

Space-related activities in Poland

Future geodetic ESA missions: GENESIS, Moonlight, Galileo II

Krzysztof Sośnica

25.09.2023, Institute of Geodesy and Geoinformatics, UPWr

ESA UNCLASSIFIED – For ESA Official Use Only

Biography

 University of Bern (Switzerland), Astronomical Institute, 2010-2015

 Wrocław University of Environmental and Life Sciences (Poland), Institute of Geodesy and Geoinformatics, since 2014

 European Space Agency, ESA GNSS Science Advisory Committee (France), since 2023

D UNIVERSITÄT BERN

Table of content

2. Galileo I & II and its contribution to Geodesy

3. Moonlight - "GPS on the Moon"

GENESIS

GENESIS

Satellite Laser Ranging (SLR)

Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS)

Very Long Baseline Interferometry (VLBI)

Global Navigation Satellite Systems (GNSS)

GENESIS

- To achieve the goals of the Global Geodetic Observing System (1 mm and 0.1 mm/y for the reference frame accuracy and stability) the better co-location of geodetic techqniques is needed:
 - Global Navigation Satellite System (GNSS),
 - Very Long Baseline Interferometry (VLBI),
 - □ Satellite Laser Ranging (SLR),
 - Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS)

Fundamental advantage of GENESIS-1 is complementary, highly accurate co-location of all four space geodetic techniques in space, on the same satellite platform.

GENESIS – simulations for orbit and clocks

Mean satellite clock errors for orbital plane

· eesa

GENESIS GNSS Observations

Observations from both antennas

Observations from zenith antenna

Observations from nadir antenna

GENESIS antenna error pattern

of

· (2)

CLS

Satellite

Impact of GENESIS on Galileo orbit parameters

- GENESIS and Galileo joint orbit&clock determination improves Galileo orbits and satellite clocks. The radial orbit error of Galileo is improved from 14 mm (Galileo-only), 9 mm (Galileo+zenith), 8 mm (Galileo+nadir), to 7 mm (Galileo+zenith+nadir GENESIS observations).
- GENESIS nadir GNSS antenna has higher impact on the solution than zenith GNSS antenna despite providing data of lower quality.
- Although zenith and nadir GNSS antennas favor different orbital planes (plane A and place C, respectively) it does not substantially impact on the mean results for each orbital plane.

• CICK

Galileo & Geodesy

- Satellite Laser Ranging (SLR) retroreflectors onboard (as opposed to GPS)
- Metadata for Galileo allow for generation a priori orbit models (box-wing models)
- Absolute antenna calibrations provided for all satellites
- Weak resonance with Earth rotation (17:10) allow for the separation between tidal signals (diurnal, semi-diurnal, and terdiurnal), orbital errors, and multipath (impossible in the GPS system)
- High-quality atomic clocks

ITRF2020 – Galileo orbits

International Terrestrial Reference Frame ITRF2020 contains, for the first time, GPS + GLONASS + Galileo observations.

Antenna calibrations for Galileo allow for the scale realization, however, the final scale of the reference frame (ITRF2020) was based on SLR+VLBI, whereas DTRF2020 (DGFI-TUM realization of ITRF) uses Galileo+VLBI.

Contribution of International GNSS Service (IGS) Analysis Centers to the ITRF2020 realization (the 3rd IGS reprocessing campaign).

•

C

SLR validation of Galileo orbits

Mean offsets of SLR residuals [mm]

 GAL FOC:
 13 mm (ESA) 14 mm (IGS)

 GAL FOCe:
 14 mm (ESA) 13 mm (IGS)

 GAL IOV:
 15 mm (ESA) 16 mm (IGS)

 GLO-M:
 19 mm (ESA) 20 mm (IGS)

 GLO-K1B:
 17 mm (TUG) 17 mm (IGS)

Orbit modeling issues - searching for patterns in SLR residuals (Galileo FOC)

SLR Validation of the combined orbits and individual ACs

Searching for patterns in SLR residuals in different

satellite-Sun-Earth geometry

- SLR residuals as a function of β and argument of latitude of the satellite with respect to the argument of the latitude of the Sun (Δu),
- SLR residuals as a function of elongation angle (ε)

Possibilities to study SLR-related issues -Satellite signature effect

Satellite-Sun-Earth geometry

·ees

GNSS+SLR combinations – removing systematic patterns

GNSS+SLR combinations – removing systematic patterns

18

GNSS+SLR combinations – removing systematic patterns

19

Orbit modeling issues - searching for patterns in SLR residuals (Galileo FOC)

Orbit modeling issues - searching for patterns in SLR residuals (Galileo IOV)

Integration of SLR and GNSS onboard Galileo (GNSS)

3D local tie reconstructed based on space tie onboard Ganleo

Sub-daily Precise Point Positioning (PPP) solutions

•eesa

- Stacked periodogram from 13 stations
- Series shifted along y-axis Signals above "0" – Insertion of systemspecific artifacts Signals below "0" – Reduction of GPS artifacts

Sub-daily Precise Point Positioning (PPP) solutions

- Stacked periodogram from 13 stations
- Series shifted along y-axis Signals above "0" – Insertion of systemspecific artifacts Signals below "0" – Reduction of GPS artifacts
- Signals at the orbital periods specific for each system
- Using-multi GNSS reduces the <u>spuriously</u> <u>large GPS signals</u> at the harmonics of sidereal day

Zajdel R., Kaźmierski K., Sośnica K. (2022) *Orbital artifacts in multi-GNSS Precise Point Positioning time series.* Journal of Geophysical Research: Solid Earth,

CK

•

Galileo – I & II generation

- Galileo I generation launch of 10 satellites between January 2025 and the end of 2026
- High Accuracy Service (HAS) launched in early 2023
- 16 satellites transmit I/NAV (all by mid-2023)
- 4 billion users
- Galileo II generation launch from 2026 (Airbus) and 2025 (TAS) with clocks: 2 x PHM, 2 x RAF, 2 x upgraded, 1 x experimental

LEO PNT (Positioning-Navigation-Timing)

- Constellation in LEO orbit supporting GNSS
- Cheap clocks, small satellites
- A large number of satellites,
- first tests soon
- Probable altitude: 550-600 km

· CICS

Moonlight

Moonlight

- Navigation and communication system for the Moon
- 400 planned missions to the Moon by 2030 (in 2022 there were 250)
- Recent Japanese&Russian mission landing failures
- China will invest \$3 trillions in lunar missions by 2030
- Mission design completed for Moonlight: 3-4 lunar orbiters

Sośnica, K., Zajdel, R., Bury, G., Di Benedetto, M., Durante, D., Sesta, A., ... & Iess, L. (2023). *Precise orbits for the lunar navigation system: challenges in the modeling of perturbing forces and broadcast orbit representation* (No. EGU23-5575). Copernicus Meetings. <u>https://doi.org/10.5194/egusphere-egu23-5575</u>

ESA Roadmap

Development

STEP 1: LUNAR PATHFINDER

Low-rate satellite communications service + Moon GNSS Receiver

High-data rate satellite communications and navigation service

Pathfinder Service

+ THE EUROPEAN SPACE AGENCY

Satellite navigation system for the Moon

ESA Project AO/1-10712/21/NL/CRS

Fundamental techniques, models and algorithms for a Lunar Radio Navigation system

Consortium:

- Sapienza Aerospace Research Centre CRAS Sapienza Università di Roma, Italy
- Centre National de Recherche Scientifique CNRS delegation Côte d'Azur Campus, Nice, France
- Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Argotec S.r.I., Turin, Italy
- Leonardo S.p.A., Italy

Operational Phase	Earth-Moon Transfer Orbit	Lunar Orbit	Descent, Landing & Ascent	South Pole Lunar surface	Full lunar surface	Integrity
Phase 1: GNSS-only and high-sensitive receivers						
Phase 2: GNSS augmented with LCNS						
Phase 3: Full lunar PNT constellation						
TABLE 2 Expecte of the Lunar PN	d level of perfo IT roadmap pha	rmance th ases	at could be ac	hieved throug	gh each one	
	Low performance level			High performance level		

Reference frames on the Moon

- The Moon has a "natural" meridian zero (unlike the Earth)
- No troposphere or ionosphere
- No non-tidal mass transport (hydrology, oceans, atmosphere)
- The only tides are those of the solid crust
- The gravitational field is better known than on Earth (GRAIL orbited at an altitude of up to 17 km)
- Transformations between celestial and lunar frames with centimeter accuracy thanks to, e.g., INPOP ephemerides and Lunar Laser Ranging data

🔶 🔶 🔶 THE EUROPEAN SPACE AGE)

· CICS

Lunar retroreflectors

So far there are 5 retroreflectors for LLR: Apollo 11, 14, 15, Luna 17 and 21.

The Moon moves away from the Earth by 3.8 cm every year.

Future retros to install in 2024.

· e e sa

Orbit perturbations: design of the broadcast message

Force	Median (m/s²)				
Gravitational					
Moon attraction GM _M	6.5·10 ⁻²				
Earth attraction GM _E	1.2·10 ⁻⁴				
Moon potential	1.7·10 ⁻⁶				
Sun attraction GM _S	8.3·10 ⁻⁷				
Earth C ₂₀	1.3·10 ⁻⁹				
Sun/Earth tides	2.5·10 ⁻⁹				
Schwarzschild	2.2·10 ⁻¹²				
Jupiter/Venus/Mars	9.3·10 ⁻¹³				
Non-gravitational					
Direct solar radiation pressure	1.5·10 ⁻⁶				
Antenna thrust (100W)	8.3·10 ⁻⁹				
Albedo/IR	4.8·10 ⁻⁹				

*

33

·ees

Lunar Gravity

Variable densities of the lunar lithosphere results in substantial differences between the topography and gravity field.

Design of the broadcast message

10 Chebyshev coefficients are fine to get orbit quality better than 1 m with 1h windows. Maximum residuals do not exceed 60 cm.

 $T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$, with $T_0 = 1$, $T_1 = x$

= ___ 🚺 📲 💶 🛶 📲 🔚 🔚 🔚 🔚 🚍 👫 🔚 🔚 🔚 🔚 🔚 🖛 🚱

•

Thank you for your attention!

Krzysztof Sośnica

Institute of Geodesy and Geoinformatics, UPWr

krzysztof.sosnica@upwr.edu.pl

Design of the broadcast message – updates every 1h in periselene

- Increasing the frequency of the updates of the navigation message in periselene leads to better accuracy of the broadcast message
- Periselene assumption: (v_{max}>1000 m/s)
- With 11 coefficients:
 q.75 = 0.016 m
 q.95 = 0.032 m

MOON | 2018-01-03 00:01:00 : 2018-01-12 23:59:00 | Coefs = 11 | Windows = 2.5H/1.0H

•

CJ