
Practical_ESA_Croatia

September 16, 2023

[1]: import os
import numpy as np
import matplotlib.pyplot as plt
import spectral.io.envi as envi

[2]: # set your path here for the files
os.chdir(os.path.expanduser('~es40/Documents/teaching/ESA Croatia/Practical2'))

[3]: def Open_ENVI(filename):
"""
This function opens Sentinel (1, 2, 3 etc.) images
Requires the file in ENVI format
The header can be read from the ENVI .hdr
"""
This opens the header file (which is a text file)
lib = envi.open(filename + '.hdr')
here we read the size of the image
header = np.array([lib.ncols, lib.nrows])
here we read the type of the pixel values
datatype = lib.dtype
Opening the image
f = open(filename + '.img', 'rb')
img = np.fromfile(f, dtype=datatype)
The image is initiually read as a 1D entity, the following makes it 2D
img = img.reshape(header,order='F').astype(datatype)
returns the values of the image pixels as a 2D array
return(img)

This is another function that we will be using in the following
def generate_image_dict(dictionary, band_list, path_s3):

'''
We store each band (e.g. 'Oa01 radiance) as a value in a dictionary.
Using a dictionary allows to create key, value pairs, where key is the␣

↪band_name, e.g. 'Oa01_radiance' and
the value is the corresponding 2D image entity.
We read each band in individually and store it in the dictionary.
'''

1

looping over the defined band list - either for the subset or the ac␣
↪corrected image

for band in band_list:
opening one image entity
img = Open_ENVI(path_s3 + band)
#storing the image entity in the dictionary, where [band] is the key␣

↪and img the value
dictionary[band] = img

[4]: #%%
define the two paths for both files
standard L1B subset
path_s3_subset =␣

↪'subset_2_of_S3A_OL_1_EFR____20230617T092432_20230617T092732_20230618T101954_0179_100_093_2160_PS1_O_NT_003/
↪/'

AC (Atmosphere corrected) corrected L2 subset
path_s3_ac = 'DOORS_S3_cluster_example//'

[23]: # 1. We wish to inspect the true-color TOA radiance imagery of the subset to
see if we can spot any obvious clouds or other artifacts in this image.
We previously created a subset of the full tile focused on the Lithuanian
lagoon next to the Baltic Sea.

We create a list of the radiance bands in order for them to be available
when generating the true-color image.
band_names_subset = ['Oa01_radiance', 'Oa02_radiance', 'Oa03_radiance',␣

↪'Oa04_radiance', 'Oa05_radiance','Oa06_radiance',
'Oa07_radiance', 'Oa08_radiance', 'Oa09_radiance',␣

↪'Oa10_radiance', 'Oa11_radiance','Oa12_radiance', 'Oa16_radiance',
'Oa17_radiance', 'Oa18_radiance', 'Oa21_radiance']

We store each band (e.g. 'Oa01 radiance) as a value in a dictionary.
Using a dictionary allows to create key, value pairs, where key is the
band_name, e.g. 'Oa01_radiance' and the value is the corresponding 2D img
entity we get while looping over the function previously defined to read
Sentinel image data.
We read each band in individually and store it in the dictionary

initialisation of an empty dictionary that we fill with the key, value pairs
dict_subset_image={}

calling the function with the new empty dict, the defined band_names of the␣
↪l1b product and the path of the l1b subset

generate_image_dict(dict_subset_image, band_names_subset, path_s3_subset)

dictionaries are assessed by their key, that will show the value -

2

in this case the first top-of-atmosphere radiance band
dict_subset_image['Oa01_radiance']

the benefit of this procedure is that the different bands can be assessed
unambigously. It allows for clear and reproducible code.

The true-color composite requires RGB channels. Here we define the colors
red, blue and green as given out from ESA in the standard L1B product.
Either here or later when displayed we transpose all matrices here in order
to display them correctly later. Simply call .T on the matrix to tranpose it.

red = (1.0 + 0.01 * dict_subset_image['Oa01_radiance'] + 0.09 *␣
↪dict_subset_image['Oa02_radiance']

+ 0.35 * dict_subset_image['Oa03_radiance'] + 0.04 *␣
↪dict_subset_image['Oa04_radiance']

+ 0.01 * dict_subset_image['Oa05_radiance'] + 0.59 *␣
↪dict_subset_image['Oa06_radiance']

+ 0.85 * dict_subset_image['Oa07_radiance'] + 0.12 *␣
↪dict_subset_image['Oa08_radiance']

+ 0.07 * dict_subset_image['Oa09_radiance'] + 0.04 *␣
↪dict_subset_image['Oa10_radiance']).T

green = (1.0 + 0.26 * dict_subset_image['Oa03_radiance'] + 0.21 *␣
↪dict_subset_image['Oa04_radiance']

+ 0.50 * dict_subset_image['Oa05_radiance'] +␣
↪dict_subset_image['Oa06_radiance']

+ 0.38 * dict_subset_image['Oa07_radiance'] + 0.04 *␣
↪dict_subset_image['Oa08_radiance']

+ 0.03 * dict_subset_image['Oa09_radiance']
+ 0.02 * dict_subset_image['Oa10_radiance']).T

blue = (1.0 + 0.07 * dict_subset_image['Oa01_radiance'] + 0.28 *␣
↪dict_subset_image['Oa02_radiance']

+ 1.77 * dict_subset_image['Oa03_radiance']
+ 0.47 * dict_subset_image['Oa04_radiance']
+ 0.16 * dict_subset_image['Oa05_radiance']).T

the shape/size of every band in the dictionary, here e.g. Oa01 radiance is
417 , 417 - making it a 2D array we work with throughout the practical.
size = np.shape(dict_subset_image['Oa01_radiance'])
print(size)

(2017, 1697)

[24]: # We generate a 3D-array here with zeros that we fill with the RGB values
to generate the true-color composite -

3

A composite is essentially a 3D stack of three different bands - red, green,␣
↪blue.

Empty 3D-array
rgb_composite = np.zeros([size[0],size[1],3])
see shape:
rgb_composite.shape

first dimension is red (indexed with 0)
rgb_composite[:,:,0] = red/(red.mean()*2.2)
second is green
rgb_composite[:,:,1] = green/(green.mean()*2.2)␣

↪#################################
third blue
rgb_composite[:,:,2] = blue/(blue.mean()*2.2) #############################

The stacked RGB bands are now available to plot to generate the true-color␣
↪image:

fig, (ax1) = plt.subplots(1, sharex=True, sharey=True,figsize=(11, 9))
ax1.set_title('RGB L1B true-color composite of the selected Sentinel-3 OLCI␣

↪scene over the Lithuanian lagoon', fontsize= 14, y=1.02)
ax1.imshow(rgb_composite)
plt.tight_layout()
plt.show()
note the x and y axis numbers! Speficially note down where 250, 250
is positioned. We need this coordinate later.

AttributeError Traceback (most recent call last)
Cell In[24], line 11

8 rgb_composite.shape
10 # first dimension is red (indexed with 0)

---> 11 rgb_composite[:,:,0] = red.T/(red.mean.T()*2.2)
12 # second is green
13 rgb_composite[:,:,1] = green/(green.mean()*2.2)␣

↪#################################

AttributeError: 'builtin_function_or_method' object has no attribute 'T'

[9]: # 2. We load the bands necessary here for water quality calculations from the
same, but atmospherically corrected image - this is a new file and has been
produced externally
Remote-sensing reflectances from top-of-atmosphere radiance were calculated
using the C2RCC Neural Network processor:
http://step.esa.int/docs/extra/Evolution%20of%20the%20C2RCC_LPS16.pdf

4

Read this document if you want to understand more and also how the
uncertainty bands are calculated we are using up next.

Another array with the band names we need - with remote-sensing reflectances␣
↪this time from the atmospherically corrected image.

band_names_l2 = ['rrs_1', 'rrs_2', 'rrs_3', 'rrs_4', 'rrs_5','rrs_6',
'rrs_7', 'rrs_8', 'rrs_9', 'rrs_10', 'rrs_11','rrs_12', 'rrs_16',
'rrs_17', 'rrs_18', 'rrs_21',
we also load the so-called 'out-of-scope (oos)' quality flags
to inspect the uncertainty of calculated Rrs - by products of␣

↪C2RCC AC
'oos_rtosa','oos_rrs',
and iop_apig, which is the absorption of phytoplankton pigments
and it's corresponding uncertainty flag
'iop_apig', 'unc_apig'
]

the function needs a new dict, as the other one is for the L1 subset only
dict_image={}

calling the function with the new empty dict, the defined band_names of the
L2 AC product and the new path of the L2 AC image
generate_image_dict(dict_image, band_names_l2, path_s3_ac)

inspect if correctly loaded
dict_image['rrs_1']
first value should be XXXXXXX

[9]: array([[0. , 0. , 0. , …, 0.01045474, 0.01045103,
0.01108371],
[0. , 0. , 0. , …, 0.01062626, 0.01035504,
0.01075062],
[0. , 0. , 0. , …, 0.01062626, 0.01035872,
0.01075062],
…,
[0. , 0. , 0. , …, 0. , 0. ,
0.],
[0. , 0. , 0. , …, 0. , 0. ,
0.],
[0. , 0. , 0. , …, 0. , 0. ,
0.]], dtype=float32)

[]: #%%
3.
The image corresponding to the values in the 'oos_rtosa' band - a product
from the C2RCC atmospheric correction showing the top-of-atmosphere radiances.
This AC algorithm is based on the L1 radiance we previously used to generate

5

the true-color image. The band 'oos_rtosa' shows if the TOA radiances are
out of scope (see algorithm document linked previously).
if Rtosa calculation is already indicating high uncertainty, Rrs values will
most likely be unrealistic, too, as they are derived from Rtosa values.

#create a figure
plt.figure(2)
We assess the band from the dictionary directly, and transpose the matrix
of the 2D-image entity to correctly display it (.T method)
plt.imshow(dict_image['oos_rtosa'].T)
colorbar
cbar = plt.colorbar(pad=0.01)
cbar.set_label('Uncertainty')

plt.axis("off")
plt.title('Uncertainty for top-of-atmosphere radiances', fontsize= 14, y=1.02)
plt.show()

Looks very good!

Let's show the remote-sensing reflectances out-of-scope band from the C2RCC
product and see if we find any area in the water that has high values.
high values = the calculation of Rrs values is uncertain. Over land we expect
high values, but we require low values for water, otherwise the water quality
parameter calculation will fail.
If Rrs are highly uncertain, they are most likely wrong as the (or any)
atmospheric correction algorithm is limited in it's application range.

#create a figure
plt.figure(3)
#plot the image corresponding to the values in the oos_rrs band - a product
from the C2RCC atmospheric correction algorithm.
plt.imshow(dict_image['oos_rrs'].T) ␣

↪###
colorbar
cbar = plt.colorbar(pad=0.01)
cbar.set_label('Uncertainty')

plt.axis("off")
plt.title('Uncertainty for remote-sensing reflectance calculation', fontsize=␣

↪14, y=1.02)
plt.show()

The water areas are mostly showing low uncertainties, some areas are less
dark though and these areas need to be treated with more care for the
reliability of the results - espcially the center part of the lagoon.

6

Let's inspect the reflectances, to display them.

Sentinel-3 OLCI wavelengths
We need them to select the right band numbers from the Sentinel L2 product we␣

↪already inspected.

rrs_1 = 400 nm
rrs_2 = 412.5 nm
rrs_3 = 442.5 nm
rrs_4 = 490 nm
rrs_5 = 510 nm
rrs_6 = 560 nm
rrs_7 = 620 nm
rrs_8 = 665 nm
rrs_9 = 673.75 nm
rrs_10 = 681.25 nm
rrs_11 = 708.75 nm
rrs_12 = 753.75 nm
rrs_16 = 778.75 nm
rrs_17 = 865 nm
rrs_21 = 1020 nm

First a single reflectance
We select one single pixel for all wavelengths (i.e. one position in the 2D
417, 417 array) - corresponding to x and y position 250 we looked at in the
true-color composite.

rrs_400 = dict_image['rrs_1'][600, 600]
rrs_412 = dict_image['rrs_2'][600, 600]
rrs_442 = dict_image['rrs_3'][600, 600] #################################
rrs_490 = dict_image['rrs_4'][600, 600]
rrs_510 = dict_image['rrs_5'][600, 600]
rrs_560 = dict_image['rrs_6'][600, 600]
rrs_620 = dict_image['rrs_7'][600, 600]
rrs_665 = dict_image['rrs_8'][600, 600]
rrs_673 = dict_image['rrs_9'][600, 600]
rrs_681 = dict_image['rrs_10'][600, 600]
rrs_708 = dict_image['rrs_11'][600, 600]
rrs_753 = dict_image['rrs_12'][600, 600]
rrs_778 = dict_image['rrs_16'][600, 600]
rrs_865 = dict_image['rrs_17'][600, 600]
rrs_1010 = dict_image['rrs_21'][600, 600]

we combine all the values into one list:

7

rrs = [rrs_400, rrs_412, rrs_442, rrs_490, rrs_510, rrs_560, rrs_620, rrs_665,␣
↪rrs_673, rrs_681, rrs_708, rrs_753, rrs_778, rrs_865, rrs_1010]

print(rrs)

i.e. 15 values for 15 different OLCI wavelengths we are going to define next:

wavelengths_olci = np.array([400, 412, 442, 490, 510, 560, 620, 665, 673, 681,␣
↪708, 753, 778, 865, 1010])

now we can display one Rrs:

plt.figure(4)
plt.plot(wavelengths_olci, rrs)
plt.ylabel(r'Rrs (sr$^{-1}$)', fontsize=14)
plt.xlabel('Wavelength (nm)', fontsize=14)
plt.title('Remote-sensing reflectances of coastal waters', y=1.02, fontsize=14)
plt.xlim(xmin=400, xmax=1010)
plt.ylim(ymin=0)
plt.show()

What does this Rrs signature tell you?

Let's do it now for 40 water pixels, selecting a slice of the arrays and
assessing the first dimension [0]

rrs_400 = dict_image['rrs_1'][600:700, 700:800][0]
rrs_412 = dict_image['rrs_2'][600:700, 700:800][0]
rrs_442 = dict_image['rrs_3'][600:700, 700:800][0]
rrs_490 = dict_image['rrs_4'][600:700, 700:800][0]
rrs_510 = dict_image['rrs_5'][600:700, 700:800][0]
rrs_560 = dict_image['rrs_6'][600:700, 700:800][0]
rrs_620 = dict_image['rrs_7'][600:700, 700:800][0]
rrs_665 = dict_image['rrs_8'][600:700, 700:800][0]
rrs_673 = dict_image['rrs_9'][600:700, 700:800][0]
rrs_681 = dict_image['rrs_10'][600:700, 700:800][0]
rrs_708 = dict_image['rrs_11'][600:700, 700:800][0]
rrs_753 = dict_image['rrs_12'][600:700, 700:800][0]
rrs_778 = dict_image['rrs_16'][600:700, 700:800][0]
rrs_865 = dict_image['rrs_17'][600:700, 700:800][0]
rrs_1010 = dict_image['rrs_21'][600:700, 700:800][0]

new array with all 40 rrs:
rrs_40 = [rrs_400, rrs_412, rrs_442, rrs_490, rrs_510, rrs_560, rrs_620,␣

↪rrs_665, rrs_673, rrs_681, rrs_708, rrs_753, rrs_778, rrs_865, rrs_1010]

plt.figure(5)

8

plt.plot(wavelengths_olci, rrs_40) ␣
↪##

plt.ylabel(r'Rrs (sr$^{-1}$)', fontsize=14)
plt.xlabel('Wavelength (nm)', fontsize=14)
plt.title('Remote-sensing reflectances of coastal waters', y=1.02, fontsize=14)
plt.ylim(ymin=0)
plt.xlim(xmin=400, xmax=1010)
plt.show()

In comparison to a larger area... which signatures do not correspond to
water reflectances?

rrs_400 = dict_image['rrs_1'][400:600][0]
rrs_412 = dict_image['rrs_2'][400:600][0]
rrs_442 = dict_image['rrs_3'][400:600][0]
rrs_490 = dict_image['rrs_4'][400:600][0]
rrs_510 = dict_image['rrs_5'][400:600][0]
rrs_560 = dict_image['rrs_6'][400:600][0]
rrs_620 = dict_image['rrs_7'][400:600][0]
rrs_665 = dict_image['rrs_8'][400:600][0]
rrs_673 = dict_image['rrs_9'][400:600][0]
rrs_681 = dict_image['rrs_10'][400:600][0]
rrs_708 = dict_image['rrs_11'][400:600][0]
rrs_753 = dict_image['rrs_12'][400:600][0]
rrs_778 = dict_image['rrs_16'][400:600][0]
rrs_865 = dict_image['rrs_17'][400:600][0]
rrs_1010 = dict_image['rrs_21'][400:600][0]

rrs_mixed = [rrs_400, rrs_412, rrs_442, rrs_490, rrs_510, rrs_560, rrs_620,␣
↪rrs_665, rrs_673, rrs_681, rrs_708, rrs_753, rrs_778, rrs_865, rrs_1010]

plt.figure(6)
plt.plot(wavelengths_olci, rrs_mixed) #####################################
plt.ylabel(r'Rrs (sr$^{-1}$)', fontsize=14)
plt.xlabel('Wavelength (nm)', fontsize=14)
plt.ylim(ymin=0)
plt.title('Remote-sensing reflectances of the water and surroundings', y=1.02,␣

↪fontsize=14)
plt.xlim(xmin=400, xmax=1010)
plt.show()

[10]: #%%
Rrs for looks promising overall, let's calculate some water quality
parameters from it.
We are going to apply 4 different algorithms, covered in the lecture.

First one: Dall'olmo chlorophyll-a algorithm - 2003

9

a straight forward simple band ratio algorithm that has two empirical extra
terms (a, b)

assign variables, makes the reading of the equation below more convenient.
Of course, one could also use the dictionary rrs bands directly.
rrs_665 = dict_image['rrs_8']
rrs_708 = dict_image['rrs_11']

empirical coefficients
a = 61.324
b = -37.94

equation to calculate chla:
chla_dallolmo = a * (rrs_708/rrs_665) + b

add the calculated chla values as a band to the dictionary of the image
dict_image['dallolmo_chla'] = chla_dallolmo

Display of Dall'olmo chl-a values
plt.figure(figsize=(20,10))
plt.imshow(dict_image['dallolmo_chla'].T)
plt.title("Dall'olmo algorithm (2003) - Chlorophyll-a values", fontsize = 14, y␣

↪= 1.02)
cbar = plt.colorbar(pad=0.01)
cbar.set_label('Chlorophyll-a (mg/l)')
plt.axis("off")
plt.show()

/var/folders/m8/96r4lc7d7xg7yqs0ccbsx3n00000gp/T/ipykernel_79033/260444608.py:21
: RuntimeWarning: invalid value encountered in divide

chla_dallolmo = a * (rrs_708/rrs_665) + b

10

[]: #%%
Rrs for looks promising overall, let's calculate some water quality
parameters from it.
We are going to apply 4 different algorithms, covered in the lecture.

First one: Dall'olmo chlorophyll-a algorithm - 2003

a straight forward simple band ratio algorithm that has two empirical extra
terms (a, b)

assign variables, makes the reading of the equation below more convenient.
Of course, one could also use the dictionary rrs bands directly.
rrs_665 = dict_image['rrs_8']
rrs_708 = dict_image['rrs_11']

empirical coefficients
a = 61.324
b = -37.94

11

equation to calculate chla:
chla_dallolmo = a * (rrs_708/rrs_665) + b

add the calculated chla values as a band to the dictionary of the image
dict_image['dallolmo_chla'] = chla_dallolmo

Display of Dall'olmo chl-a values
plt.figure(figsize=(20,10))
plt.imshow(dict_image['dallolmo_chla'].T)
plt.title("Dall'olmo algorithm (2003) - Chlorophyll-a values", fontsize = 14, y␣

↪= 1.02)
cbar = plt.colorbar(pad=0.01)
cbar.set_label('Chlorophyll-a (mg/l)')
plt.axis("off")
plt.show()

[]: # OC4 algorithm

The NASA OC4 algorithm is basically a polynomial with 4 terms.
the x coefficient is dynamically calculated, based on the highest values of
rrs at 443nm, 490nm and 510nm.

We calculate x per pixel and insert it into the following OC4 equation we
use below:

oc4_chloropyhll-a = 10**((a+b * x) + (c*x**2) + (d*x**3) + (e*x**4))

First we select the necessary bands from the dictionary:
rrs_443 = dict_image['rrs_3']
rrs_490 = dict_image['rrs_4']
rrs_510 = dict_image['rrs_5']
rrs_560 = dict_image['rrs_6']

static coefficients for the OC4 algorithm:
a = 0.3255
b = -2.7677
c = 2.4409
d = -1.1288
e = -0.4990

each band from our image is a 2D array and to compare the values of the 3
rrs bands directly for the coefficient 'x' per pixel, we need to iterate
over the values directly.

print(rrs_510)
print(rrs_510[0][0])
>>> 0.00470531 is the corresponding value. This is the value of Rrs at 510nm

12

at the first pixel.
try e.g. to print(rrs_510[0][0]) with different values for 0 (e.g. 1, or 2)
if you have issues understanding this nested for-loop.

we assess the values of each band through iteration of the indices, i for
the outer array (1D), j for the inner (2D)

it does not matter over which band we iterate for these indices, as they all
have the same dimensions (417, 417), and hence same indices.
try rrs_560 for the two for-loop lines below instead of rrs_510 if you want
to convince yourself.

This procedure creates an array with the same shape and type as any rrs_band
(e.g. rrs_510 in this example) 2D array that we fill with new chl-a values
later on, otherwise the new chl-a pixels could not be displayed.

empty array with 2D dimensions
chla_oc4_array = np.full_like(rrs_510,0)

we assess the values of each band through iteration of the indices, i for
the outer array (1D), j for the inner (2D)
for i in range(len(rrs_510)):

for j in range(len(rrs_510[i])):

the OC4 algorithm requires to use the largest value of rrs
at 443nm, 490nm or 510nm that is then divided by rrs at 560nm
so we compare each band here and take the log10 of this value␣

↪(x)

1. if rrs_510 > 443 and 490:
if (rrs_510[i][j] > rrs_443[i][j]) & (rrs_510[i][j] >␣

↪rrs_490[i][j]):
x = np.log10(rrs_510[i][j] / rrs_560[i][j])

2. if rrs_443 > 490 and 510:
elif (rrs_443[i][j] > rrs_490[i][j]) & (rrs_443[i][j] >␣

↪rrs_510[i][j]):
x = np.log10(rrs_443[i][j] / rrs_560[i][j])

3. if rrs_490 > 510, and rrs_443
elif (rrs_490[i][j] > rrs_443[i][j]) & (rrs_490[i][j] >␣

↪rrs_510[i][j]):
x = np.log10(rrs_490[i][j] / rrs_560[i][j])

OC4 algorithm is defined as below and per pixel changes of
the value of x influences the final chl-a value (based on
which of the 3 Rrs is higher)

13

the coefficients (a, b, c, d, e) were defined before already

chla_per_pixel = 10**((a+b * x) + (c*x**2) + (d*x**3) +␣
↪(e*x**4))

we then fill our empty 2D array with each new chl-a value:
chla_oc4_array[i][j] = chla_per_pixel

the array with the OC4 chl-a values
print(chla_oc4_array)

Display of OC4 chl-a values
plt.figure(7)
plt.imshow(chla_oc4_array.T)
plt.title("OC4 chloropyhll-a", fontsize = 14, y = 1.02)
cbar = plt.colorbar(pad=0.01)
cbar.set_label('Chlorophyll-a (mg/l)')
plt.axis("off")
plt.show()

compare the chl-a values to the Dall'olmo values.
Can you think of general explanations why the values are lower?
Which water types has the OC4 algorithm been designed for and how applicable
is the algorithm to this area?

[]: # TSM after Nechad et al., 2010
In order to assess turbidity, one can calculate total suspended matter
concentrations (TSM)

One band algorithm to calculate TSM
rrs_665 = dict_image['rrs_8']

Equation:
tsm = 9418.39 * (rrs_665 / (1 - rrs_665/17.28)) + 1.41
dict_image['TSM_nechad'] = tsm

Display of TSM values

plt.figure(8)
plt.imshow(dict_image['TSM_nechad'].T)
plt.title("Total suspended matter (TSM) concentrations - Nechad et al., 2010␣

↪algorithm", fontsize = 14)
bring the color bar closer to the
cbar = plt.colorbar(pad=0.01)
#latex syntax to plot correct labels

14

cbar.set_label(r'TSM (gm$^{-3}$)')
plt.axis("off")
plt.show()

[]:

15

