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How to quantify vegetation properties?

2/482/48



Today we will learn: 
Semi-automated mapping of vegetation properties from optical RS data

• What are biophysical parameters?

• Why is it important to quantify them?

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(nm)

D
ir
e
c
ti
o
n
a
l 
re

fl
e
c
ta

n
c
e

Cab

la
i

1.1609 20.827340.493860.160279.8267

0.076

0.84

1.6

2.4

3.1

3.9

4.7

5.5

6.2

7

3/59



The problem:
Biophysical parameter retrieval is an essential step in modeling the 
processes occurring on Earth and the interactions with the 
atmosphere.

The analysis can be done at local or global scales by looking at bio-geo-
chemical cycles, atmospheric situations, ocean/river/ice states, and 
vegetation dynamics. 

Main parameters: crop yield, biomass, leaf area coverage, chlorophyll
content, fraction vegetation cover, GPP,…. 

Land/vegetation parameters cannot be estimated directly from optical 
RS data. A model is required!

The objective: Transform measurements into biophysical parameter 
estimates.

The data:

• Input data: satellite/airborne spectra, in situ (field) radiometers, or 
simulated spectra by RTMs

• Output results: estimation of a biophysical parameter
4/59



Retrieval of biophysical parameters  from Remote 
Sensing (RS) data always occurs through a model, e.g. 
through statistical models or through inversion of 
physically-based radiative transfer models (RTM).

Physically based RTM approaches

Introduction retrieval biophysical parameters

RTM

Design

Retrieval

Evaluation

VIs

Statistical approaches
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Verrelst, J et al. (2019). Quantifying vegetation biophysical variables from imaging spectroscopy data: a review on retrieval methods. Surveys in Geophysics, 40(3), 589-629. 6/59



Model

Remote sensing image
Map of a vegetation

property

Retrieval of (continuous) vegetation properties

1. Statistical models
1. Parametric regression models
2. Nonparametric regression models

1. Linear 
2. Nonlinear

2. Inversion of physically based radiative transfer models
1. Numerical optimization
2. Lookup-table (LUT)-based inversion
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Taxonomy of retrieval methods, three main families:

1. Statistical: parametric and non-parametric:
• Parametric models rely on some physical knowledge of the problem

and build explicit parametrized expressions that relate a few spectral
bands with the biophysical parameter(s) of interest.

• Non-parametric models are data-driven models. They are adjusted to
predict a variable of interest using a training dataset of input-output
data pairs.

2. Physical: try to reverse RTMs.

• Physically based algorithms are applications of physical laws
establishing photon interaction cause–effect relationships. Model
variables are inferred based on specific knowledge, typically obtained
with radiative transfer functions.

3. Hybrid:

• A hybrid-method combines elements of nonparametric statistics and
physically based methods. Hybrid models rely on the generic
properties of physically based methods combined with the flexibility
and computational efficiency of nonparametric nonlinear regression
methods.
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Retrieval families
Parametric regression Non-parametric regression RTM inversion

Spectral relationships that are 
sensitive to specific
vegetation properties

Normalized Difference Vegetation Index

Models that simulate
interactions between
vegetation and radiation

leaf

canopy

Advanced techniques that
search for relationships
between spectral data and 
biophysical variables

Methods of these different families can be combined: hybrid methods
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Variable 

of 

Interest

Statistical interpretation of RS

• Simple statistical relationships (VIs) constitute the BULK of RS analysis.

• These analyses allow to determine IF there is a relationship, not WHY there is a 
relationship.

• Linear methods such as VIs are useful indicators of biophysical (e.g. structure) or 
biochemical (e.g. chlorophyll) parameters, however in natural, complex 
environments indices are confounded by additional abiotic and biotic factors.

• VIs lack generality for estimating biophysical parameters.

• Apart from VIs a large number of powerful alternative statistical retrieval 
methods exists (e.g. non-parametric regression methods).

Remote 

Sensing 

Data

Statistical relationship

- Parametric regression

- Non-parametric regression
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Parametric regression
Parametric regression assume an explicit model
for retrieval

• Discrete band methods(VIs): 
• 2-band: SR, NDVI, PRI, OSAVI 
• 3-band: TVI, MCARI, SIPI 
• 4-band: TCARI/OSAVI 

• Shape-based methods (hyperspectral data):
• Red-edge position (REP)

• Derivative/Integral indices

• Continuum removal

• wavelet

VI Red edge derivative

integral Continuum removal wavelet
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Parametric regression:

Strengths ☺ Weaknesses 

• Simple and comprehensive regression models; 

little knowledge of user required.

• Fast in processing

• Computationally inexpensive

• Makes only poorly use of the available information 

within the spectral observation; at most a spectral 

subset is used. Therefore, they tend to be more noise-

sensitive as compared to full-spectrum methods 

• Parametric regression puts boundary conditions at the 

level of chosen bands, formulations and regression 

function.

• Statistical function accounts for one variable at a time.

• A limited portability to different measurement 

conditions or sensor characteristics 

• No uncertainty estimates are provided. Hence the 

quality of the output maps remains unknown.
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Parametric regression
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Linear nonparametric models:
• Stepwise multiple linear regression (SMLR)

• Principal component regression (PCR)

• Partial least squares regression (PLSR)

• Ridge regression (RR)

• Least Absolute Shrinkage and Selection Operator (LASSO)

Non-parametric models (1/2):
Data-driven methods: Do not assume explicit feature relations

PCR PLSR RR & LASSO
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Non-parametric models (2/2):
Data-driven methods: Do not assume explicit feature relations

Decision Trees (DT)

Neural networks (NN) Kernel ridge regression (KRR)

Gaussian processes regression 
(GPR)

Also:
• Elastic Net (ELASTICNET)
• Bagging trees (BAGTREE)
• Boosting trees (BOOST)
• Neural networks (NN)

• Extreme Learning Machines (ELM)
• Relevance Vector Machine (RVM)
• Gaussian process Regression (GPR)
• Variational Heteroscedastic Gaussian

Process Regression (VHGPR)

Non-linear nonparametric models:
Support vector regression (SVR)
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Gaussian Processes Regression (GPR)
• A GPR model is a probabilistic (Bayesian) model directly in function space, 

with no intermediate model or model parameters.

• GPR are equivalent to kernel ridge regression, least square suport vector 
machines (SVM), Kriging, large neural networks (NN) and very closely related
to SVM regulazation networks.

• GPR alleviates some shortcomings of the previous methods, while 
maintaining very good numerical performance and stability:

– GPR is far simpler than NN, and needs fewer sample points ☺

– Not only a mean prediction for each sample (pixel), but also a full distribution over the 
output values including an uncertainty of the prediction (confidence interval). ☺

– GPR provide a ranking of features (bands) and samples (spectra), thus partly overcoming 
the blackbox problem. ☺

• http://www.rainsoft.de/projects/gausspro.html
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More info on: http://www.gaussianprocess.org/
Rasmussen and C Williams, Gaussian Processes for Machine Learning, 2006 16/59
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http://www.gaussianprocess.org/


Example GPR

Chl [µg/cm2]

RGB CASI

St Dev

Chl [µg/cm2]
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Strengths ☺ Weaknesses 
• Full-spectrum methods. They make use of the complete 

spectral information.

• Advanced, adaptive (non-linear) models are built.

• Methodologically, accurate and robust performance is 

enabled.

• Some MLRAs cope well with datasets showing redundancy 

and high noise levels.

• Once trained, imagery can be processed time efficient.

• Some of the non-parametric methods (e.g.  ANNs, decision 

trees) can be trained with a high number of samples 

(typically >1,000,000).

• Some MLRAs provide insight in model development (e.g. 

GPR: relevant bands; decision trees: model structure).

• Some MLRAs can provide multiple-outputs (e.g. PLRS, ANN, 

SVR, GPR and KRR)

• Some MLRAs provide uncertainty intervals (e.g. GPR).

• Training can be computational expensive.

• Hypercomplex models can be generated. Their generic 

potential is limited and hence they do not generalize well, 

based on the training data (problem of over-fitting).

• Some regression algorithms are difficult (or even impossible) 

to train with a high number of samples.

• Expert knowledge is required, e.g. for tuning. However, 

toolboxes exist automating some of the steps in this sub-

process.

• Some of the methods can be considered as black boxes.

• Some regression algorithms elicit instability when applied 

with datasets statistically deviating from the datasets used 

for training. 

Non-parametric regression:
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Non-parametric regression

19/59



Physical interpretation of RS

Remote 

Sensing 

Data

RT   

State 

VariablesInvertible models

Variable 

of 

Interest

Some 

relationship
Radiative transfer models:

• Try to predict RS data based on a function of the 

RT state variables

• Two categories of RT models:

• Economically invertible models: 

typically designed for simple scenes, have a 

few number of state variables (e.g. SAIL, RPV)

• Non-economically invertible models: typically 

designed for complex scenes, have a large 

number of state variables (e.g. DART, Drat)

RT Models
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Physically based RTM approachesRTMs

DesignRetrieval
Development/ 

Evaluation

Spectra/ VIs

Background
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Mapping
biophysical param.

mission
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Radiative transfer models

layers Compact spheres

N-fluxes Ray tracing

Turbid medium Geometric

Hybrid
Volumetric

Leaf RT models Canopy RT models

Multiple models exist with diverse complexity. 
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• A leaf is not opaque but transparent. 

• Leaf as composed out of layers and empty spaces

Leaf optical models
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http://rami-benchmark.jrc.ec.europa.eu

Canopy RTMs

24/59
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SAIL model (Verhoef 1984): a 1-D model

bi-directional reflectance

directional-hemispherical reflectance

soil surface

plant canopy

sun

absorption of directional

incoming radiation

Examples of canopy RTMs(1/4)
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Examples of canopy RTMs (2/4)

Canopy models can be coupled with leaf, soil and atmospheric models
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Ray tracing models

Examples of canopy RTMs (3/4)
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FLIGHT (North, 1996): A 3-D model

FLIGHT MC ray tracing approach

– Large scale structure by geometric primitives (e.g. cone)

– Foliage within crowns described by volume-averaged 
parameters

– 3D photon trajectories are simulated, accounting for the 
probabilities of free path, absorption and scattering

– Individual photon trajectories are traced from a solar 
source, through successive interactions, to a 
predetermined sensor view angle. 

Examples of canopy RTMs (4/4)
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Biophysical parameters retrieval through RTM inversion:

backward

Forward

Auxilary data

RTM

Radiometric data

Image
Inversion algorithm

a priori
information

Sun-sensor
configuration

Biophysical
variables

Direct problem: 
forward simulations

Ill-posed inverse problem
Regularization strategies
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LUT-based RTM inversion
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LUT-based inversion:

Strengths ☺ Weaknesses 

• Full-spectrum methods

• Reputation of physically-based (however, note 

the impact of regularization factors)

• Generally and globally applicable (e.g. MODIS 

products).

• Capability to provide multiple outputs

• Yields additional information about 

uncertainty of the retrievals (e.g. residuals).

• Computationally demanding due to the per-pixel 

based approach (however, solutions based on a priori 

information have been developed).

• Retrieval quality depends on the quality of the RT 

models, prior knowledge and regularization.

• Quite complex approach: requires parameterization 

and optimization procedures.

• The imposed upper/lower boundaries in the LUT have 

a logical consequence in that estimated variables 

cannot go beyond the boundaries imposed. This 

contradicts somewhat the physical approach as the 

prior information has an overwhelming influence.

• LUT-based inversion methods are often strongly 

affected by noise and measurement uncertainty.
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Hybrid retrieval
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Strengths ☺ Weaknesses 
• Full-spectrum methods. They make use of the complete 

spectral information.

• Advanced, adaptive (non-linear) models are built.

• Methodologically, accurate and robust performance is 

enabled.

• Some MLRAs cope well with datasets showing redundancy 

and high noise levels.

• Once trained, imagery can be processed time efficient.

• Some of the non-parametric methods (e.g.  ANNs, decision 

trees) can be trained with a high number of samples 

(typically >1,000,000).

• Some MLRAs provide insight in model development (e.g. 

GPR: relevant bands; decision trees: model structure).

• Some MLRAs can provide multiple-outputs (e.g. PLRS, ANN, 

SVR, GPR and KRR)

• Some MLRAs provide uncertainty intervals (e.g. GPR).

• Training can be computational expensive.

• Hypercomplex models can be generated. Their generic 

potential is limited and hence they do not generalize well, 

based on the training data (problem of over-fitting).

• Some regression algorithms are difficult (or even impossible) 

to train with a high number of samples.

• Expert knowledge is required, e.g. for tuning. However, 

toolboxes exist automating some of the steps in this sub-

process.

• Some of the methods can be considered as black boxes.

• Some regression algorithms elicit instability when applied 

with datasets statistically deviating from the datasets used 

for training. 

Non-parametric regression: hybrid
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Summary mapping methods
Parametric
regression

Non-parametric
regression

RTM inversion

Hybrid
regression

LAI

Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegory, J.P., Lewis, P., Moreno, J. (2018). Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. 
Surveys in Geophysics, 34/59



Taxonomy retrieval methods
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Optimizing retrieval

The many decisions to be taken require a systematic evaluation
automates retrieval optimization
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Leaf RTMs

Canopy 
RTMs 

Combined 
RTMs

Retrieval 
Toolboxes

Tools

DLM

PROSPECT-5

PROSPECT-4

LIBERTY
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INFORM

FLIGHT

SCOPE

Spectral 
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Graphics
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RTMs are important tools in EO research but for the broader community these
models are perceived as complicated. Only very few of them offer user-friendly
interfaces (GUIs).

(Chuvieco & Prado, 2005)

• No interface exists that brings multiple RTMs together in one GUI.

• None of existing (publicly available) GUIs provide post-processing tools.

Which RTM to choose? Only very few offer a GUI.
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➢ To develop a GUI toolbox that: 

• operates various RTMs in an intuitive interface

• provides a comprehensive visualization of model outputs

• works both for multispectral and hyperspectral data

• enables to retrieve biophysical parameters through various 
retrieval methods

• takes different land cover classes into account.

To fill up this gap:
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Toolbox for EO applications:

Automated
Radiative
Transfer 
Models
Operator
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Selection RTMs & 
programming language

Programming language: Matlab® 
Database: MySQL® 
Image processing software: ENVI®

Reliability language

Accessibility

Software packages:

Model Reference Source code

PROSPECT-4 Feret et al., 2008 Matlab

PROSPECT-5 Feret et al., 2008 Matlab

PROSPECT-D Feret et al., 2017 Matlab

DLM Stuckens et al., 2009 Matlab

LIBERTY Dawson et al., 1998 Matlab

FLUSPECT Vilfan et al., 2016 Matlab

4SAIL Verhoef et al., 2007 Matlab

FLIGHT North, 1996 Executable file

INFORM Atzberger, 2000 Matlab

SCOPE Van der Tol et al., 2009 Matlab

Canopy RTM

Leaf RTM

Combined RTM
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ARTMO

42/59



ARTMO v. 3.31

http://artmotoolbox.com/
Register to download!
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ARTMO’s retrieval toolboxes:
LUT-based inversion toolbox

Machine learning regression algorithm toolbox (MLRA)

Spectral indices toolbox
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VI GPR Inversion
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Verrelst, J. et al. (2015). Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties–A review. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 273-290.
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http://www.esa.int/Applications/Observing_the_Earth/Copernicus/Copernicus_High_Priority_Candidates

CHIME will carry a visible to shortwave infrared spectrometer to provide global routine 
hyperspectral observations. The mission will support new and enhanced services for 
sustainable agricultural and biodiversity management, as well as soil property characterisation.

CHIME: Copernicus Hyperspectral Imaging Mission

Technical concept:
Routine spectroscopic observation 
in contiguous spectral bands:
• Instrument: Pushbroom Imaging 

Spectrometer 400 – 2500 nm, Δλ 
<= 10nm

• Revisit 10 – 15 days
• GSD (spatial resolution): 30 m
• Sun synchronous orbit (LTDN 

10:30 – 11:30)
• Nadir view covering land and 

coastal areas
• High radiometric accuracy, low 

spectral/spatial misregistration

CORE Data Products:
The mission shall provide 
access to Level-1B, Level-1C 
and Level-2A products 
accessible via DIAS and with 
API support:
• Bottom-of-Atmosphere 

(BOA) reflectance 
(atmospherically corrected)

• Ortho rectified geometry
• Basic pixel classification 

(opaque clouds, thin clouds, 
cloud shadows, vegetation, 
water, snow etc.) 

• Additionally –> 
Vegetation products 
(Level-2B)
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Verrelst, J., Berger, K., & Rivera-Caicedo, J. P. (2020). Intelligent sampling for vegetation nitrogen mapping based on hybrid machine learning algorithms. IEEE Geoscience and 

Remote Sensing Letters, 18(12), 2038-2042.
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CNC estimates in [g/m2] 

Verrelst, J., Rivera-Caicedo, J. P., Reyes-Muñoz, P., Morata, M., Amin, E., Tagliabue, G., ... & Berger, K. (2021). Mapping landscape canopy nitrogen content from space using PRISMA data. ISPRS 
Journal of Photogrammetry and Remote Sensing, 178, 382-395.
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Conclusions CNC study:
• A workflow for operational mapping of CNC designed for spaceborne imaging spectroscopy missions

• Hybrid method based on PROSAIL-PRO and GPR

• GPR provides associated uncertainty estimates

• Model applied to PRISMA and succesfully validated

Relative uncertainties in [%]: used as mask (e.g. only ≤20% )

Subset of CNC estimates in [g/m2] 
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ARTMO’s tools:

Sensor & 
spectral resample:

Emulation:
Multiple input 
variables (e.g. 

LAI, Chl,…)

Spectral 
output (e.g. 
reflectance)

Training data Validation data

Validation

Single output 
MLRAs + PCA

Multi-output 
MLRAs

or

Global 
sensitivity
analysis:
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Dr. Santiago Belda Palazón
Dr. Jochem Verrelst
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Pablo Morcillo

Belda, S., Pipia, L., Morcillo-Pallarés, P., Rivera-Caicedo, J. P., Amin, E., De Grave, C., & Verrelst, J. (2020). DATimeS: A machine learning time series GUI 

toolbox for gap-filling and vegetation phenology trends detection. Environmental Modelling & Software, 127, 104666. 53/59



MLCA Classification toolbox - v.1.1
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Estévez, J., Salinero-Delgado, M., Berger, K., Pipia, L., Rivera-Caicedo, J. P., Wocher, M., ... & Verrelst, J. (2022). Gaussian processes retrieval of crop 

traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data. Remote Sensing of Environment, 273, 112958. 56/59



GEE
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GEE

https://github.com/SentiFLEXinel
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Conclusions
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