Practical ESA Croatia

September 16, 2023

[1]: import os
import numpy as np
import matplotlib.pyplot as plt
import spectral.io.envi as envi

[2]: # set your path here for the files
os.chdir (os.path.expanduser (' ~es40/Documents/teaching/ESA Croatia/Practical2'))

[3]: def Open_ENVI(filename):
This function opens Sentinel (1, 2, 3 etc.) images
Requires the file in ENVI format
The header can be read from the ENVI .hdr
# This opens the header file (which is a text file)
1lib = envi.open(filename + '.hdr')
# here we Tead the size of the image
header = np.array([lib.ncols, lib.nrows])
# here we read the type of the pizel wvalues
datatype = lib.dtype
# Opening the image
f = open(filename + '.img', 'rb')
img = np.fromfile(f, dtype=datatype)
# The image s tnitiually read as a 1D entity, the following makes it 2D
img = img.reshape(header,order='F') .astype(datatype)
# returns the values of the tmage pizels as a 2D array
return(img)

# This ts another function that we will be using in the following
def generate_image_dict(dictionary, band_list, path_s3):
1
We store each band (e.g. '0a01 radiance) as a wvalue in a dictionary.
Using a dictionary allows to create key, value pairs, where key is the,
~band_name, e.g. 'Oa01_radiance' and
the value is the corresponding 2D image entity.

We read each band in individually and store it in the dictionary.
1



# looping over the defined band list - either for the subset or the ac,
wcorrected image
for band in band_list:
# opening one image entity
img = Open_ENVI(path_s3 + band)
#storing the image entity in the dictionary, where [band] is the key,
»and tmg the value
dictionary[band] = img

[41: #4%
# define the two paths for both files
# standard L1B subset
path_s3_subset =
'subset_2_of S3A_0OL_1_EFR____20230617T092432_20230617T092732_20230618T101954_0179_100_093_2
(—>/|

# AC (Atmosphere corrected) corrected L2 subset
path_s3_ac = 'DOORS_S3_cluster_example//'

[23]: # 1. We wish to inspect the true-color TOA radiance imagery of the subset to
# see 1f we can spot any obvious clouds or other artifacts in this image.
# We previously created a subset of the full tile focused on the Lithuanian
# lagoon next to the Baltic Sea.

# We create a list of the radiance bands in order for them to be available
# when generating the true-color image.
band names subset = ['0a0l1_radiance', '0Oa02_radiance', '0Oa03_radiance',
~'0a04_radiance', '0Oa05_radiance','0Oa06_radiance',
'0a07_radiance', '0Oa08_radiance', '0a09_radiance',
-'0al0_radiance', 'Oall_radiance','0Oal2_radiance', 'Oal6_radiance',
'0al7_radiance', '0al8 radiance', '0a2l1 radiance']

# We store each band (e.g. '0a01 radiance) as a value in a dictionary.

# Using a dictionary allows to create key, wvalue pairs, where key is the

# band_name, e.g. '0Oa01_radiance' and the wvalue ts the corresponding 2D img
# entity we get while looping over the function previously defined to read
# Sentinel image data.

# We read each band in individually and store it in the dictionary

# initialisation of an empty dictionary that we fill with the key, value pairs
dict_subset_image={}

# calling the function with the new empty dict, the defined band_names of they
<11b product and the path of the 11b subset

generate_image_dict(dict_subset_image, band_names_subset, path_s3_subset)

# dictionaries are assessed by their key, that will show the value -



# in this case the first top-of-atmosphere radiance band
dict_subset_image['0a01_radiance']

# the benefit of this procedure is that the different bands can be assessed
# unambigously. It allows for clear and reproducible code.

# The true-color composite rTequires RGB channels. Here we define the colors

# red, blue and green as given out from ESA in the standard L1B product.

# Either here or later when displayed we transpose all matrices here in order
# to display them correctly later. Simply call .T on the matriz to tranpose it.

red = (1.0 + 0.01 * dict_subset_image['0Oa0l1_radiance'] + 0.09 *
~dict_subset_image['0a02_radiance']

+ 0.35 * dict_subset_image['0a03_radiance'] + 0.04 *
~dict_subset_image['0a04_radiance']

+ 0.01 * dict_subset_image['0Oa05_radiance'] + 0.59 *
~dict_subset_image['0a06_radiance']
+ 0.85 * dict_subset_image['0a07_radiance'] + 0.12 *

~dict_subset_image['0a08_radiance']
+ 0.07 * dict_subset_image['0a09_radiance'] + 0.04 *
~dict_subset_image['0Oal0_radiance']).T

green = (1.0 + 0.26 * dict_subset_image['0a03_radiance'] + 0.21 *

~dict_subset_image['0a04_radiance']

+ 0.50 * dict_subset_image['0a05_radiance'] +,
~dict_subset_image['0a06_radiance']

+ 0.38 * dict_subset_image['0a07_radiance'] + 0.04 *
~dict_subset_image['0a08_radiance']

+ 0.03 * dict_subset_image['0a09_radiance']

+ 0.02 * dict_subset_image['0Oal0_radiance']).T

blue = (1.0 + 0.07 * dict_subset_image['0Oa0l_radiance'] + 0.28 *
~dict_subset_image['0a02_radiance']
+ 1.77 * dict_subset_image['0a03_radiance']
+ 0.47 * dict_subset_image['0a04_radiance']
+ 0.16 * dict_subset_image['0a05_radiance']).T

# the shape/size of every band in the dictionary, here e.g. 0a0l1 radiance s
# 417 , 417 - making it a 2D array we work with throughout the practical.
size = np.shape(dict_subset_image['0a01_radiance'])

print(size)

(2017, 1697)

[24]: # We generate a 3D-array here with zeros that we fill with the RGB walues
# to generate the true-color composite -



# A composite is essentially a 3D stack of three different bands - red, green,
<blue.

# Empty 3D-array

rgb_composite = np.zeros([size[0],size[1],3])
# see shape:

rgb_composite.shape

# first dimension is red (indexzed with 0)
rgb_compositel[:,:,0] = red/(red.mean()*2.2)
# second 1is green
rgb_composite[:,:,1] = green/(green.mean()*2.2)
S HARRARAABARRARAAB AR R ARRAR AR BARHAY
# third blue
rgb_compositel[:,:,2] = blue/(blue.mean()*2.2) #HA#HHHHHHHHHHHHHHHHHHHHHHHLY

# The stacked RGB bands are now available to plot to generate the true-color,
wimage:

fig, (axl) = plt.subplots(l, sharex=True, sharey=True,figsize=(11, 9))

axl.set_title('RGB L1B true-color composite of the selected Sentinel-3 OLCI,,
wscene over the Lithuanian lagoon', fontsize= 14, y=1.02)

ax1.imshow(rgb_composite)

plt.tight_layout ()

plt.show()

# note the = and y axzis numbers! Spefictally note down where 250, 250

# 1s positioned. We need this coordinate later.

AttributeError Traceback (most recent call last)
Cell In[24], line 11

8 rgb_composite.shape

10 # first dimension is red (indexed with 0)
--=> 11 rgb_composite[:,:,0] = red.T/(red.mean.T()*2.2)

12 # second is green

13 rgb_compositel[:,:,1] green/(green.mean () *2.2)

SHEFHAFHHH B HBHHAH R H B HBHHAH B RS

AttributeError: 'builtin_function_or_method' object has no attribute 'T'

[9]:|# 2. We load the bands necessary here for water quality calculations from the
# same, but atmospherically corrected tmage — thtis s a new file and has been
# produced exzternally
# Remote-sensing reflectances from top-of-atmosphere radiance were calculated
# using the C2RCC Neural Network processor:
# http://step.esa.int/docs/extra/Evolution/200f/20the,20C2RCC_LPS16.pdf



[9]:

[ 1:

# Read this document if you want to understand more and also how the
# uncertainty bands are calculated we are using up next.

# Another array with the band names we need — with remote-sensing reflectances
~this time from the atmospherically corrected image.
band_names_12 = ['rrs_1', 'rrs_2', 'rrs_3', 'rrs_4', 'rrs 5','rrs_6',
'rrs 7', 'rrs_8', 'rrs 9', 'rrs_10', 'rrs_11','rrs_12', 'rrs_16',
'rrs_17', 'rrs_18', 'rrs_21',
# we also load the so-called 'out-of-scope (oo0s)' quality flags
# to inspect the uncertainty of calculated Rrs - by products of
+C2RCC AC
'oos_rtosa','oos_rrs',
# and top_apig, which is the absorption of phytoplankton pigments
# and tt's corresponding uncertainty flag
'iop_apig', 'unc_apig'

]

# the function needs a new dict, as the other one ts for the L1 subset only
dict_image={}

# calling the function with the new empty dict, the defined band_names of the
# L2 AC product and the new path of the L2 AC image
generate_image_dict(dict_image, band_names_12, path_s3_ac)

# inspect 1f correctly loaded
dict_image['rrs_1']
# first value should be XXXXXXX

array([[0. , 0. , O. , ., 0.01045474, 0.01045103,
0.01108371],
[0. , O. , 0. , - 0.01062626, 0.01035504,
0.01075062],
[0. 0. , 0. , - 0.01062626, 0.01035872,

0.01075062],

wey

[0. , 0. , 0. s s O , 0. ,
0. 1,
[0. , O. , 0. s s O , 0. ,
0. 1,
[o. , 0. , 0. , ., O. , 0. ,
0. 1], dtype=float32)

#IU

# 3.

# The tmage corresponding to the wvalues in the 'oos_rtosa' band - a product
# from the CZ2RCC atmospheric correction showing the top-of-atmosphere radiances.
# This AC algorithm is based on the L1 radiance we previously used to generate



# the true-color tmage. The band 'oos_rtosa' shows tf the TUOA radiances are

# out of scope (see algorithm document linked previously).

# if Rtosa calculation is already indicating high uncertainty, Rrs wvalues will
# most likely be unrealistic, too, as they are derived from Rtosa wvalues.

#create a figure

plt.figure(2)

# We assess the band from the dictionary directly, and transpose the matriz
# of the 2D-image entity to correctly display it (.T method)
plt.imshow(dict_image['ocos_rtosa'].T)

# colorbar

cbar = plt.colorbar(pad=0.01)

cbar.set_label('Uncertainty')

plt.axis("off")
plt.title('Uncertainty for top-of-atmosphere radiances', fontsize= 14, y=1.02)
plt.show()

# Looks wvery good!

# Let's show the remote-sensing reflectances out-of-scope band from the C2RCC
# product and see if we find any area in the water that has high wvalues.

# high values = the calculation of Rrs wvalues %s uncertain. Over land we ezxpect
# high values, but we require low values for water, otherwise the water quality
# parameter calculation will fa<il.

# If Rrs are highly uncertain, they are most likely wrong as the (or any)

# atmospheric correction algorithm is limited in 4t's application range.

#create a figure
plt.figure(3)
#plot the image corresponding to the values in the oos_rrs band - a product
# from the C2RCC atmospheric correction algorithm.
plt.imshow(dict_image['oos_rrs'].T) L
O
# colorbar
cbar = plt.colorbar(pad=0.01)
cbar.set_label('Uncertainty')

plt.axis("off")

plt.title('Uncertainty for remote-sensing reflectance calculation', fontsize=
-14, y=1.02)

plt.show()

# The water areas are mostly showing low uncertainties, some areas are less
# dark though and these areas mneed to be treated with more care for the
# reliability of the results - espcially the center part of the lagoon.



# Let's inspect the reflectances, to display them.

# Sentinel-3 OLCI wavelengths
# We need them to select the right band numbers from the Sentinel L2 product we,
<already inspected.

# rrs_1 = 400 nm

# rrs_2 = 412.5 nm

# rrs_3 = 442.5 nm

# rrs_4 = 490 nm

# rrs_5 = 510 nm

# rrs_6 = 560 nm

# rrs_7 = 620 nm

# rrs_8 = 665 nm

# rrs_9 = 673.75 nm

# rrs_10 = 681.25 nm

# rrs_11 = 708.75 nm

# rrs_12 = 753.75 nm

# rrs_16 = 778.75 nm

# rrs_17 = 865 nm

# rrs_21 = 1020 nm

# First a single reflectance

# We select one single pizel for all wavelengths (i.e. one position in the 2D
# 417, 417 array) - corresponding to x and y position 250 we looked at in the
# true-color composite.

rrs_400 = dict_image['rrs_1'][600, 600]
rrs_412 = dict_image['rrs_2'][600, 600]
rrs_442 = dict_image[’rrs_B'][600, 600] RUHARRBHHARBUH AR BBUHARRUHHRRBLHAHR
rrs_490 = dict_image['rrs_4'][600, 600]
rrs_510 = dict_image['rrs_5'][600, 600]
rrs_560 = dict_image['rrs_6'][600, 600]
rrs_620 = dict_imagel['rrs_7'][600, 600]
rrs_665 = dict_image['rrs_8'][600, 600]
rrs_673 = dict_image['rrs_9'][600, 600]
rrs_681 = dict_image['rrs_10'][600, 600]
rrs_708 = dict_image['rrs_11'][600, 600]
rrs_753 = dict_image['rrs_12'][600, 600]
rrs_778 = dict_image['rrs_16'][600, 600]
rrs_865 = dict_image['rrs_17'][600, 600]
rrs_1010 = dict_image['rrs_21'][600, 600]

# we combine all the values into one list:



rrs = [rrs_400, rrs_412, rrs_442, rrs_490, rrs_510, rrs_560, rrs_620, rrs_665,
wrrs_673, rrs_681, rrs_708, rrs_753, rrs_778, rrs_865, rrs_1010]
print(rrs)

# i.e. 15 values for 15 different OLCI wavelengths we are going to define next:

wavelengths_olci = np.array([400, 412, 442, 490, 510, 560, 620, 665, 673, 681,
708, 753, 778, 865, 1010])

# now we can display one Rrs:

plt.figure(4)

plt.plot(wavelengths_olci, rrs)

plt.ylabel(r'Rrs (sr$~{-1}$)', fontsize=14)

plt.xlabel('Wavelength (nm)', fontsize=14)

plt.title('Remote-sensing reflectances of coastal waters', y=1.02, fontsize=14)
plt.xlim(xmin=400, xmax=1010)

plt.ylim(ymin=0)

plt.show()

# What does this Rrs signature tell you?

# Let's do tt now for 40 water pizels, selecting a slice of the arrays and
# assessing the first dimension [0]

rrs_400 = dict_image['rrs_1'][600:700, 700:800] [0]
rrs_412 = dict_image['rrs_2'][600:700, 700:800] [0]
rrs_442 = dict_image['rrs_3'][600:700, 700:800] [0]
rrs_490 = dict_image['rrs_4'][600:700, 700:800] [0]
rrs_510 = dict_image['rrs_5'][600:700, 700:800] [0]
rrs_560 = dict_image['rrs_6'][600:700, 700:800] [0]
rrs_620 = dict_image['rrs_7'][600:700, 700:800] [0]
rrs_665 = dict_image['rrs_8'][600:700, 700:800] [0]
rrs_673 = dict_image['rrs_9'][600:700, 700:800] [0]
rrs_681 = dict_image['rrs_10']1[600:700, 700:800] [0]
rrs_708 = dict_image['rrs_11'][600:700, 700:800] [0]
rrs_753 = dict_image['rrs_12']1[600:700, 700:800] [0]
rrs_778 = dict_image['rrs_16'][600:700, 700:800] [0]
rrs_865 = dict_image['rrs_17'][600:700, 700:800] [0]
rrs_1010 = dict_image['rrs_21'][600:700, 700:800] [0]

# new array with all 40 rrs:
rrs_40 = [rrs_400, rrs_412, rrs_442, rrs_490, rrs_510, rrs_b560, rrs_620,
wrrs_665, rrs_673, rrs_681, rrs_708, rrs_753, rrs_778, rrs_865, rrs_1010]

plt.figure(5)



[10]:

plt.plot(wavelengths_olci, rrs_40) U
s HHRHHH AR AR AR RARA AR AR AR AR
plt.ylabel(r'Rrs (sr$~{-1}$)', fontsize=14)
plt.xlabel('Wavelength (nm)', fontsize=14)
plt.title('Remote-sensing reflectances of coastal waters', y=1.02, fontsize=14)
plt.ylim(ymin=0)
plt.xlim(xmin=400, xmax=1010)
plt.show()

# In comparison to a larger area... which signatures do not correspond to
# water reflectances?

rrs_400 = dict_image['rrs_1'][400:600] [0]
rrs_412 = dict_imagel['rrs_2'][400:600] [0]
rrs_442 = dict_image['rrs_3'][400:600] [0]
rrs_490 = dict_image['rrs_4'][400:600] [0]
rrs_510 = dict_image['rrs_5'][400:600] [0]
rrs_560 = dict_image['rrs_6'][400:600] [0]
rrs_620 = dict_image['rrs_7'][400:600] [0]
rrs_665 = dict_image['rrs_8'] [400:600] [0]
rrs_673 = dict_image['rrs_9'][400:600] [0]
rrs_681 = dict_image['rrs_10'][400:600] [0]
rrs_708 = dict_image['rrs_11'][400:600] [0]
rrs_753 = dict_image['rrs_12'][400:600] [0]
rrs_778 = dict_imagel['rrs_16'][400:600] [0]
rrs_865 = dict_image['rrs_17'][400:600] [0]
rrs_1010 = dict_image['rrs_21'][400:600] [0]

rrs_mixed = [rrs_400, rrs_412, rrs_442, rrs_490, rrs_510, rrs_560, rrs_620,,
~rrs_665, rrs 673, rrs 681, rrs 708, rrs 753, rrs 778, rrs_865, rrs_1010]

plt.figure(6)

plt.plot(wavelengths_olci, rrs_mixed) #######RH##HHHHHHAHHHHHHAHHAHHRAHHIH#Y

plt.ylabel(r'Rrs (sr$7{-1}$)', fontsize=14)

plt.xlabel('Wavelength (nm)', fontsize=14)

plt.ylim(ymin=0)

plt.title('Remote-sensing reflectances of the water and surroundings', y=1.02,,
~fontsize=14)

plt.x1lim(xmin=400, xmax=1010)

plt.show()

#4%

# Rrs for looks promising overall, let's calculate some water quality
# parameters from <t.

# We are going to apply 4 different algorithms, covered in the lecture.

# First one: Dall'olmo chlorophyll-a algorithm - 2003



# a straight forward simple band ratio algorithm that has two empirical ezira
# terms (a, b)

# assign variables, makes the reading of the equation below more convenient.
# Of course, one could also use the dictionary rrs bands directly.

rrs_665 = dict_image['rrs_8']

rrs_708 = dict_image['rrs_11']

# empirical coefficients
61.324
-37.94

a
b

# equation to calculate chla:
chla dallolmo = a * (rrs_708/rrs _665) + b

# add the calculated chla wvalues as a band to the dictionary of the image
dict_image['dallolmo_chla'] = chla_dallolmo

# Display of Dall'olmo chl-a wvalues

plt.figure(figsize=(20,10))

plt.imshow(dict_image['dallolmo_chla'].T)

plt.title("Dall'olmo algorithm (2003) - Chlorophyll-a values", fontsize = 14, y,
o= 1 02)

cbar = plt.colorbar(pad=0.01)

cbar.set_label('Chlorophyll-a (mg/1)')

plt.axis("off")

plt.show()

/var/folders/m8/96r4lc7d7xg7yqs0ccbsx3n00000gp/T/ipykernel_79033/260444608.py:21
: RuntimeWarning: invalid value encountered in divide
chla_dallolmo = a * (rrs_708/rrs_665) + b

10



[]1:

Dall'olmo algorithm (2003) - Chlorophyll-a values

50

40

Chlorophyll-a (mg/l)

#hh

# Rrs for looks promising overall, let's calculate some water quality
# parameters from it.

# We are going to apply 4 different algorithms, covered in the lecture.

# First one: Dall'olmo chlorophyll-a algorithm - 2003

# a straight forward simple band ratio algorithm that has two empirical ezira
# terms (a, b)

# assign variables, makes the reading of the equation below more convenient.
# Of course, one could also use the dictionary rrs bands directly.

rrs_665 = dict_image['rrs_8']

rrs_708 = dict_image['rrs_11"']

# empirical coefficients
61.324
-37.94

a
b

11



# equation to calculate chla:
chla_dallolmo = a * (rrs_708/rrs_665) + b

# add the calculated chla wvalues as a band to the dictionary of the image
dict_image['dallolmo_chla'] = chla_dallolmo

# Display of Dall'olmo chl-a wvalues

plt.figure(figsize=(20,10))

plt.imshow(dict_image['dallolmo_chla'].T)

plt.title("Dall'olmo algorithm (2003) - Chlorophyll-a values", fontsize = 14, y
o= 1 02)

cbar = plt.colorbar(pad=0.01)

cbar.set_label('Chlorophyll-a (mg/1)')

plt.axis("off")

plt.show()

# 0C4 algorithm

# The NASA 0C4 algorithm s basically a polynomial with 4 terms.
# the = coefficient ts dynamically calculated, based on the highest values of
# rrs at 443nm, 490nm and 510nm.

# We calculate = per pizel and insert it into the following 0C4 equation we
# use below:

# oc4_chloropyhll-a = 10%*((a+b * z) + (c*xxz**2) + (d*z**3) + (e*xz**4))

# First we select the necessary bands from the dictionary:
rrs_443 = dict_image['rrs_3']
rrs_490 = dict_image['rrs_4']
rrs_510 = dict_image['rrs_5']
rrs_560 = dict_image['rrs_6"']

static coefficients for the 0C4 algorithm:
0.3255
-2.7677
2.4409
-1.1288
-0.4990

O Q0 oM W%
I

# each band from our image ts a 2D array and to compare the values of the 3
# rrs bands directly for the coefficient 'z' per pizel, we need to iterate
# over the walues directly.

print(rrs_510)

print(rrs_510[0] [0])
# >>> 0.00470531 ts the corresponding value. This ts the wvalue of Rrs at 510nm

12
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#

at the first pizel.
try e.g. to print(rrs_510[0][0]) with different values for O (e.g. 1, or 2)
1f you have tssues understanding this nested for-loop.

we assess the wvalues of each band through iteration of the indices, % for
the outer array (1D), j for the inner (2D)

1t does not matter over which band we iterate for these indices, as they all
have the same dimensions (417, 417), and hence same indices.

try rrs_560 for the two for-loop lines below instead of rrs_510 if you want
to convince yourself.

This procedure creates an array with the same shape and type as any rrs_band
(e.g. rrs_510 in this example) 2D array that we fill with new chl-a values

later on, otherwise the new chl-a pizels could not be displayed.

empty array with 2D dimensions

chla_oc4_array = np.full_like(rrs_510,0)

#
#

we assess the wvalues of each band through iteration of the indices, % for
the outer array (1D), j for the inner (2D)

for i in range(len(rrs_510)):

for j in range(len(rrs_510[i])):

# the 0C4 algorithm requires to use the largest value of rrs
# at 443nm, 490nm or 510nm that is then divided by rrs at 560nm
# so we compare each band here and take the logl0 of this valuey,

<—>(€13)

# 1. if rrs_510 > 443 and 490:
if (rrs_510[i1[j] > rrs_443[i]1[j1) & (rrs_510[il1[j]1 >,
orrs_490[i] [j1):
x = np.loglO(rrs_510[i] [j] / rrs_560[i] [j1)

# 2. if rrs_443 > 490 and 510:
elif (rrs_443[i] [j] > rrs_490[i][j]) & (rrs_443[i][j] >,
srrs_510[i] [j]1):
x = np.loglO(rrs_443[i][j] / rrs_560[i][j1)

# 3. if rrs_490 > 510, and rrs_443
elif (rrs_490[il[j] > rrs_443[i][j]1) & (rrs_490[i]l [j]1 >,
srrs_510[i] [j1):
x = np.loglO(rrs_490[i] [j] / rrs_560[i] [j1)

# 0C4 algorithm is defined as below and per pizel changes of

# the value of = influences the final chl-a value (based on
# which of the 3 Rrs is higher)

13



[]:

# the coefficients (a, b, c, d, e) were defined before already

chla_per_pixel = 10x*((at+b * x) + (c*x**2) + (d*x**3) +
o (exx*x*4))

# we then fill our empty 2D array with each new chl-a value:
chla_oc4_array[i] [j] = chla_per_pixel

# the array with the 0C4 chl-a values
print(chla_oc4_array)

# Display of 0C4 chl-a values

plt.figure(7)

plt.imshow(chla_oc4_array.T)

plt.title("0C4 chloropyhll-a", fontsize = 14, y = 1.02)
cbar = plt.colorbar(pad=0.01)
cbar.set_label('Chlorophyll-a (mg/1)')

plt.axis("off")

plt.show()

# compare the chl-a wvalues to the Dall'olmo wvalues.

# Can you think of general explanations why the wvalues are lower?

# Which water types has the 0UC4 algorithm been designed for and how applicable
# s the algorithm to this area?

*

TSM after Nechad et al., 2010
In order to assess turbidity, one can calculate total suspended matter
# concentrations (TSM)

H*

# One band algorithm to calculate TSM
rrs_665 = dict_image['rrs_8']

# Equation:
tsm = 9418.39 * (rrs_665 / (1 - rrs_665/17.28)) + 1.41
dict_image['TSM_nechad'] = tsm

# Display of TSM walues

plt.figure(8)

plt.imshow(dict_image['TSM_nechad'].T)

plt.title("Total suspended matter (TSM) concentrations - Nechad et al., 2010y
walgorithm", fontsize = 14)

# bring the color bar closer to the

cbar = plt.colorbar(pad=0.01)

#latex syntax to plot correct labels
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cbar.set_label(r'TSM (gm$~{-3}$)')
plt.axis("off")
plt.show()
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