to identify
bottlenecks where classical computers struggle to provide efficient solutions for the Earth Observations and
try to pair them with the incoming development in the field of Quantum Machine Learning. Those bottlenecks
are defined by the computation time, energy consumption and quality of obtained results. A wide variety of
stakeholders such as computer scientists, machine learning experts, Earth observation experts, agricultural
experts, climate scientists, the members of various communities should be involved in identifying mentioned
bottlenecks and hard problems related to Earth observations, and later defining the road forward.

It would be advantageous for the research community if several projects were funded. It would allow the
gathering of experts from a variety of domains and focus their work on identifying important specific problems
in EO that might be solvable using quantum computing and VQAs in particular.

There exists a significant gap between the skills and knowledge of computer scientists of physicists working
on quantum computing and practitioners working on e.g. climate change assessment. Therefore, common
platforms for scientific discussions have to be organized in order to facilitate communication.

The proposed hybrid machine-learning approach amalgamates an autoencoder for dimensionality reduction
of input Earth Observation (EO) images and a quantum algorithm powered by a quantum annealer for
mitigating training costs. This innovative methodology capitalizes on the synergies between classical and
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quantum computing, offering a propitious solution for proficient and accelerated training in Earth Land Cover
Understanding. Notably, the independent training capabilities of the two modules facilitate a more adaptive
and energy-efficient system.

Considering the potential of this hybrid architecture, it is recommended to investigate hybrid solvers proffered
by multiple startups advancing cutting-edge hybrid technology. By establishing collaborations with these
startups, researchers and practitioners can gain access to the latest breakthroughs and proficiency in both
classical and quantum computing domains. This cooperative endeavor could culminate in the development
of more efficacious and efficient hybrid machine-learning models for Earth Land Cover Understanding,
ultimately yielding enhanced insights and decision-making capabilities in this field.

As the contemporary landscape of quantum computing continues to evolve rapidly, integrating cutting-edge
hybrid technology into Earth Land Cover Understanding can potentially revolutionize the domain. By
embracing the strengths of both classical and quantum computing, researchers and practitioners can unlock
new possibilities for analyzing and interpreting complex data sets. Ultimately, the pursuit of such hybrid
architectures can lead to unprecedented breakthroughs in understanding our planet’s land cover, informing
crucial decisions related to environmental conservation, climate change, and sustainable development.

We recommend the exploration of hybrid classical-quantum solvers and simulated bifurcation machines for
Earth Land Cover Understanding problems. These bleeding-edge technologies offer a unique combination
of computational capabilities, which can significantly improve the efficiency and effectiveness of solving
complex optimization and classification tasks associated with land cover analysis.

Hybrid classical-quantum solvers, by leveraging the strengths of both classical and quantum computing,
can efficiently navigate the solution space and arrive at optimal or near-optimal solutions for Earth Land
Cover Understanding problems. Quantum annealers, in particular, can accelerate the training stage by quickly
drawing independent samples from the Boltzmann distribution, while classical computing methods can handle
the autoencoder and other preprocessing steps. This synergy can reduce the time and energy needed for
training, ultimately leading to faster and more accurate results.

Simulated bifurcation machines, on the other hand, provide an alternative approach to quantum annealing that
is based on classical computing resources. These machines offer a powerful means to solve combinatorial
optimization problems by simulating the bifurcation dynamics of quantum systems, without the need for
specialized quantum hardware. As such, simulated bifurcation machines can offer a more accessible and cost-
effective solution to Earth Land Cover Understanding problems, while still providing significant performance
gains compared to traditional classical computing methods.

In conclusion, adopting hybrid classical-quantum solvers and simulated bifurcation machines for Earth Land
Cover Understanding problems can lead to enhanced insights and decision-making capabilities in the field.
By exploring these bleeding-edge technologies, researchers and practitioners can unlock new possibilities
for analyzing and interpreting complex data sets, ultimately contributing to a better understanding of our
planet’s land cover and informing critical decisions related to environmental conservation, climate change,
and sustainable development.

Quantum computers will likely be only one component of many non-Von Neuman computational accelerators
such as e.g. analog, photonic or neuromorphic computers Cavallaro et al. [2022] what makes the landscape of
possible non-classical solutions for EO-related problems even more interesting and difficult to navigate in the
near future.
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Feature Selection and Feature Extraction for
Satellite Hyperspectal Imagery Data

Abstract
This section explores the utility of quantum algorithms in the tasks of feature selection and
feature extraction of hyperspectral satellite data. The feature selection approaches discussed
include the quantum and hybrid extensions of the classification-based RFE (Recursive
Feature Eliminati on) algorithm, as well as an approach formulated as the QUBO (Quantum
Unconstrained Binary Optimization) problem. The application of the quantum variational
method is explored in both feature selection and feature extraction. Additionally, the feature
extraction techniques of quantum PCA (Principal Component Analysis) and quantum
autoencoders are analyzed. The practical implementation and hardware requirements for
each of these approaches are discussed.

25 Introduction

Feature selection and feature extraction are common methods for reducing the number of features in large,
high-dimensional data sets. A basic distinction between these methods is that the first involves transforming
the original features, while the second preserves the features.

The procedures have profound practical consequences, allowing for more effective data storage, transferring,
reduction, and analysis. The hyperspectral data satellite data, with even hundreds of narrow spectral bands,
provide an example of the area in which utilization of the methods seems virtually unavoidable. The rich
spectral information may simply surpass the needs of certain applications.

On the other hand, since the number of possible selections (subsets) grows exponentially with the number of
features, the application of the selection methods involves hard optimization tasks. Within the use case, the
possibility of applying quantum algorithms to improve the selection methods is examined. The discussion
focuses on hyperspectral imagery data as a promising but extremely challenging data type in the field of
satellite Earth imagery.

25.1 About hyperspectral imaging

Hyperspectral satellite imaging is a remote sensing technology that captures images of the Earth’s surface
at high spectral resolution. Unlike traditional satellite imagery, which captures images in several discrete
broad spectral bands (usually red, green, blue, and bands in the infrared wavelength spectrum), hyperspectral
imaging captures images in hundreds of narrow and contiguous spectral bands, providing a detailed and
comprehensive view of the Earth’s surface Chang [2003]; Grahn and Geladi [2007]; Lv and Wang [2020].

Each pixel in a hyperspectral image contains information about the reflectance or emission of electromagnetic
radiation at each of the spectral bands. This information can be used to identify and map the distribution of
different materials and substances on the Earth’s surface, such as vegetation, minerals, water, and pollutants.

Hyperspectral satellite imaging has numerous applications in fields such as environmental monitoring Moroni
et al. [2013], agriculture Nalepa et al. [2022], mineral exploration Booysen et al. [2022], and urban planning
Karoui et al. [2019]. It can provide valuable information for resource management, land-use planning, and
environmental protection, among other purposes.

Some examples of hyperspectral satellite missions include:
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• Hyperion: Launched in 2000, Hyperion was a hyperspectral imaging instrument carried aboard the
Earth Observing-1 (EO-1) satellite. It provided high-resolution hyperspectral data for a variety of
applications, including land use and land cover classification, mineral mapping, and more.

• EnMAP: The Environmental Mapping and Analysis Program (EnMAP) is a German hyperspectral
satellite mission that was launched in 2021. Its primary goal is to monitor the Earth’s environment,
including vegetation, water bodies, and urban areas, to support a range of environmental applications.

• PRISMA: The Italian Space Agency’s Precursore Iperspettrale della Missione Applicativa (PRISMA)
satellite mission was launched in 2019. Its primary objective is to provide high-resolution hyper-
spectral data for a variety of applications, including agriculture, forestry, and natural resource
management.

• HyspIRI: The Hyperspectral Infrared Imager (HyspIRI) is a proposed NASA mission that would
carry a hyperspectral sensor suite to monitor the Earth’s terrestrial ecosystems, carbon cycle, and
natural hazards. The mission is currently in the planning phase and is expected to launch in the
mid-2020s.

The rapid growth of hyperspectral imagery product availability translates also to the technical challenges
connected with data processing and analysis:

The increased spectral resolution of hyperspectral images allows for more precise identification and analysis
of different materials and features within an image, but also results in a much larger amount of data being
generated. The size of a hyperspectral image can be several times larger than that of a multispectral image
covering the same area, which can present challenges for data storage and processing.

The construction of contiguous spectral coverage between 400 and 2500nm with a spectral sampling interval
(of several to tens of nm) Rast and Painter [2019], such that the adjacent channels overlap, makes the
information carried by the spectral bands strongly correlated and hence partially redundant. This makes pattern
recognition tools for hyperspectral data susceptible to the Hughes phenomenon Hughes [1968]; Theodoridis
and Koutroumbas [2006]; Ma et al. [2013]. The Hughes phenomenon occurs when the classification accuracy
increases gradually in the beginning as the number of spectral bands or dimensions increases but decreases
dramatically when the band number reaches some value. It is a manifestation of the wider phenomenon,
collectively called the ‘curse of dimensionality’ Bellman [1957]; Bishop and Nasrabadi [2006].

The above motivates the use of data reduction techniques for hyperspectral data. In the following, we
investigate the possibility and feasibility of quantum-assisted feature selection and feature extraction methods.

26 Feature selection

Complex datasets, such as the introduced hyperspectral images, may contain much more information than is
actually needed for a specific application. Furthermore, due to the spectrum’s dense band coverage, significant
data redundancy may be present. Consequently, data analysis is laborious and may exhibit undesirable
consequences, such as the Hughes phenomenon or low interpretability.

Feature selection is a common strategy in data analysis to overcome these difficulties. The price to pay is,
however, the high computational cost of the feature selection procedure.

In what follows, we review four possible paths of applying quantum computing methods which promise
to improve the classical feature selection methods. We begin with the possible quantum extensions of the
Recursive Feature Elimination (RFE). This will mainly concern the employed quantum and hybrid Support
Vector Machines (SVM) algorithms. After that, a relation with the quantum kernel methods will be discussed.
Another branch of the methods employs quantum optimization, considered one of the most promising
applications of the NISQ-era quantum computers. Finally, the utility of quantum variational methods will be
discussed.
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26.1 Recursive Feature Elimination (RFE) based on quantum/hybrid SVM

Recursive Feature Elimination (RFE) Guyon et al. [2002] is a systematic feature selection algorithm that
enables the identification of the most important variables within a given dataset. This technique iteratively
eliminates the least significant features and re-calibrates the model with the remaining ones until the optimal
number of features is achieved.

By systematically removing the least relevant features during each iteration, RFE facilitates the identification
of the feature subset that is most adequate to the model’s predictive performance. Consequently, this results
in the development of more effective and precise models, as well as a simplified interpretation of the model’s
outcomes.

RFE can be employed with a diverse range of machine learning models, including linear and logistic
regression, Support Vector Machines (SVM), and random forests, amongst others. This technique can be a
powerful tool to improve the efficiency and effectiveness of predictive models in numerous applications. In
what follows, we will focus on the SVM-based approach to the RFE. The reason for this is that, already in
2014, a promising quantum extension of the SVM algorithm was proposed Rebentrost et al. [2014] — the
QSVM (Quantum Support Vector Machine).

The SVM algorithm consists of two main steps. The first is a calculation of the so-called Kernel function
K(xi,xj), which is a generalization of the scalar product between the data vectors, xi ∈ Rn, where n is the
dimension of the data under consideration. The second step uses the kernel function to solve a system of
equations that determine the position of the hyperplane of the decision (separating the two classes of data).
In the classical version of SVM, the computational complexity of the algorithm is polynomial in both the
number of vectors of the training data (m) and their dimension (n): O(m2(n +m)). It is proven that for
QSVM, the computational complexity reduces to logarithmic in both m and n: O(log nm) Rebentrost et al.
[2014], which is an example of the so-called exponential speedup.

The first step of the QSVM algorithm can be performed using a quantum register with a number of logical
qubits equal to n (which corresponds to the dimension of the data). Therefore, in light of the current and
expected in the near future quantum computers, the method is suitable for multispectral and even hyperspectral
data with dozens of wavebands. Further improvement can be achieved under the dense embedding of the
classical data vector on the quantum register. This may ultimately require log2 n qubits for n hyperspectral
bands. In this limiting case, only eight logical qubits are sufficient to encode 256 spectral bands. Ultimately,
future quantum computers operating on hundreds of noisy physical qubits may allow the direct quantum
kernel function determination for hyperspectral data satellites.

However, the second QSVM step, equivalent to finding the inverse of a matrix of dimension (1+m)×(1+m),
requires using a number of qubits that scales linearly with the number of training data vectors. Given that in
typical cases, the training of the dataset contains up to several hundred thousand data vectors, performing this
step is not possible using NISQ technology. In other words, the NISQ technology will allow one to perform
this step only for very small (m ∼ 101 − 102) training data sets, which is uninteresting from a practical
point of view. Therefore, the application of the full, original QSVM algorithm for the purpose of the RFE
procedure is impractical from the perspective of the NISQ technology. The QSVM-based RFE for the satellite
hyperspectral data may, however, be implemented in the more distant future, say in more than fifteen years.

Earlier, say in 5 years, hybrid methods, in which the first step of the SVM algorithm is quantum-aided,
while the second step utilizes classical computing resources, have a chance to be implemented successfully.
Furthermore, besides the expected reduction of the computational complexity, quantum evaluation of the
kernel function opens up the possibility of improving the classification accuracy and, in consequence, the
selection of the feature. This is because quantum algorithms give rise to a whole new family of kernel functions.
Some of them may outperform the considered classical ones in classification accuracy. Furthermore, they may
turn out to be hard to emulate on classical machines, justifying the use of quantum computers. We discuss the
quantum kernel-based approach in the next subsection.
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26.2 Feature selection based on quantum kernel methods

There are various possible maps from the original data space, say Rn to the Hilbert spaceH = (C2)⊗n
′

in
which a state of n′-qubit quantum register is defined. Let the map, which we call a quantum feature map, be
defined as

x→ |Φ(x)⟩ = ÛΦ(x)|0⟩⊗n
′
, (14)

where |0⟩⊗n′
is an initial state of the quantum register and ÛΦ(x) is the unitary quantum operator that defines

the quantum map.

Therefore, the kernel function is determined as the following square of the amplitude modulus probability:

K(xi,xj) = |⟨Φ(xi)|Φ(xj)⟩|2. (15)

In the 2019 article, Havlíček et al. [2019], a promising proposal for the kernel function has been studied.
The corresponding quantum feature map was given by the operator ÛΦ(x) = (ÛΦ(x)Ĥ

⊗n)d, where Ĥ is
the Hadamard gate and d ∈ N+ is the number of repeats. The operator ÛΦ(x) is given by the following
expression:

ÛΦ(x) = exp


i

∑

S⊆[n]

ϕS(x)Πi∈SẐi


 , (16)

where Ẑi is a Pauli-Z gate, and the functions ϕS(x) ∈ R introduce the data vectors x ∈ Rn into the register.
The map is the so-called ZZ map.

For the data representation given by the operator (16), determining the function of the kernel is a difficult task
(#P -hard) for classical computers.

This requires, in general, operating on 2n-dimensional vectors in the feature space, which, for example, for
hyperspectral data containing n = 100 bands correspond to composite vectors of dimension 2100 ∼ 1030.
This is beyond the capabilities of the current and imaginable future classical supercomputers. On the other
hand, quantum computations require, in this case, a quantum register composed of n = 100 logical qubits and
possibly a few thousand noisy physical qubits, which sounds realistic from the 15-year time perspective. This
justifies approaching the problem from the side of quantum computing, especially in the case of hyperspectral
data (with large n).

However, validating the utility of the map introduced for real-life hyperspectral is currently a challenging task.
This is simply because of the high complexity of the map, which makes it difficult to emulate with classical
HPC. Therefore, some lower-complexity maps have recently been investigated to make the application to
real-world multispectral data possible Miroszewski et al. [2023].

26.3 Feature selection based on quantum optimization

Another approach is to perform feature selection using quantum optimization. Here, one encodes the tasks
into a mathematical optimization problem that can be solved using a quantum computer. In Refs. Otgonbaatar
and Datcu [2021a]; Mücke et al. [2023], a feature selection approach that utilizes the QUBO (Quantum
Unconstrained Binary Optimization) problem and quantum annealing for optimization has been proposed for
processing hyperspectral images (HSIs) and practical datasets. This approach involves mapping the feature
selection problem to a binary optimization problem, where each feature corresponds to a binary variable, and
the objective is to minimize or maximize a particular performance metric, such as precision or accuracy. The
resulting optimization problem can then be solved using a quantum optimization algorithm, such as quantum
annealing or the Quantum Approximate Optimization Algorithm (QAOA).
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Following Ref. Mücke et al. [2023] let us consider labeled dataset D := {(xi, yi), i ∈ [N ]}, where
[N ] = {1, 2, ..., N} is the set of data point indices and xi ∈ Rn − the quantum feature selection is even
performed on HSIs on a D-Wave quantum annealer Otgonbaatar and Datcu [2021a]. Applying the feature
selection procedure reduces the set D to DS := {(xS,i, yi), i ∈ [N ]}, where the feature-selected data points
xS,i are defined so that they lead to a performance comparable to the original classification problem.

The selected features from the original data vector can be indicated by the binary vector X = {X1, ..., Xn} ∈
{0, 1}n, so that Xi = 1 if a given feature is selected and Xi = 0 if it is not. Then the following cost function
can be introduced:

Q(X, α) = XTQ(α)X = −α
n∑

i=1

IiXi + (1− α)
n∑

i,j=1

RijXiXj , (17)

where the parameter α ∈ [0, 1] balances the contribution of the two terms. The first term, where Ii :=
I(Xi, y) ≥ 0, quantifies the importance of a given measure. Here, I(Xi, y) is the mutual information
between the individual features Xi and the class label y. The second is the redundancy term where Rij :=
I(Xi;Xj) ≥ 0 is the mutual information among the individual features. In the matrix notation, the elements
of Q can be written as Qij(α) = Rij − α(Rij + δijIi).

The task is now to find such a configuration of Xi, call it X∗
i , that both the importance and the redundancy

terms are minimized. So, we are looking for:

min
X∈{0,1}n

XTQ(α)X, (18)

and in consequence, the set of the selected features is given by

X∗ = arg min
X∈{0,1}n

XTQ(α)X. (19)

The task introduced above is the QUBO (Quantum Unconstrained Binary Optimization) problem, which
typically is of the NP-hard type. This is because for every Xi, two values of {0, 1} are allowed. In
consequence, for n features, there are 2n configurations to be explored. Therefore, finding the global
minimum requires performing the number of steps that grow exponentially with n. So for the n = 100
hyperspectral bands, the number of configurations to explore is 2100 ∼ 1030 and for n = 100 we have
2200 ∼ 1060. Both numbers are beyond the scope of any current classical computing resources. Nevertheless,
in some cases, not all configurations need to be explored, and classical ergodic algorithms, such as those
based on the Markov chain, can be applied.

The QUBO is known to be related to the problem of finding the ground state of the Heisenberg-type quantum
Hamiltonian:

Ĥ =
∑

<i,j>

aijẐiẐj +
∑

i

biẐi + c, (20)

where Ẑi are the Pauli-Z operators and the summation < i, j > is defined such that it does not repeat over
pairs. The coefficients aij , bi and c can be directly related to the parameters of the original problem defined
by Eq. 17.

There are various approaches to attempting to determine the ground state of the Hamiltonian (20). On the
one hand, the task can be formulated as the quantum annealing problem, which may be implemented on
a quantum annealer, such as the one provided by the D-Wave company. On the other hand, optimization
algorithms that operate on gate-based quantum computers can be utilized. This, in particular, concerns the
QAOA algorithm, and the variational algorithms being a subject of the subsequent subsection.
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26.4 Feature selection based on variational methods

Quantum variational methods play a significant role in the early stage of applications of quantum computing
technologies. It turns out that the approach is NISQ-friendly and may provide an improvement in solving
real-life problems. These algorithms use a quantum computer to find the optimal solution to a given problem
by minimizing a cost function. The cost function is typically defined in terms of the parameters of a quantum
circuit, and the algorithm iteratively updates these parameters until the optimal solution is found. Importantly,
variational methods are typical of the hybrid type. Some of the applications of variational quantum methods
include: quantum chemistry (determination of the ground stats of molecules), machine learning (optimization
of the parameters of machine learningmodels), and quantum error correction (optimization of the parameters
of the quantum error correction codes).

In the context of feature selection, the variational methods can be employed both in the quantum/hybrid RFE
approach and the QUBO problem discussed in the previous subsection.

Concerning the RFE, a concrete proposal for a quantum variational classifier has been presented in Ref.
Havlíček et al. [2019]. Its undoubted advantage is that, unlike the original QSVM method, the number of
qubits in the quantum register is independent of the number of training data m. The approach is based on
the so-called Variational Quantum Classifier (VQC), which uses a variational quantum system to classify a
training set in direct analogy to conventional SVM. In this method, the first step is the same as in QSVM,
but in the second step, instead of matrix inversion, a parametrized quantum circuit Ŵ (θ) is used. Training
consists of minimizing a certain cost function with respect to the parameters of the circuit (given by the vector
θ).

27 Feature extraction

Feature extraction methods take the original input features and transform them into new, usually lower-
dimensional target features while maintaining as much of the informational content of the data as possible
Ding et al. [2012].

27.1 Quantum PCA

Principal Component Analysis (PCA) is an over-century-old technique of dimensionality reduction Pearson
and Lines [1901]. It is typically performed by diagonalizing the covariance matrix of the given data and
keeping the subset of the eigenvectors, which correspond to the largest eigenvalues.

The approach to quantum principal analysis consists of two steps: association of the covariance matrix K
with the density matrices ρ and diagonalization of the resulting density matrix.

Suppose that we have n-dimensional random vectors X = {X1, . . . , Xn}. The entry Kαβ of the covariance
matrix is defined as

Kαβ = cov(Xα, Xβ) = E ((Xα − E(Xα)) (Xβ − E(Xβ))) , (21)

where E denotes the expectation value. Now, for the L2 normalized dataset D = {x(1)α , x
(2)
α , . . . , x

(m)
α },

∑n
α=1

(
x
(i)
α

)2

= 1 one can perform the amplitude encoding Grover [2000]; Grover and Rudolph [2002];

Plesch and Brukner [2011] of each of the m data points x(i) 7→ |x(i)⟩⟨x(i)| = ρ(i). The authors of Gordon
et al. [2022] have noticed that introducing the ensemble average density matrix ρ̄ = E

(
ρ(i)

)
leads to a useful

equivalence
ρ̄αβ = Kαβ + µαµβ , (22)

where µα =
∑m
i=1 x

(i)
α is the mean value of the feature α in the data set. Furthermore, in accordance with

Weyl’s theorem for the eigenvalues of Hermitian matrices, the eigenvalues ofK and ρ̄ are closely related. This
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Figure 23: Projection onto n principal components for PCA and quantum PCA of the MNIST dataset. (a) The
plot shows the median (solid) and upper 90% interval (dotted) infidelity (I) values between the projected state
constructed using n principal components calculated from PCA and quantum PCA. The median and upper
interval is calculated over all 50000 digits. (b) We show how the images are reproduced when using n = 1
to n = 80 principal components from PCA and quantum PCA in the upper and lower rows, respectively.
From Gordon et al. [2022] (CC BY 4.0).

gives a concrete implementation of the covariance matrix preparation for quantum computers and guarantees
the quality of the quantum principal component analysis (qPCA); see Fig. 23.

For the diagonalization of the covariance matrix on quantum computers, one long-term approach and one
near-term approach are presented. In 2014 Lloyd et al. Lloyd et al. [2014] introduced a quantum principal
component analysis (qPCA) algorithm which was supposed to provide an exponential speed-up over PCA for
low-rank covariance matrices. The author of Tang [2021a] noted that the exponential speedup is possible only
with the unjustified assumption of state preparation. With further discussions Cotler et al. [2021] it seems that
one can hope for the speedup for qPCA on classical data, but it will not be exponential. The original qPCA
algorithm was designed for large, fault-tolerant quantum computers, and hence is not suitable near-term
devices. Recently, NISQ-era friendly algorithms, useful for qPCA implementation, were proposed LaRose
et al. [2019]; Cerezo et al. [2022]; Verdon et al. [2019]; Ezzell et al. [2022]; Gordon et al. [2022]. Contrary to
the original qPCA formulation, the variational quantum state diagonalization (VQSD) LaRose et al. [2019]
and variational quantum state eigensolver (VQSE) Cerezo et al. [2022] algorithms require, respectively, only
one or two copies of the density matrices ρ. This makes them much better suited for near-term quantum
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Classical autoencoder Quantum autoencoder

Figure 24: Left: Classical graphical representation of a 6-bit autoencoder with a 3-bit latent space. The map
E encodes a 6-bit input into a 3-bit intermediate state, after which the decoder D attempts to reconstruct the
input bits at the output. The bottleneck is represented by a dashed line. Right: Circuit implementation of a
quantum algorithm inspired by the classical autoencoder on the left.

devices. In Figure 23 the application of qPCA for simulated ten-qubit system in Gordon et al. [2022] is
presented.

27.2 Quantum autoencoders

The classical autoencoder Kramer [1991] is a type of neural network used to learn an efficient representation
of unlabeled data. Its distinct feature is an encoder-decoder architecture. An encoder function E takes the
(l + k) bit input data x and transforms it into a lower-dimensional l bit representation E : x→ x̃, effectively
compressing the information contained in x. A decoder function D recreates the input data from the encoded
representation x̃ → x̂. The typical graphical representation (Figure 24a) of the autoencoder consists of a
convergent neural network with a decreasing number of neurons with consecutive layers, followed by a set
of layers of neural networks growing in width. The narrowest layer in the network, the bottleneck, includes
the representation of data in latent space x̃. During training, an autoencoder tries to minimize the difference
between input data x and output x̂. The trained autoencoder, with the use of an encoding function, allows
for efficient dimensionality reduction or feature extraction of the data. Unlike PCA, autoencoders can learn
non-linear relationships and therefore perform better at compressing data.

Inspired by the erasure of k bits of information in the classical encoder function, the idea of quantum
autoencoders was introduced in Romero et al. [2017]. Now, the input data is stored in l + k qubits and
processed by the variational layers in E . k-qubits are then traced out (indicated by measurement in Figure
24b). The newly prepared k qubits with latent l qubits are then processed with the decoder function D. The
natural task for training the model would be to use the classical optimization of fidelity between input and
output states F (|ψi⟩, ρouti ) = ⟨ψi|ρouti |ψi⟩ to train the model. The authors of Romero et al. [2017] argue that
invoking a reference state and performing a swap test on it and k trash qubits leads (for high fidelities) to the
equivalent optimization task, while training on only the trash state. In the concrete realization (see Figure 25)
of the quantum autoencoder circuit, one initializes l qubits in the latent space, k qubits in the trash space and
for reference state and one auxilliary qubit needed for the swap test.
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Figure 25: Schematic representation of the variational circuit for training a quantum autoencoder proposed by
Romero et al. [2017]. The input state, carrying classical data x is transformed by a parameterized unitary
U(θ⃗). For the computation of the cost function, SWAP test is employed. The quality of the compression of
the initial state is optimized on a classical computer.

28 Sizing quantum machines for feature selection and feature extraction of
hyperspectral imagery data

One of the most promising quantum hardware architectures is the circuit-based model, where quantum
algorithms are implemented as sequences of quantum gates. This architecture allows for the efficient
implementation of quantum feature selection and quantum feature extraction algorithms, such as quantum
SVM-based RFE or quantum PCA. Various hardware implementations of gate-based quantum computers
are currently under development, including superconducting quantum computers, trapped ions quantum
computers, photonic quantum computers, spin qubit quantum computers, or topological quantum computers.

While the most advanced approach is currently the one based on superconducting qubits, it faces numerous
difficulties, such as short coherence times and low interconnectivity of qubits. Consequently, only relatively
shallow quantum circuits can be evaluated using the technology. The allowed scalability of the approach with
the number of qubits partially compensates for this weakness. Nevertheless, because the quantum algorithms
investigated in this Section are expected to utilize deep quantum circuits for real-world hyperspectral data,
applying gate-based superconducting quantum computers may pose a difficulty.

Both the interconnectivity and decoherence properties of qubits can be substantially improved by applying
other techniques, such as those based on trapped ions and photons. While promising, these technologies
face challenges concerning their scalability. Therefore, except in the cases of multispectral rather than
hyperspectral data or low-complexity feature maps, it is rather unlikely that gate-based quantum computers
will be ready to implement successfully the discussed algorithms for real-world hyperspectral data earlier
than in the 15 years time horizon.

Another important architecture is adiabatic quantum computing (quantum annealing) model, which is well-
suited for solving optimization problems. As discussed in Sec. 26.3, adiabatic quantum computers can be
utilized for quantum feature selection by formulating the problem as an optimization task and mapping it
onto the Ising-type model.

The current and expected to develop in 3-5 years time horizon architectures of quantum annealers have a
chance to meet the requirements of real-world feature selection problems. However, adiabatic quantum
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computers, despite their potential, face several limitations. In particular, the requirement of adiabatic evolution
imposes constraints on the execution time and the scalability of the algorithms. The adiabatic process needs to
be slow enough to ensure the system remains in its ground state, which can result in longer computation times
compared to classical methods or other quantum computing models. Furthermore, because the currently most
advanced quantum annealers utilize the superconducting qubits technology, the approach faces challenges
with maintaining coherence and providing a high level of interconnectivity. In consequence, even if potentially
possible to apply to real-world hyperspectral data, superconducting quantum annealers remain difficult to
assess with respect to their accuracy and time performance.

Regarding the feature extraction on universal quantum computers, for a hyperspectral dataset with approxi-
mately 200-300 spectral bands, the amplitude encoding of the ensemble average density matrix ρ̄ requires
the use of 8-qubit registers. In the original implementation of qPCA by Lloyd et al. Lloyd et al. [2014], one
needs to prepare n ∈ O(1/ϵ3) copies of ρ̄ to solve the eigenproblem with an accuracy of ϵ. On the other hand,
the VQSD algorithm by Larose et al. LaRose et al. [2019] requires two copies of ρ̄, resulting in a quantum
architecture consisting of 16 qubits. In the case of VQSE proposed by Cerezo et al., Cerezo et al. [2022], only
one copy of ρ̄ is needed, hence requiring 8 qubits.

In the current implementation of autoencoders proposed by Romero et al. Romero et al. [2017], a single set
of quantum registers is used for the latent space, along with two sets of quantum registers for the trash space
and an additional qubit register for the swap test. This results in a total of l + 2k + 1 qubits. Considering the
amplitude encoding of 8 input qubits, one would require quantum architectures consisting of 10 to 16 qubits.

28.1 Currently

Currently, the most sophisticated opportunities for implementing quantum algorithms in feature selection
and extraction lie within the capabilities of classical emulators of quantum computers. Specifically, these
emulators facilitate the investigation of hybrid feature selection methods for multispectral datasets comprising
several dozens of bands. While the methodology applies amplitude encoding, it also possesses the potential
to accommodate hyperspectral data with hundreds of bands. However, amplitude encoding offers limited
noise control within genuine quantum implementations. Consequently, this approach may not seamlessly
translate to future quantum computing technology.

The computational limitations of emulators pose substantial challenges for predicting the feasibility of hybrid
quantum algorithms, especially those based on variational methods. Indeed, drawing definitive conclusions
about the effectiveness of these hybrid techniques in managing real-world hyperspectral data is an intricate
task, bordering on impossible.

In addition, the existing quantum computers’ opportunities are considerably restricted due to the absence of
practical quantum correction code implementations. Thus, only relatively uncomplicated tasks with limited
practical value can be achieved. An example of this would be hybrid feature selection for low-dimensional (a
few bands) data vectors.

At present, some opportunities are accessible through quantum annealers. This particularly refers to the
feature selection method outlined in Section 26.3. However, there is no evidence yet that currently available
quantum annealers offer a computational advantage.

28.2 3-5 years

Given the relatively short forecast horizon of 3-5 years, significant advancements in quantum computing
capabilities are not expected. Nonetheless, this period may witness the deployment of the initial practical
implementations equipped with quantum error correction codes. This development would pave the way for
the usage of noisy superconducting quantum processors to carry out more complex quantum algorithms.
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In light of our current knowledge, it is anticipated that quantum or hybrid feature selection and extraction for
multispectral data encompassing approximately ten bands could be realized on actual quantum computers.
However, this advancement is not expected to surpass or even match the capabilities of classical computers.

28.3 15 years

The next 15 years hold immense potential for significant advancements compared to the current state of the art.
Notably, the successful implementation of quantum correction codes on superconducting quantum computers
comprising thousands of qubits may pave the way for hybrid and quantum feature selection and extraction,
enabling the utilization of approximately 100 bands. However, it is crucial to emphasize that this does not
guarantee a definitive advantage in terms of time performance or accuracy. There is still limited knowledge
regarding the algorithms employed and the future capabilities of the hardware, making it challenging to draw
conclusive statements in this regard. Nonetheless, certain advantages can be anticipated, e.g., in terms of the
energy consumption of quantum computers when compared to classical computing units. The implementation
of Recursive Feature Elimination (RFE) based on Quantum Support Vector Machine (QSVM), which is
expected to offer exponential speed-up, will possibly exceed the given 15-year time frame.

29 SWOT Analysis

29.1 Strengths

• High level of motivation resulting from the computational intricacy of the underlying problem.

• The availability of real-world datasets for training and testing.

• Documented evidence of exponential speed-up for Recursive Feature Elimination (RFE) based on
Quantum Support Vector Machine (QSVM).

29.2 Weaknesses

• Implementation challenges of the RFE using QSVM due to the required number of logical qubits
being of the order of the size of the training dataset (typically, tens of thousands). This poses
significant difficulties in practical applications.

• Absence of definitive proof showcasing a clear edge for quantum kernel-based methods.

29.3 Opportunities

• Potential to utilize hybrid approaches that require a relatively small number of qubits (of the order
on 102 logical qubits), thereby increasing feasibility.

• Possible advancements pertaining to accuracy levels of selection and feature extraction, alongside
the prospect of reducing computational energy consumption.

29.4 Threats

• Typically, the deep quantum circuits under consideration require long coherence times for execution.
This imposes implementation difficulties on superconducting quantum computers.

• The highly dimensional feature spaces offered in the quantum approach may not be needed in many
relevant scenarios.
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Table 3: Summary of the identified feature selection methods for hyperspectral imagery data.

Method QSVM RFE VQC RFE Quantum optimization
Rebentrost et al. [2014] Havlíček et al. [2019] Otgonbaatar and Datcu [2021a]

Resources high moderate low/moderate
≳ 105 logical qubits ∼ 102 logical qubits ∼ 102 logical qubits

Time horizon >15 years 3-5 years now/3-5 years
Architecture gate-based gate-based annealing/gate-based

quantum hybrid hybrid
Speedup exponential polynomial polynomial/exponential

Table 4: Summary of the identified feature extraction methods for hyperspectral imagery data.

Method qPCA variational qPCA qAutoencoders
Lloyd et al. [2014] Gordon et al. [2022] Romero et al. [2017]

Resources high moderate low/moderate
≳ 103 logical qubits ∼ 102 logical qubits ∼ 101 − 102 logical qubits

Time horizon 15 years 3-5 years 3-5 years
Architecture gate-based gate-based gate-based

quantum hybrid hybrid
Speedup polynomial polynomial polynomial

30 Conclusions

In this Section, a set of quantum and hybrid (classical-quantum) algorithms for feature selection and feature
extraction was presented. The selected set includes long-term and near-term algorithms. The greatest
opportunity for quantum advantage lies in the long-term routines for fault-tolerant quantum computers. These
include the following: Recursive Feature Elimination based on the full Quantum Support Vector Machines,
feature selection based on quantum kernel methods, and original Quantum Principal Component Analysis.
To harness the advantage of these algorithms, long-term technological development of quantum computers
is needed. A key issue is to be able to access a large (∼ 102) number of logical qubits, increase their
coherence time, and improve the precision of the unitary gates used in quantum circuits. Therefore, we
estimate at least a 15-year time horizon for such methods to become available. On the shorter time scale
(5-year horizon), promising candidates for quantum advantage include hybrid algorithms based on variational
architectures. These include feature selection methods based on Variational Quantum Classifiers, quantum
Principal Component Analysis using Variational Quantum State Diagonalization or Variational Quantum
State Eigensolver, and quantum autoencoders. The identified quantum and hybrid approaches to feature
selection have been summarised in Tab. 3, while the identified approaches to feature extraction have been
collected in Tab. 4

The crucial issue in the context of hyperspectral data analysis is the state preparation for the above algorithms.
On the one hand, it is possible to employ an amplitude encoding scheme, which allows one to operate some of
the selected algorithms on the order of 101 qubits. However, this requires operating with high precision on the
quantum states. On the other hand, other encoding schemes require access to at least hundreds of good-quality
qubits. No quantum advantage in practical tasks has been confirmed so far, but we can expect it with the
technical development of quantum computers. Answering whether such an advantage will realistically provide
a net gain for Earth observation is an issue that requires further in-depth studies.

70



Summary

Quantum machines promise to solve a certain class of computational problems faster than conventional
machines. In particular, the hardness of the computational problems can be measured from the perspective
of a computational complexity theory. Hence, this study identifies five intractable practical problems which
can not be efficiently solved on classical computers, but quantum machines promise to find their solutions
faster than their classical counterparts. In addition, we assess and examine distinct quantum machines
including a quantum annealer, a quantum simulator, and universal quantum computers for their practicality.
For our identified EO UCs, we propose climate adaptation digital twin HPC+QC workflow (UCI), uncertainty
quantification for remotely-sensed datasets (UCII) variational quantum algorithms (UCIII), a quantum feature
selection and reduction for large-scale datasets (UCIV). In particular, we analyzed and evaluated the hardness
of our EO UCs based on a theoretical computational complexity theory. In addition, we selected and proposed
some quantum machines for each EO UC by closely sticking to their quantum development roadmap in the
reference time-frame of 3-5 to 15 years, since distinct quantum machines are designed to solve a specific
class and form of hard computational problems.

Difficulty to assess the sizing of quantum computers for applications

Recently, IBM researchers reported in Nature vol. 618 in June 2023 the “Evidence for the utility of quantum
computing before fault tolerance” Kim et al. [2023]. In this work, the authors use a 127 qubit superconducting
quantum processor with 2880 CNOT gates in order to simulate the quantum dynamics of a particular
Hamiltonian. The problem they choose is not useful per se but interesting from the standpoint of study of
complex quantum systems. The exact topology of the problem they choose is exactly mapped to the topology
of the quantum processor itself, which makes the simulation feasible.

The authors compare their results obtained from the quantum processor with a variety of the state-of-the-art
methods that are currently used to perform simulation of the dynamics of similar Hamiltonians using a
classical computer. The IBM team was able to show that using their device and error mitigation techniques,
they are able to obtain results that they could not replicate in simulation. It is important to mention that the
authors provide wall-clock run time for computation. It was approximately 4 h for the first experiment and 9.5
h for the second, but the computation time was dominated by classical processing delays. They estimate that
sampling time from the quantum computer was only roughly 5 min. The paper presented by the IBM team is
interesting and provides insights into the capabilities of currently-existing quantum computing technology.
Interestingly, about two weeks after the publication of the aforementioned paper in Nature two preprints were
published on ArXiv Begušić and Chan [2023]; Tindall et al. [2023] that recreate the calculations performed
by the IBM team using regular commodity computers in roughly 5–7 minutes. This story illustrates how
difficult it is to discuss quantum advantage even for tasks that are purely academic and have no practical
applications. Therefore, currently any sizing of quantum hardware for particular tasks related to practical
applications such as e.g. Earth observation is doomed to fail. As an alternative, we provide recommendations
of studies that we believe should be performed to explore the applicability of future quantum computers for
Earth observations. A research program lasting 3-5 years should allow the scientific community to identify
pathways towards quantum computing advantage for Earth observations. Only after these studies, and similar,
are finalized, a proper assessment of the future research directions can be made.
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Recommendations

The authors recommend ESA to implement a series of actions that will support the development of the
European community and network of institutions and companies studying and implementing quantum
advantage for applications in Earth observation. We recommend investigating deeper ideas presented below.

Idea 1: Hyper-spectral Image segmentation using deep RBMs/QBMs.

Restricted Boltzmann Machines (RBMs) and Deep Boltzmann Machines (DBMs) can be used for the analysis
and processing of Remote Sensing (RS) satellite imagery for Earth Observation (EO) applications. Quantum
annealers are specific purpose quantum computers aiming at solving combinatorial optimization problems.
In the context of Earth observation it is important to determine whether the use of quantum annealers as
co-processors to assist in Machine Learning (ML) training can enhance the analysis and interpretation of
complex EO data sets and expedite RS data processing. Research in this area should provide responses to
the following questions. Can DBMs effectively facilitate semantic segmentation of multispectral images for
EO applications? What is the feasibility of training RBMs and DBMs on satellite imagery using quantum
computing in general and quantum annealers in particular? How does the performance of DBMs compare to
that of deep neural networks trained on classical GPUs when applied to spectral image segmentation tasks? Is
using quantum annealers as co-processors in RS data processing pipelines for ML training a viable solution
for EO applications?

The application of quantum annealing and other modern hardware-assisted techniques for training RBMs is
an active research area. It was demonstrated that Distributed Boltzmann Networks (DBNs) trained on sparse
Ising machines achieve high values of accuracy quickly by employing the Ising machines as samplers from
the Boltzmann distribution. It is postulated that DBNs trained using hardware-assisted methods could become
a viable alternative for DNNs. Quantum annealers have the potential to significantly speed up the training
process compared to the use of standalone HPC resources and improve the quality of learned representations
in generative and classification models. While early studies have demonstrated promising results, the practical
implementation and evaluation of quantum annealing for RBNs in the context of EO image segmentation was
not reported in the literature yet.

Idea 2: Application of probabilistic graphical models for segmentation and post-processing

The goal of the research is to provide limited quantum advantage by designing, implementing and evaluating
algorithms for performing training and inference in the Probabilistic Graphical Models (PGMs) aimed
to be executed at a digital quantum computer and quantum annealers. The advantage provided will be
related to the area of Earth observation. PGMs have been extensively used in EO applications (before the
advent of deep learning) to model spatio-temporal RS data. PGMs augment solution finding process using
diagrammatic representations of probability and their framework offer suitable properties for spatial-temporal
crop classification with phenology.

The goal of this research would be to provide a technical solution for EO applications which require processing
of huge amounts of data. A quantum-based image processing solution which uses dynamic PGMs expressed
in the mathematical language of factor graphs could be proposed. Quantum annealers are specific purpose
quantum computers aiming at approximately solving Quadratic Unconstrained Binary Optimization (QUBO)
problems. While they are able to find low energy solutions for specific QUBO problems quickly their
applicability is limited by the topology of qubit interactions. Many hard QUBO problems require very dense
graphs of interactions between binary variables which require use of complex embeddings of QUBO problems
onto the annealer topology. The requirement to use embeddings effectively reduces the usability of quantum
annealers, since many physical qubits have to be used to represent a single logical qubit. Therefore, it is
unlikely that quantum annealers will find practical applications to solve dense QUBO problems.
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A major effort in applying quantum annealers to particular problems is to find highly efficient ways to encode
a problem onto the device. Such encodings should be informed by both the structure of the problem and the
structure of the hardware graph. While the hardware graphs of future generations of superconducting circuit
based quantum annealers are likely to become more connected in the future, it is likely the connections will be
sparse and have a quasi-planar topology, meaning that all coupled qubits are physically nearby on a 2D plane.

Therefore, it is important to study how use-cases can drive the development of quantum annealers and how to
adapt the connectivity of the quantum annealing hardware to provide advantage for a particular task.

Idea 3: Change detection

We propose calls for projects whose focal point should be the construction of hybrid quantum-classical
machine learning models that can effectively process and analyze satellite imagery. Proposed approaches
should explicitly detail how conventional machine learning techniques, such as autoencoders, will be utilized
for tackling the high-dimensionality commonly associated with satellite imagery. Further, proposals must
delineate how quantum computing structures, including but not limited to D-Wave quantum annealers and
Deep Belief Networks (DBNs), will be harnessed for efficient model training.

We express a specific interest in projects that probe the utilization of VQAs for the training of Quantum Neural
Networks (QNNs) and their subsequent implementation in the detection of changes in Earth observations.
Proposals that convincingly demonstrate how these quantum computing techniques can provide an advantage
over traditional methods in terms of efficiency, precision, and cost-effectiveness will be viewed favourably.

The ultimate objective of the projects should be the aim to unlock the potential of quantum computing to create
robust and efficient approaches to change detection in Earth observations. Applications that show promise in
delivering real-world impact, such as expedited response times to natural disasters, enhanced accuracy in
climate change monitoring, and superior land-use classification techniques, are strongly encouraged.

These calls should be opened to applications from consortia that bring together academic institutions and
startup companies eager to pioneer in the quantum computing field. Applicants should be able to demonstrate
a strong balance between academic rigor, innovative ideation, and the agility and speed of a startup in
prototyping and scaling solutions. This initiative presents a prime opportunity to push the frontiers of quantum
computing applications and contribute to the evolution of more sustainable and resilient Earth observation
systems.

Idea 4: Application of physics inspired simulated bifurcation, and other hybrid algorithms combined
with quantum annealers for EO

In the context of Earth Observation (EO), combining simulated bifurcation and, for instance, quantum
annealing algorithms can lead to improved accuracy and efficiency in solving combinatorial problems.
Simulated bifurcation is a classical optimization algorithm that uses a perturbation approach to find the
optimal solution. On the other hand, quantum annealing algorithms use quantum mechanics to search for
the optimal solution of an optimization problem. The idea behind combining these two algorithms is to use
simulated bifurcation to pre-process the data and provide initializations for the quantum annealer. This can
help to reduce the search space and make the overall computation more efficient. One can also approach the
problem by searching iteratively in an alternating manner, using both quantum and classical solvers.

Yet another way to combine these algorithms is to use the simulated bifurcation algorithm to identify regions
of the search space that have a high probability of containing the optimal solution. These regions can then be
used to define the initial state of the quantum annealer, which will then search for the optimal solution using
its quantum properties.
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For example, in EO, this approach can be used for land cover classification, where the algorithm can combine
high-resolution LiDAR data with low-resolution satellite imagery to accurately classify land cover types. The
simulated bifurcation algorithm can be used to identify regions of interest in the LiDAR data that are likely
to correspond to a specific land cover type, which can then be used to initialize the quantum annealer. The
quantum annealer can then search for the optimal solution, which corresponds to the optimal classification of
land cover types in the satellite imagery.

Overall, the combination of simulated bifurcation and quantum annealing algorithms in EO can help to
improve the accuracy and efficiency of data analysis, particularly in problems that involve complex optimiza-
tion challenges. By combining these algorithms, researchers can leverage the benefits of both classical and
quantum computing to arrive at better solutions for challenging EO problems.

The hardware necessary for combining simulated bifurcation and quantum annealing algorithms in the context
of Earth Observation would include both classical and quantum computing hardware. Classical computing
hardware includes a high-performance server or cluster with significant computing power and memory.
Simulated bifurcation algorithms are computationally intensive and require a lot of computational resources,
especially for large datasets. Quantum computing hardware includes a quantum annealer, such as D-Wave
Systems' quantum annealer, which can perform optimization problems using quantum mechanics.
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