

SOIL MOISTURE REMOTE SENSING

Bernhard Raml and Wouter Dorigo

26.09.2023

ESA UNCLASSIFIED – For ESA Official Use Only

- Physical basis
- **Retrieval methods**
- Satellite data sources
- Climate Data Records
- Validation and Quality Assurance
- Applications

Physical basis and retrieval methods

Approaches to Remote Sensing of Soil Moisture

Visible to shortwave infrared $(0.4 - 3 \mu m)$

Change of "colour"

Water absorption bands at 1.4, 1.9 and 2.7 μ m

Thermal Infrared (7-15 µm)

Indirect assessment of soil moisture through its effect on the surface energy balance (temperature, thermal inertia, etc.)

+ THE EUROPEAN SPACE AGENCY

Active Microwave Sensors

Create their own electromagnetic energy

Observable: Backscattering coefficient σ^{0}

a measure of the reflectivity of the Earth surface

Sensors

Altimeters

Side-looking

Real aperture radar

Scatterometer (SCAT)

Synthetic Aperture Radar (SAR)

Sensitive to roughness and vegetation

High spatial resolution possibility through SAR

Sentinel-1 CSAR

🔚 🔜 📕 📕 🔚 🔚 🔚 🛑 🎯 🕨 📕 👯 📲 🕂 📟 🔤 🖷 🍁 🔹 + The European space age

Passive Microwave Sensors

Record emitted energy from the Earth surface

Observable: Brightness temperature

 $T_B = eT_s$, where e is the emissivity and T_s is the surface temperature

Sensors

Microwave radiometers

Dependent on land surface temperature Less sensitive to structural effects

Linear relation for soil moisture?

🗯 🔜 💵 🔚 🔜 🖛 🕂 🛛 🔚 🔚 🔜 📲 🔚 🔤 📥 🚳 🍉 📲 🚼 🛃 📾 💩 📾 💌 👘 🔶 THE EUROP

· C C Sa

Soil Moisture in %

Active and Passive Sensing of Soil Moisture

Kirchhoff's law: e = 1 - r where r is the reflectivity

· C CS

Soil Contribution

Soil scattering and emission is principally driven by

- Soil dielectric constant
 - Soil moisture
 - Texture

Behari (2005) Microwave dielectric behaviour of wet soils, Springer, 164 p.

Linear relation for soil moisture?

·ees

Soil Contribution

Soil scattering and emission is principally driven by

- Soil dielectric constant
 - Soil moisture
 - Texture
- Soil surface "roughness"
 - Relative to wavelength
 - Dependent on soil moisture

Example for a Vegetated Surface

$$\sigma^{\circ} = \sigma^{\circ}_{Surface} + \sigma^{\circ}_{Volume} + \sigma^{\circ}_{Interaction}$$

Graphic by M. Vreugdenhil, TU Wien

Vegetation Optical Depth

Parsimonious Models - Water Cloud Model

Water cloud model ($\omega - \tau$ model)

$$\sigma^{\circ}(\theta) = \sigma^{\circ}{}_{s}(\theta)e^{\frac{-2\tau}{\cos\theta}} + \omega\cos\theta\left(1 - e^{\frac{-2\tau}{\cos\theta}}\right)$$

 $k_s = N\sigma_s$ $k_e = N\sigma_e$

 $\omega = \frac{k_s}{k_e}$ Single Scattering Albedo $\tau = ked$ Vegetation Optical Depth

Graphic by M. Vreugdenhil, TU Wien

· 💻 💶 💵 🚛 💳 🕂 🛛 🖺 🔚 🎞 🖏 🔚 🚍 🛶 🔯 🍉 💵 💥 🚼 🖬 🚍 📾 త 🕍 👘

·ees

Parsimonious Models - Water Cloud Model

$$\sigma^{\circ}(\theta) = \sigma^{\circ}{}_{s}(\theta)e^{\frac{-2\tau}{\cos\theta}} + \omega\cos\theta\left(1 - e^{\frac{-2\tau}{\cos\theta}}\right)$$

$$\sigma^{\circ}(\theta) = \left(\frac{k_s}{2ke}\right) \left[1 - e^{-\frac{2ked}{\cos\theta}}\right] \cos\theta + \sigma^{\circ}{}_{s}(\theta)e^{-\frac{2ked}{\cos\theta}}$$

$$\sigma^{\circ}{}_{s} = ae^{bm_{v}}$$

$$\sigma^{\circ}(\theta) = \left(\frac{k_s}{2ke}\right) \left[1 - e^{-\frac{2ked}{\cos\theta}}\right] \cos\theta + a\cos\theta e^{bm_v - \frac{2ked}{\cos\theta}}$$

E EUROPEAN SPACE AGENCY

15

· e esa

Land Parameter Retrieval Method

Nonlinear iterative forward modelling procedure

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 8, AUGUST 2001

A Methodology for Surface Soil Moisture and Vegetation Optical Depth Retrieval Using the Microwave Polarization Difference Index

Manfred Owe, Richard de Jeu, and Jeffrey Walker

$$T_{b} = (e_{r}T_{s})e^{\frac{-\tau}{\cos\theta}} + (1-\omega)T_{c}\left(1-e^{\frac{-\tau}{\cos\theta}}\right) + (1-\omega)T_{c}\left(1-e^{\frac{-\tau}{\cos\theta}}\right)(1-er)e^{\frac{\tau}{\cos\theta}}$$

Single scattering albedo and temperature are known

Optimizing transmissivity Γ = transmissivity = $e^{-\tau/cosu}$ and emissivity e_r

Dielectric mixing model to obtain soil moisture from emissivity

Retrieval Algorithms

Changes in soil moisture shift curve

- Changes in vegetation change slope
- Vegetation attenuation and contribution are dependent on incident angle

At certain cross-over angles vegetation attenuation and contribution balance out

Incidence Angle θ (deg)

Retrieval Algorithms

Change detection method – Active systems

Figure: Vreugdenhil et al., 2016

18

CLS

• (2)

Where do retrievals go wrong?

Low signal-to-noise ratio (known from error propagation)

- Vegetation
- Mountainous regions
- Urban areas

Where does the model fail?

- Frozen ground
- Snow cover
- Water surfaces

Known issues

- Changes in land cover (urban sprawl, deforestation, etc.)
- Radio frequency interference
- Sub-surface soil scattering

Graphics by S. Hahn, TU Wien

Satellite Data Sources

Microwave Remote Sensing Satellites

Active and Passive Microwave Missions

Operational Soil Moisture Products

	Temp.	Temp.		Spatial	Spatial		
Satellite / Product	Cov.	res.	Latency	sampling	coverage	Organisation	Access
ESA CCI SSM	1978-	1-2 d	Year	0.25°	Global	<u>ESA</u>	Free
C3S SSM	1978	10 d	10d	0.25°	Global	<u>Copernicus</u>	Free
H SAF ASCAT SSM						EUMETSAT H	
CDR	2007-	1-2 d	Year	12.5 km	Global	<u>SAF</u>	Free
H SAF ASCAT SSM						<u>EUMETSAT H</u>	
NRT	2007-	1-2 d	1 d	12.5 km	Global	SAF	Free
CGLS ASCAT SWI	2007-	Daily	3 d	0.1°	Global	CGLS	Free
SMOS L2 SSM	2010-	1-2 d	1 d	36 km	Global	<u>ESA</u>	Free
SMAP L3 SSM	2015-	1-2 d	1 d	36 km	Global	NASA	Free
SMAP L4 RZSM	2015-	Daily	7 d	9 km	Global	<u>NASA</u>	Free
CGLS S-1 SSM	2015-	3-24 d	1 d	0.5 km	Europe	<u>CGLS</u>	Free
CGLS SCATSAR SWI	2015-	1-2 d	3 d	0.5 km	Europe	<u>CGLS</u>	Free
VanderSat	2002-	Daily		100m	request	Planet	Paid

23

European C-Band Scatterometer Series

AMI Scatterometer

Frequency: 5.3 GHz Polarisation: VV

Resolution: 50 km Daily coverage: <40%

Satellites

ERS-1: 1991-2000 ERS-2: 1995-2011

METOP ASCAT

Frequency: 5.255 GHz Polarisation: VV

Resolution: 25 km Daily coverage: 82%

Satellites METOP-A: 2006

METOP-B: 2012 METOP-C: 2018

METOP-SG SCA

Frequency: 5.355 GHz Polarisation: VV + VH + HH

Resolution: ~12.5 km Daily coverage: ~88%

Satellites METOP-SG-B1: 2022 METOP-SG-B2: 2030

ASCAT Measurement Concept

Multiple-viewing directions through aft- mid- and fore-beam

Advantageous for slope estimation, because many more observations from different angles

Can also estimate curvature, resulting in more accurate incident angle normalisation

ASCAT NRT Surface Soil Moisture

NRT

Latency 2 hours

EUMETSAT HSAF

2007 – now

12.5km

Sub-daily

https://hsaf.meteoam.it/Products/ProductsList?type=soil_moisture

Sentinel-1 – A Game Changer

Sentinel-1 – A Game Changer

· e e sa

C-band SAR satellite

High spatio-temporal coverage

- Spatial resolution 20-80 m
- Temporal resolution < 3 days over Europe and Canada with 2 satellites

Field Scale SSM

· e esa

- Field scale SSM very complex
- Mostly driven by land cover
- Many assumptions of change detection or other models fail
- Failure becomes more prominent at higher resolution

Retrieval Algorithm – Change Detection Method

Figure: Bauer-Marschallinger et al., 2018

30

· C CS

Copernicus Global Land Service

·eesa

Copernicus Global Land 1 km Sentinel-1 SSM for Europe 1 km ASCAT/Sentinel-1 SWI data for Europe

NRT **Daily Latency 24-48 hours** 2015 – now

500m

1-4 days

Sentinel-1 Soil Moisture

· e esa

a) Drought: Italy Summer 2017 Sentinel-1 SSM Monthly Mean 2017 July

 Surface Soil Moisture [%]
 Mask / No Data
 Outline Umbria

 0
 25
 50
 75
 100

b) Rainfall Event: Po Valley 2017 July 11 Observed Cumulative Rainfall Sentine

2017 July 11 | 0-24h

Sentinel-1 SSM (single observations) 2017 July 10 | 05:18

2017 July 11 | 17:04

Surface Soil Moisture [%] 0 25 50 75 100

Bauer-Marschallinger et al., 2018, Towards Global Soil Moisture Monitoring with Sentinel-1: Harnessing Assets and Overcoming Obstacles", in IEEE Transactions on Geoscience and Remote Sensing

Sentinel-1 Soil Moisture & Precipitation Radar

Graphic by B. Bauer-Marschallinger, TU Wien

*

33

· C CS

Limitations & Improvements – Vegetation Biases

Retrieval algorithm currently does not take vegetation dynamics into account.

Vegetation density and water content unknown.

Potential improvements?

- Model vegetation attenuation using radiative transfer models such as RT1 (see R. Quast et al., 2023).
- Integrate VH-polarised data.
- Separate seasonal calibration parameters.

Graphic by B. Bauer-Marschallinger, TU Wien

· C CS

Limitations & Improvements – Subsurface Scattering

Backscatter correlation to ERA5-Land Soil Moisture – Horn of Africa

⇒ THE EUROPEAN SPACE AGENCY

·ees

Climate Data Record

ESA CCI Soil Moisture

ESA CCI Soil Moisture as a successful response to the need for independent, consistent, observation-based and multi-decadal climate data records, having:

- 12000+ registered users
- 100+ publications per year
- Benchmark dataset in BAMS State of the Climate

· ees

Development of the Climate Data Record

· C CS

Scientific Evolution – general objectives

Extension, increase robustness by adding and updating satellites

Consistency, improve merging and calibration on all levels

Model independency, remove impact from LSM where possible

Skill, best reflect actual conditions by improving retrieval algorithms

Understand, both the strengths and weaknesses of the datasets

C3S Soil Moisture (C3S)

- NRT implementation of CCI methodology
- updated every 10 days
- Latency 10 days
- 1978 now
- 0.25°
- daily, dekadal, monthly

Annual 2019 COMBINED SM Anomalies (v201812, 1991-2010 climatology)

40

· C CS

Validation and Quality Assurance

Quality Assurance of EO SM Products

• esa

Estimating systematic and random errors through analytical comparison to reference data

Validation (or better: Evaluation) can be done using:

- Field campaigns
- In situ networks
- Model data
- Satellite products

Common metrics:

- Pearson correlation coefficient
- Unbiased Root Mean Square Difference

 Remote Sensing of Environment 244 (2020) 111806

 Contents lists available at ScienceDirect

 Remote Sensing of Environment

 journal homepage: www.elsevier.com/locate/rse

Review

Validation practices for satellite soil moisture retrievals: What are (the) errors?

A. Gruber^{a,*}, G. De Lannoy^a, C. Albergel^b, A. Al-Yaari^c, L. Brocca^d, J.-C. Calvet^b, A. Colliander^e, M. Cosh^f, W. Crow^f, W. Dorigo^g, C. Draper^h, M. Hirschiⁱ, Y. Kerr^j, A. Konings^k, W. Lahoz^l, K. McColl^m, C. Montzkaⁿ, J. Muñoz-Sabater^o, J. Peng^p, R. Reichle^q, P. Richaume^j, C. Rüdiger^r, T. Scanlon^g, R. van der Schalie^s, J.-P. Wigneron^t, W. Wagner^g

Quality Assurance for Soil Moisture (QA4SM)

🗯 🔜 📲 🔚 🔤 💶 🕂 📲 🔚 🔚 🔚 🔚 🔚 🔚 🔚 🔚 🔤 🛶 🚺 🕨 👫 📲 🕂 📰 📾 💩 🏜 💓 🔹 材

Quality Assurance for Soil Moisture (QA4SM)

Using http://qa4sm.eu

QA4SM Validation Service

• (2)

Correlation (Pearson) of the C3S v201912 COMBINED product with GLDAS v2.1 (covering the time period 2000-01-01 to 2019-12-31)

pytesmo a Python Toolbox for the Evaluation of Soil Moisture Observations

International Soil Moisture Network

https://ismn.earth

e in the European space agent in the European space agent

International Soil Moisture Network

Dataviewer Station: Tondikiboro from: 2017/12/31 to: 2018/12/31

*

47

· C CS

Representativeness of In Situ Data?

Soil moisture can vary within one field with the same land cover Temporal stability concept

48

· eesa

International Soil Moisture Network

- Keeping flags from provider (rarely provided)
- quality flag added to each measurement (CEOP standards)

Flag category	Flag values	Definition
С	C01 - C03	Threshold based flags for all variables used in the ISMN (soil moisture, soil temperature, temperature air, etc.)
D	D01 - D10	Questionable /dubious
Μ		Parameter value missing OR derived parameter can not be computed
G		Good

1) Geophysical Dynamic Range

2) Geophysical Consistency

3) Spectrum Based

Validation with In Situ Soil Moisture Data over HOAL

CRNS: Cosmic Ray Neutron Sensor HOAL: Catchment average of 31 TDT measurements ASCAT: 25 km ASCAT soil moisture retrievals (yellow) S-1: 1 km Sentinel-1 soil moisture retrievals

Hydrological Open Air Laboratory (HOAL) in Petzenkirchen, Austria

Vienna Doctoral Programme on Water Resource Systems • **CICKS**

Examples and Applications

European State of the Climate 2021-C3S

· 30 · 25 · 20

°C

Reference period: 1991-2020, Data source: ERA5, Credit: C3S/ECMWF

Climate

Change Service

2021 mean soil moisture anomaly

- 0

mm/day

Anomalies of modelled temperature and precipitation, and satellite soil moisture anomalies for 2021.

http://climate.copernicus.eu/

Drought Monitoring

droughtwatch.eu

0

DriDanube

Danube Transnational Programme

53

Drought Monitoring

*

Drought Monitoring

Digital Twin Earth

⋒ ? -

DTE HYDROLOGY

What-if scenario for flood risk assessment

The "what-if scenario for flood risk assessment" provides the data over the **Po river**'s basin for 25 initial soil moisture conditions and 29 cumulated precipitation events. The map shows the selected initial conditions (soil moisture at the surface, precipitation at the top level) and respective alerts for 6 stations. The green **•** markers represent low alert (0–500), the yellow **•** ones represent medium alert (501–1000) and the red **•** ones represent high alert (1001+).

The hydrograph displays the ensemble of river discharge on the station of **Borgoforte**. To switch between stations click on the markers on the map.

+

To change the initial conditions edit the values in the "Soil moisture mean" and/or the "Precipitation mean" fields.

*

Sentinel-1 for Irrigation Monitoring

Jacopo Dari – tomorrow

CUMULATED IRRIGATION AMOUNTS MAY-SEP 2019

ROPEAN SPACE AGENCY

Assimilation into discharge model Importance of temporal sampling

Discharge and improvements of statistics for two catchments in Umbria, Italy. Azimi et al., 2020 JoH.

*

• 🕒

Landslide Monitoring

Torgiovannetto Landslide in Central Italy

Jacopo Dari – Thursday

Landslide Monitoring

Comparison between observed (circles) and estimated (triangles) crack aperture of the Torgiovannetto Landslide in Central Italy from the beginning to the end of the selected rainfall events.

Brocca et al. (2012) Improving Landslide Forecasting Using ASCAT-Derived Soil Moisture Data: A Case Study of the Torgiovannetto Landslide in Central Italy, Remote Sensing, 4(5), 1232-1244.

60

· ees

SM2RAIN ASCAT Daily Rainfall Data

Freely available @ Zenodo https://zenodo.org/record/2591215

DOI 10.5281/zenodo.2591215 Brocca et al. (2019) SM2RAIN-ASCAT (2007–2018): global daily satellite rainfall from ASCAT soil moisture, Earth Syst. Sci. Data, 2019

Istituto di Ricerca per la Protezione Idrogeologica

SM2Rain ASCAT vs GPM vs GPCC

Best performing rainfall product based on the results of a triple collocation (random error) analysis according to Brocca et al. (2019).

- GPCC = gauge-based Global Precipitation Climatology Centre data set
- GPM = Integrated Multi-Satellite Retrievals for Global Precipitation Measurement

Istituto di Ricerca per la Protezione Idrogeologica

Mybinder:

https://mybinder.org/v2/gh/pstradio/esa_ltc_materials/ltc_2023?labpath=lecture1_soil_moisture.ipynb

- Read and analyze CGLS Sentinel-1 and C3S soil moisture data
- Trend analysis
- ISMN comparison and validation

Thank you for your attention!

