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NASA Earth Science Division (ESD):

Focus areas
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How is the global Earth 
system changing?

What causes these changes in 
the Earth system?

How will the Earth system 
change in the future?

How can Earth system science 
provide societal benefit?



NASA Earth Fleet

4https://science.nasa.gov/earth-science

https://science.nasa.gov/earth-science
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GEDI: Global Ecosystem Dynamics Investigation

▪ May the Forest Be With You!

6https://doi.org/10.1016/j.srs.2020.100002

https://doi.org/10.1016/j.srs.2020.100002
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ESA-developed Earth observation missions



Copernicus Satellites
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Big Data: Earth Science

9https://www.pecanstreet.org/2018/10/big-data-anyone/[Courtesy of S. Cauffman, NASA]

https://www.pecanstreet.org/2018/10/big-data-anyone/


Big data challenges in the geoscientific context

10[Reichstein et al., (2019). Nature]



Quantitative Analysis of Satellite Imagery:

From Data to Labels

▪ Classification/regression is a mapping from 

measurements acquired by a remote sensing 

instrument to a label(s) 

(categorical/continuous) for each pixel that 

identifies it with what’s on the ground

▪ Domains:

– Spatial (e.g. textures, moving window, Fourier 

transformation etc.)

– Spectral (e.g. spectral curvatures)

– Temporal (change detection, temporal profiles)
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Semantic labelling Identifying objects Scene-level labelling



Land cover / land use mapping and area estimation
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Classification Mapping
Area 

estimation

• Data

• Features

• Algorithms

• Spatial context • Unbiased 

estimates with 

uncertainties



Land cover / land use mapping and area estimation

▪ Pixel counting is a biased estimator
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Reference 
class

Mapped 
class

Agreement
Omission

area

Commission
area

12 px

12 px

4 px8 px

3 px

Reference area:
12 x 12 = 144 px

Mapped area:
8 x 15 = 120 px (bias ~17%)

PA = 8 x 12 / (12 x 12) = 66.7%

UA = 8 x 12 / (8 x 15) = 80%



Land cover / land use mapping and area estimation
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Stratified random sampling, where 

strata are coming from maps



Machine learning

▪ ML is a field of computer science which gives “computers the ability to learn 

without being explicitly programmed” [Arthur Samuel (1959)]

▪ Machine learning explores the study and construction of algorithms that can learn

from and make predictions on data
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Machine learning: most popular in

satellite data processing
▪ Support vector machine (SVM)

– Works well with small amount of data

– Computational cost grows linearly with the number of 
classes

– Several parameters to be optimized

– Require feature engineering

▪ Decision trees (DT) / Random forest (RF)

– Training is fast and simpler with small number of 
parameters to tune

– Require feature engineering

▪ Artificial neural networks (ANN or NN)

– Difficult to train with a lot of parameters to tune

– Require a lot of skills and expertise

– No need for feature engineering: feature are 
learned by the network

– Can learn very complex decision boundaries
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Forest mapping

▪ High-Resolution Global Maps of 
21st-Century Forest Cover 
Change
– Satellite data

• Landsat 7 data at 30 m

– 654,178 Landsat 7 ETM+ analyzed on 
Google cloud

– Training data

• Image interpretation methods, 
including mapping of crown/no crown 
categories using very high spatial 
resolution data such as Quickbird
imagery 

– Machine learning:

• Decision Trees

17[Source: Hansen et al., Science 2015]

https://www.globalforestwatch.org/map/

https://www.globalforestwatch.org/map/


Tree height mapping: fusion Landsat + GEDI

▪ Satellite data

– Landsat + GEDI (Lidar)

– Integration of heterogenous data

▪ Training data

– GEDI-derived three canopy height

▪ Machine leaning

– Decision Tree regression

▪ Performance

– RMSE ~ 6.6 m

18https://doi.org/10.1016/j.rse.2020.112165 https://glad.earthengine.app/view/global-forest-canopy-height-2019

https://doi.org/10.1016/j.rse.2020.112165
https://glad.earthengine.app/view/global-forest-canopy-height-2019


Multi-layer perceptron (MLP)

19

[Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer
feedforward networks are universal approximators. Neural Networks 2(5), 359–366.]

Universal approximators!

Input x

Weights w

Output y

Activation
functions σ, h



Convolutional neural networks (CNN)

20

[Sources: 

http://cs231n.github.io/convoluti

onal-networks; 

http://deeplearning.stanford.edu]

Sparse connectivity Convolution

Pooling (sub-sampling)



Convolutional neural networks (CNN)

▪ Overall architecture

21[Sources: http://cs231n.github.io/convolutional-networks]



Convolutional neural networks (CNN)

▪ Learned filters (Gabor-like)

22
[Sources: Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural 

information processing systems (pp. 1097-1105)]

96 convolutional kernels of size 11×11×3 learned by the first convolutional 
layer on the 224×224×3 input natural images



Modern neural networks

23
image-net.org

GoogLeNet

▪ Modern architectures, e.g.:
– Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... 

& Rabinovich, A. (2015). Going deeper with convolutions. 

In Proceedings of the IEEE conference on computer vision and 

pattern recognition (pp. 1-9).

– Achieves top-5 accuracy of 93.33% (error 

6.67%) ImageNet Large Scale Visual 

Recognition Competition 2014 (ILSVRC)

– Human performance:

error ~5.1%



A catch #1: Wrong Labels

▪ Label errors in the test sets of 10 of the 

most commonly-used computer vision, 

natural language, and audio datasets

▪ An average of 3.4% errors across the 10 

datasets,

– where for example 2,916 label errors comprise 

6% of the ImageNet validation set

▪ Judging models over correctly labeled test 

sets may be more useful

– models that didn’t perform so well on the 

original incorrect labels were some of the best 

performers after the labels were corrected

24C.G. Northcutt, A. Athalye, J. Mueller. Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks, https://arxiv.org/pdf/2103.14749.pdf

https://arxiv.org/pdf/2103.14749.pdf


A catch #2: Interpretation of results

▪ Those deep learning models very difficult to interpret:

– Fundamental question: why the model makes a particular decision?

– Extremely important for many domains, including Earth observation (EO)

▪ A simple pitfall:

– Application: ML applied to Skin cancer detection

– Task:  Given image of skin lesion, classify whether benign or malignant

– On first try:  Method had amazing success rate - whenever the doctors thought it was 

benign/malignant, the ML method came to the same conclusion!

– Almost too good to be true. 

• Scientists wanted to know:  How did the algorithm figure it out?

• Applied visualization tool to learn about method’s reasoning.

– Scientists found that …

25https://www.star.nesdis.noaa.gov/star/documents/seminardocs/2019/20190718_Kumler_and_Ebert-Uphoff.pdf

https://www.star.nesdis.noaa.gov/star/documents/seminardocs/2019/20190718_Kumler_and_Ebert-Uphoff.pdf


A catch #2: Interpretation of results

▪ Those deep learning models very difficult to interpret:

– Fundamental question: why the model makes a particular decision?

– Extremely important for many domains, including Earth observation (EO)

▪ A simple pitfall:

– Scientists found that … doctors had placed a ruler into the image whenever they thought it was 

malignant.

– The algorithm detected the ruler, then concluded that the growth was malignant.  That’s not 

what folks had intended for the algorithm to do! Found problem early thanks to 

transparency tools.

26https://www.star.nesdis.noaa.gov/star/documents/seminardocs/2019/20190718_Kumler_and_Ebert-Uphoff.pdf

https://www.star.nesdis.noaa.gov/star/documents/seminardocs/2019/20190718_Kumler_and_Ebert-Uphoff.pdf


A catch #3: Fooling the model

27
Xu, Y., & Ghamisi, P. (2022). Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark. IEEE Transactions on 

Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2022.3156392

https://doi.org/10.1109/TGRS.2022.3156392


A catch #3: Fooling the model

28
Xu, Y., & Ghamisi, P. (2022). Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark. IEEE Transactions on 

Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2022.3156392

https://doi.org/10.1109/TGRS.2022.3156392


A catch #4: Unexpected outcomes

▪ The effect of 

clouds on 

image scene 

classification

29

https://ieeexplore.ieee.o
rg/abstract/document/99
56865

https://ieeexplore.ieee.org/abstract/document/9956865
https://ieeexplore.ieee.org/abstract/document/9956865
https://ieeexplore.ieee.org/abstract/document/9956865


Counting trees in in the West African Sahara and Sahel

▪ Mapping crown size of each tree more 
than 3m2 in size over a land area that 
spans 1.3 million km2

– detected >1.8 billion individual trees 
(13.4 trees per hectare), with a median 
crown size of 12 m2

▪ Satellite data
– 50,000 DigitalGlobe (Maxar) multispectral 

images from the QuickBird-2, GeoEye-
1, WorldView-2 and WorldView-3
satellites, collected from 2005–2018

– @ 0.5 m resolution

▪ Machine learning
– Deep learning (Unet-style network)

▪ Performance
– # of trees missed 5%

– Area of trees missed 25%

30https://doi.org/10.1038/s41586-020-2824-5

https://doi.org/10.1038/s41586-020-2824-5


10-m global canopy height: fusion of S2 + GEDI

31https://arxiv.org/abs/2204.08322

https://arxiv.org/abs/2204.08322


Massive use of heavy 
weaponry

BM-21 Grad

M-46 130mm field gun

Majority of Artillery 
shelling is un-guided

~ Using 110,000 shells per month
~ Asking for 250,000 shells per 
month

~ Estimated 5,000,000 shells fired
~ Up to 60,000 per day in July, 2022



18,472 Craters Marked

U-Net
Model

Apply Model

Image Preprocessing 
Pipeline *

VHR Training 
Imagery Selection

Processed Imagery Crater Locations + VHR Imagery

Binary Detection Masks
Imagery Selection

Processed Imagery

Image Preprocessing 
Pipeline

Raster Postprocessing 
* *

Training A Crater Detection Model, with 2022 Imagery

Mapping With Trained Model

▪ Using the U-Net Segmentation model for crater detection

▪ Created VHR imagery processing pipeline for multi-terabytes 

of data

▪ Detecting on a per-crater level

▪ Using crater locations, we can scale up into hazard maps

▪ Agricultural, de-mining, and environmental products can be 

developed from crater dispersal



Artillery and Rocket Crater Detection 

and Monitoring with VHR Satellite Imagery

- 2.5 Million artillery and rocket impacts mapped 
across the 2022-2023 front-lines

- 33,000 km2 mapped from Mikolaiv to Kharkiv

- Impact areas indicate presence of unexploded 
bombs

- Very high resolution satellites allow us to record 
likely areas of unexploded bombs accurately and 
quickly

- Locations key for clearing hazardous areas



- 81,000 Fields have been analyzed 

- Field boundaries automatically generated 

- 1.21 Million craters within agricultural fields

- Average of 15 craters per field, median of 3

- Many fields contain more than 1000 craters
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True color SkySat, 50 cm



Example: unharvested field

37

(a) SkySat false color (NIR-red-green) 
image. (b)-(e) Sentinel-2 false color 
(SWIR1-NIR-red). In Early May (b) the 
field was in very good condition; 
however, shelling occurred mid-June as 
seen by both Sentinel-2 (c) and SkySat
(a). Fire onset is seen in (d) and the field 
is seen burned in (e).



38https://doi.org/10.1016/j.srs.2023.100092

https://doi.org/10.1016/j.srs.2023.100092


Change detection: construction detection

▪ Onera benchmark dataset

[Daudt et al., IGARSS 2018]

– Includes 24 location over cities

– Changes between 2015 and 2018

– Transitions between land use classes

• Green urban areas → commercial use

• Industrial -> residential use

▪ Machine learning

– Deep learning (Unet)

▪ Performance

– ~50-70%

39

Validation on DC area
2018, April 2019, August Unet

https://doi.org/10.1080/17538947.2022.2094001

https://doi.org/10.1080/17538947.2022.2094001
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Commercial construction (Tysons)

2018/04 2019/08

Detected changes

Residential construction (Roosevelt Place, Arlington)

2018/04 2019/08

Detected changes

Construction of a new school (Lee Montessori-East End, DC)

2018/04 2019/08

Detected changes
2018/04 2019/08 Detected changes

Commercial Residential

Construction of a new school Portables (schools)
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2019

2018 Change detection

Construction permits



42https://doi.org/10.1080/17538947.2022.2094001

https://doi.org/10.1080/17538947.2022.2094001


SpaceNet Challenges

▪ https://spacenet.ai/

– SpaceNet, launched in August 

2016 as an open innovation project 

offering a repository of freely 

available imagery with co-

registered map features.

43

https://spacenet.ai/
https://aws.amazon.com/public-datasets/spacenet/


Open problems: AI/ML in RS

44

▪ A lot of unlabeled data and few labeled data

– How to better deal with it? Can we build a general framework, which can be fine-tuned for 

specific problems? (Transfer learning)

– Non-stationarity of labels

– Increasing labeled data through crowdsourcing:

• Perception that it is easy to do --- it’s NOT!!!

• It cannot be done for any classes, e.g. crop specific, biodiversity, etc.

▪ Missing data, non-uniform coverage

– E.g. due to clouds/shadows in optical imagery

▪ Heterogeneous data sources

– Multiple scales (spatial resolutions), temporal (time-series), multiple spectral bands, continuous 

and point-based coverage



Open problems: AI/ML in RS (cont’)

45

▪ How to incorporate domain knowledge into ML models?

– Fusing physics-based models and ML models

– E.g. meteorology into crop mapping, shape in objects, …

▪ From feature engineering to model engineering

– Complexity of optimizing ML models

– Still need understanding 

▪ Need to provide QA/uncertainty!

– E.g., to avoid situations with misclassification with clouds



Further readings
▪ Li, J., Hong, D., Gao, L., Yao, J., Zheng, K., Zhang, B., & Chanussot, J. (2022). Deep learning in multimodal remote sensing data 

fusion: A comprehensive review. International Journal of Applied Earth Observation and Geoinformation, 112, 102926.

▪ Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., ... & Zhang, L. (2020). Deep learning in environmental remote sensing: Achievements 
and challenges. Remote Sensing of Environment, 241, 111716.

▪ Khelifi, L., & Mignotte, M. (2020). Deep learning for change detection in remote sensing images: Comprehensive review and meta-
analysis. IEEE Access, 8, 126385-126400.

▪ Cheng, G., Xie, X., Han, J., Guo, L., & Xia, G. S. (2020). Remote sensing image scene classification meets deep learning: 
Challenges, methods, benchmarks, and opportunities. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing, 13, 3735-3756.

▪ Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., & Carvalhais, N. (2019). Deep learning and process 
understanding for data-driven Earth system science. Nature, 566(7743), 195-204.

▪ Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning in remote sensing applications: A meta-analysis and 
review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166-177.

▪ Audebert, N., Le Saux, B., & Lefèvre, S. (2019). Deep learning for classification of hyperspectral data: A comparative review. IEEE 
Geoscience and Remote Sensing Magazine, 7(2), 159-173.

▪ Ball, J. E., Anderson, D. T., & Chan Sr, C. S. (2017). Comprehensive survey of deep learning in remote sensing: theories, tools, and 
challenges for the community. Journal of Applied Remote Sensing, 11(4), 042609.

▪ Zhu, X. X., Tuia, D., Mou, L., Xia, G. S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep learning in remote sensing: A comprehensive 
review and list of resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8-36.

▪ Zhang, L., Zhang, L., & Du, B. (2016). Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE 
Geoscience and Remote Sensing Magazine, 4(2), 22-40. 46
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