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Earth observation perspective &
machine learning

Case studies

— Forest & tree height mapping
— Counting trees

— Mapping artillery craters

— Detection of man-made changes
(constructions)

Open problems RS/ML

Showcase:
— Crater detection with DL and VHR

Practical session:

— Airborne images classification with deep
learning :
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How is the global Earth
system changing?

NASA Earth Science Division (ESD):
Focus areas

Earth System Science

What causes these changes in
the Earth system?

How will the Earth system
change in the future?

How can Earth system science
provide societal benefit? .
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Landsat Missions: Imaging the Earth Since 1972

I Landsat1 July 1972 — January 1978
I Landsat2 January 1975 - July 1983
I Landsat3 March 1978 — September 1983
I Landsat 4 July 1982 — December 1993
D Landsats March 1984 — January 2013

Landsat 6 October 1993
Landsat 7 April 1999 -
Landsat 8 February 2013 - |

Landsat 9 2021

Landsat Next 2030
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GEDI: Global Ecosystem Dynamics Investigation

GEDI Canopy Height over Redwood National Park: June 19, 2019
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ESA-developed Earth observation missions
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2020
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Copernicus Satellites

Sentinel 1 (A/B/C/D) All weather, day/night applications,
SAR Imaging interferometry

Sentinel 2 (A/B/C/D) Land applications: urban, forest, agriculture, ...
Multispectral Imaging Continuity of Landsat, SPOT

Sentinel 3 (A/B/C/D) Wide-swath ocean colour, vegetation, sea/land
Ocean & Global Land Monitoring surface temperature, altimetry

Sentinel 4 (A/B) Atmospheric composition monitoring, pollution;
Geostationary Atmospheric instrument on MTG satellites

Sentinel 5 (A/B/C) & Precursor Atmospheric composition monitoring;
Low-Orbit Atmospheric instrument on MetOp-SG satellites

Jason CS (A/B) Altimetry reference mission

Sentinel 6 J




Big Data: Earth Science
RN A PETABYTE

¥ i 1S A LOT
O F DATA

200.0

" 20 MILLION

FOUR-DRAWER FILING CABINETS
PETABYTE FILLED WITH TEXT

1 13.3 YEARS

150.0

PETABYTE OF HD-TV VIDEO

1 5 ®*"  SIZE OF THE 10 BILLION
PHOTOS
PETABYTES = FACEBOOK

20 ssss THE AMOUNT OF DATA|PER
E PROCESSED BY GOOGLE|DAY

100.0

PETABYTES

50.0

PETABYTES

2 o sm=m TOTAL HARD DRIVE SPACE ]995
E MANUFACTURED IN
PETABYTES
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 THE ENTIRE WRITTEN WORKS
5 NENNENNENE o MANKIND, FROM THE BEGIN-
®Archive Size (PB) 150 17.7 21.6 268 320 37.2 556 [103.4 151.1/198.9 246.6 NING OF RECORDED HISTORY.
PETABYTES 20 e
wAnnual Growth (PB) 26 28 39 52 52 52 184 47.7 477 477 477 ————

[Courtesy of S. Cauffman, NASA] https://www.pecanstreet.org/2018/10/big-data-anyone/ 9
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Big data challenges in the geoscientific context

Observed and
simulated ‘big data’

N Patterns and
Mowledge from gt knowledge
o —\‘\‘ -

Speed of Real-time critical
ki in some areas, not all

[Reichstein et al., (2019). Nature]
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REFLECTANCE

Quantitative Analysis of Satellite Imagery:
From Data to Labels

= Classification/regression is a mapping from
measurements acquired by a remote sensing
Instrument to a label(s)
(categorical/continuous) for each pixel that
identifies it with what’s on the ground

= Domains:

— Spatial (e.g. textures, moving window, Fourier
transformation etc.)

— Spectral (e.g. spectral curvatures)
— Temporal (change detection, temporal profiles
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Semantic labelling Identifying objects Scene-level Iabelling‘
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Land cover / land use mapping and area estimation ’@}

TRy LN

e L. . Area
Classification 1 Mapping > . .
estimation
» Data « Spatial context * Unbiased
* Features estimates with

» Algorithms uncertainties



Land cover / land use mapping and area estimation @3}

’ RYLPS\

= Pixel counting is a biased estimator
12 px

Reference area:
Reference 12 x 12 = 144 px

Mapped class
class / Mapped area:
Agreement 8 x 15 = 120 px (bias ~17%)
12 px

PA=8x12 /(12 x 12) = 66.7%

UA=8x12/(8 x15) = 80%

Commission
area

13
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Land cover / land use mapping and area estimation @,

s o
IRYLAS

Remote Sensing of Environment 148 (2014) 42-57

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Review

Good practices for estimating area and assessing accuracy of land change @Cmsmk

Pontus Olofsson **, Giles M. Foody °, Martin Herold €, Stephen V. Stehman ¢,
Curtis E. Woodcock ¢, Michael A. Wulder ©

Stratified random sampling, where
strata are coming from maps

14



Machine learning

= ML is a field of computer science which gives “computers the ability to learn
without being explicitly programmed” [Arthur Samuel (1959)]

= Machine learning explores the study and construction of algorithms that can learn

from and make predictions on d ata

The Washington Post

Finally, a Machine That
Can Finish Your Sentence

Oil and gas producers place faith in Al to boost
margins

Advances in digitadsation are helpng drive efficiency gains and redoce costs
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Machine learning: most popular in @ )
satellite data processing £, s

= Support vector machine (SVM) I =
— Works well with small amount of data k

— Computational cost grows linearly with the number of
classes

— Several parameters to be optimized
— Require feature engineering

Random Forest Simplified

Instance

B8 /margin
g N\

Random Forest

= Decision trees (DT) / Random forest (RF) X p ' o

— Training is fast and simpler with small number of > Y A S > W
parameters tO tune eoe “t odd PO n,“::h R L X N J I:r.ci”c' o0

— Require feature engineering

Class-A C lﬂ\‘\-B Class-B
{ Myjonity-Voting

= Artificial neural networks (ANN or NN) . , NNH N
— Difficult to train with a lot of parameters to tune : ] 7
— Require a lot of skills and expertise i

— No need for feature engineering: feature are RN
learned by the network 54

— Can learn very complex decision boundaries

=l | ™

9 % | 96
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Forest mapping

= High-Resolution Global Maps of
21st-Century Forest Cover A
Change

— Satellite data

e Landsat 7 data at 30 m

— 654,178 Landsat 7 ETM+ analyzed or
Google cloud

— Training data Trge cover

. : >80%
« Image interpretation methods, .
including mapping of crown/no crown
categories using very high spatial -
resolution data such as Quickbird . (o
imagery

— Machine learning:
« Decision Trees

https://www.globalforestwatch.org/map/

17

[Source: Hansen et al., Science 2015]
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Tree height mapping: fusion Landsat + GEDI

= Satellite data ek s T -
— Landsat + GEDI (Lidar) E D B . sy
— Integration of heterogenous data _ 4 - PR _\. (“W’%’
" - H)L - . : \?ﬁ} r“;;
* Training data : }G:» ... S
— GEDI-derived three canopy height , = - el ’ |
i U e T
= Machine leaning —
— Decision Tree regression
= Performance

— RMSE~6.6m

https://doi.org/10.1016/j.rse.2020.112165 https://glad.eartheng



https://doi.org/10.1016/j.rse.2020.112165
https://glad.earthengine.app/view/global-forest-canopy-height-2019

Multi-layer perceptron (MLP)

hi?den units Output y |npUt X

Activation
functions o, h

Weights w

| | | | Universal approximators!
[Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer

feedforward networks are universal approximators. Neural Networks 2(5), 359-366.] 19



Convolutional neural networks (CNN)

Sparse connectivity Convolution
layer m+| O L, ]“JI L 0 :
] L T
il ofof1[1[o
0|1|1|0]|0
layer m-| Convolved
Image Feature

Pooling (sub-sampling)
Single depth slice

X 11112 ]| 4
max pool with 2x2 filters
5|16 |7]|8 and stride 2 6 8
3 | 2 [EINEE ] 3|4
[Sources: 1| 2 B34

http://cs231n.github.io/convoluti
onal-networks;
http://deeplearning.stanford.edu] y 20
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[Sources: http://cs231n.github.io/convolutional-networks]
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Convolutional neural networks (CNN)

‘,\
RyL l\‘l

<

= |Learned filters (Gabor-like)

96 convolutional kernels of size 11x11x3 |learned by the first convolutional
layer on the 224x224x%3 input natural images

[Sources: Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural
information processing systems (pp. 1097-1105)] 22



Modern neural networks

=]
. . ==
Modern architectures, e.g.: = -
— Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... = A R
& Rabinovich, A. (2015). Going deeper with convolutions. ﬁ!;':aa
In Proceedings of the IEEE conference on computer vision and E AR o
pattern recognition (pp. 1-9). .:: :
— Achieves top-5 accuracy of 93.33% (error " o s
6.67%) ImageNet Large Scale Visual some
Recognition Competition 2014 (ILSVRC) -
— Human performance: S -
error ~5.1% T
28% AlexNet, 8 layers =] ﬁjm; =3
26% e
ZF, 8 layers E3
VGG, 19 layers Eﬂwﬂﬂ
GooglLeNet, 22 layers s
bk ResNet, 152 layers gﬁmg =
12% (Ensemble) ﬂaﬂ.E
I 7:3% 200 SENet g
g ey O A Human emor T TTTTTTT B3
o - 3°/°225°’ GoogleNet == 2
shall shallow &= . ; 1
o 2011 012 018 010 2015 200 DT e & Image-net.org

I Deep learning computer vision 23



A catch #1: Wrong Labels

= Label errors in the test sets of 10 of the
most commonly-used computer vision,
natural language, and audio datasets ——

MNIST CIFAR-10 CIFAR-100 Caltech-256 ImageNet QuickDraw

given: 5 given: cat given: lobster given: ewer given: white stork given: tiger
corrected: 3 corrected: frog corrected: crab corrected: teapot corrected: black stork corrected: eye

= An average of 3.4% errors across the 10 e
d atasets y multi-label d

- Where fOI’ exam ple 2 y 916 Iabel errO rS COm p”S( given: hamster given: fried egg gwe: nts given: hat
. . also: cu also: frying pan also: fence also: flying saucer
6% of the ImageNet validation set - - ”
neither L g ' = &
u J u d g I n g m Od e I S Over CO rrectly Iabe I ed test given: 6 given: deer given: rose given: porcupine mlar bear given: pineapple
ait: 1 alt: bird alt: apple alt: hot tub ait: elephant alt: raccoon
sets may be more useful
— models that didn’t perform so well on the Do agmemAy %
Orlg I nal IncorreCt Iabels Were Some Of the beSt given: 4 IGI’\: deer given: spider given: minotaur . guv: el ' given: bandage

alt: 9 alt: frog alt: cockroach alt: coin alt: flatworm alt: roller coaster

performers after the labels were corrected

C.G. Northcutt, A. Athalye, J. Mueller. Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks, https://arxiv.org/pdf/2103.14749.pdf 24
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A catch #2: Interpretation of results

= Those deep learning models very difficult to interpret:
— Fundamental question: why the model makes a particular decision?
— Extremely important for many domains, including Earth observation (EO)

= Asimple pitfall:
— Application: ML applied to Skin cancer detection
— Task: Given image of skin lesion, classify whether benign or malignant

— On first try: Method had amazing success rate - whenever the doctors thought it was
benign/malignhant, the ML method came to the same conclusion!

— Almost too good to be true.
 Scientists wanted to know: How did the algorithm figure it out?
* Applied visualization tool to learn about method’s reasoning.

— Scientists found that ...

https://www.star.nesdis.noaa.gov/star/documents/seminardocs/2019/20190718 Kumler and Ebert-Uphoff.pdf

25
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A catch #2: Interpretation of results

= Those deep learning models very difficult to interpret:
— Fundamental question: why the model makes a particular decision?
— Extremely important for many domains, including Earth observation (EO)

= Asimple pitfall:
— Scientists found that ... doctors had placed a ruler into the image whenever they thought it was

malignant.
0 1m2 3 ¢ S 6 7 8 95 10 M 12 13 14 15 16 17 W@ 19 20 21 22 23 24 25 26 27 28 29 30
2l 1! ot 6 g L Y § v £ 2 | o

— The algorithm detected the ruler, then concluded that the growth was malignant. That’s not
what folks had intended for the algorithm to do! Found problem early thanks to
transparency tools.

https://www.star.nesdis.noaa.gov/star/documents/seminardocs/2019/20190718 Kumler and Ebert-Uphoff.pdf 26
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A catch #3: Fooling the model

AlexNet

VGG16

Inception

ResNet18

DenseNet121

Vv

Forest 90.18%
Forest 99.64%
Forest 95.29%
Forest 99.81%
Forest 99.71%

Xu, Y., & Ghamisi, P. (2022). Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark. IEEE Transactions on

Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2022.3156392

27
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A catch #3: Fooling the model

AlexNet

» Residential 27.97%

VGG16

River 50.31%

Inception

Residential 75.40%

ResNet18

Mountain 22.81%

DenseNet121

Vv

Beach 86.95%

Xu, Y., & Ghamisi, P. (2022). Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark. IEEE Transactions on

Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2022.3156392

28
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https://ieeexplore.ieee.org/abstract/document/9956865
https://ieeexplore.ieee.org/abstract/document/9956865
https://ieeexplore.ieee.org/abstract/document/9956865

Counting trees In in the West African Sahara and Sahel

= Mapping crown size of each tree more
than 3m< in size over a land area that
spans 1.3 million km?
— detected >1.8 billion individual trees

(13.4 trees per hectare), with a median
crown size of 12 m?

= Satellite data

— 50,000 DigitalGlobe (Maxar) multispectral
images from the QuickBird-2, GeoEye-
1, WorldView-2 and WorldView-3
satellites, collected from 2005-2018

— @ 0.5 m resolution

= Machine learning
— Deep learning (Unet-style network)

= Performance
— # of trees missed 5%
— Area of trees missed 25%

https://doi.org/10.1038/s41586-020-2824-5

a b..

23°15'25"N

18° 41°20" N

Trees per hectare

Tree cover (%) 0 _—

- 1-25 22
I 2550 || as
W 5075 67
| 75-100 B -

14° 22 23" N
14°40° 59" N

13°51°45" N
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10-m global canopy height: fusion of S2 + GEDI

Canopy top height
S
Input
Sentinel-2 + geo-coordinates = Target
c 8 GEDI reference
° T
“ - . ~ - C .
3 e :l§ : %% e e.
B c & 1= o
B = . - : g ® .. o
B = : o “— Sparse » '
< : = S Y e—| e 8 .
’ CNN &l M supervision B o %
k — Q °
3 > ()] O
.2 \ 5 E 0. ® OO
_—_ T S ° @ e
< e s]ﬂ!ﬂ lon/180) 1>—<
\ cos(rrlo"/m
Variance
25 ¢ RMSE: 6.0, MAE: 4.0, ME: 1.3 §
N S2 only (aRMSE: 8.3, aMAE: 7.1, aME: -5.4) '€70 10
20 B S2+geo (aRMSE: 7.6, aMAE: 6.3, aME: -4.3) —
15 BN S2+geo balanced (aRMSE: 7.3, aMAE: 5.8, aME: -3.1) Y601
Final ensemble (aRMSE: 7.3, aMAE: 5.5, aME: -1.8) o 10%
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—~ 10 € 501 9
£ @ o
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= £ 40 o
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£20 3
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-20- £ 101
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0 5 10 20 25 30 35 50 0 10 20 30 40 50 60 70

https://arxiv.org/abs/2204.08322

GEDI reference height [m]

GEDI reference height [m]

31


https://arxiv.org/abs/2204.08322

BM-21 "GRAD"/
JORNADO-G"

Callbar - 122 mm
Range - 20-40 km
Longitudinal daviation of 0.5% from the range

Massive use of heavy
weaponry

Tronsverse deviation of 0.8% from the range
Number of rockets - 40
The impression oroa of one volley is 145,000 m2

The impression arsa of one shell is 3,625 m2

The 8M 2! mainly has high explosive

fragmenfafion and cluster

~ Using 110,000 shells per month
~ Asking for 250,000 shells per
month

projectilos, which are designed to

dostroy infantry and lightly armored Target: fortified {armorod)

vehicles over a large area and are object ~lm-10n:1
‘E

nof effective against fortified

targets or armored vahicles

R, ~ Estimated 5,000,000 shells fired
| - ~ Up to 60,000 per day in July, 2022

Range 30 km

BM-27 "URAGAN"

The BM-27 mainly has high-explosive

hugmcn!anon and cluster
profectiles, which are designed to
destroy infantry and lightly armored
vehicles over a large area and are
not effective against fortified
targefs or armored vehiclos

../Ni/ %\\'\l N
\
pan )

Colibor - 220mm
Range - 35 km
Number of rockots - 16

Longitudinal deviation of 0.5% from the range
Transverse doviation of 0.8% from the range
Tha impression areo of ane volloy is 420,000 m2

The impression areo of one shell is 26,250 m2

Targot: fortified (armored)
object 4m«10m

angc 30

Majority of Art|I
shelling is

BM-21 Grad




= Using the U-Net Segmentation model for crater detection Cleleq Defsly Reltehce 8

= Created VHR imagery processing pipeline for multi-terabytes
of data

= Detecting on a per-crater level
= Using crater locations, we can scale up into hazard maps

= Agricultural, de-mining, and environmental products can be X |
developed from crater dispersal e R 1y Y]

Artillery Crater Mapping Status

Training A Crater Detection Model, with 2022 Imagery

U-Net
Model

BRSNS
| TRSaperes
S T
: TNge :\"""‘ :
ﬁ |
Image Preprocessing i it &
Pipeline * e

VHR Training Processed Imagery
Imagery Selection

Crater Locations + VHR Imagery

Mapping With Trained Model

X

Raster Postprocessing Khorsonska
*

N N > . A &,
B L™ L. ¥ ¥
-
. pe
} b
R Y
Image Preprocessing -
4
Pipeline - :

Imagery Selection

Apply Model

Processed Imagery Binary Detection Masks : rxlad ;Avichoman Respubiika Kiym




Artillery and Rocket Crater Detection
and Monitoring with VHR Satellite Imagery

- 2.5 Million artillery and rocket impacts mapped
across the 2022-2023 front-lines

- 33,000 km? mapped from Mikolaiv to Kharkiv

- Impact areas indicate presence of unexploded
bombs

- Very high resolution satellites allow us to record
likely areas of unexploded bombs accurately and

quickly

- Locations key for clearing hazardous areas




- 81,000 Fields have been analyzed

- Field boundaries automatically generated
- 1.21 Million craters within agricultural fields
- Average of 15 craters per field, median of 3

- Many fields contain more than 1000 craters

A Scade: 1:2,500,000

Craters in Feids
-2
W 23 -108
S 105 - 296
296« 8B40
840 - 3556
Sentinel-2 doudless

Gommercial Imagery Not publicly
available over many Ukrainian ' 2 " (i

% POSItL/—__'—/__—_—-"

Approximate Front lines
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Example: unharvested field

(a) 2022-07-02 (b) 2022-05-08 (c) 2022-06-12

(a) SkySat false color (NIR-red-green)
image. (b)-(e) Sentinel-2 false color
(SWIR1-NIR-red). In Early May (b) the
field was in very good condition;
however, shelling occurred mid-June as
seen by both Sentinel-2 (c) and SkySat

(a). Fire onset is seen in (d) and the field
(d) 2022-07-07 (e) 2022-07-17 is seen burned in (e). -
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Detection and mapping of artillery craters with very high spatial resolution
satellite imagery and deep learning
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Change detection: construction detection

Validation on DC area
2018, April 2019, August Unet

= Onera benchmark dataset
[Daudt et al., IGARSS 2018]
— Includes 24 location over cities
— Changes between 2015 and 2018

— Transitions between land use classes
 Green urban areas = commercial use
* Industrial -> residential use

= Machine learning
— Deep learning (Unet)

= Performance
— ~50-70%

https://doi.org/10.1080/17538947.2022.2094001
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Leveraging the use of labeled benchmark datasets for urban area
change mapping and area estimation: a case study of the

Washington DC-Baltimore region
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SpaceNet Challenges

* https://spacenet.al/

1-3§}SpaceNer

SpaceNet, launched in August
2016 as an open innovation project
offering a repository of freely
available imagery with co-
registered map features.

S SpaceNet

Accelerating Geospatial Machine Leaming

SpaceNet 5:
Automated Road
Network Extraction and
Route Travel Time
Estimation from Satellite
Imagery

SpaceNet 2:
Building Detection v2

MULTI-TEMPORAL URBAN DEVELOPMENT
CHALLENGE

SpaceNet 4:
Off-Nadir Buildings

SpaceNet 1:
Building Detection v1

SpaceNet 6:
Multi-Sensor All-Weather
Mapping

SpaceNet 3:
Road Network Detection



https://spacenet.ai/
https://aws.amazon.com/public-datasets/spacenet/

Open problems: Al/ML In RS

= Aot of unlabeled data and few labeled data

— How to better deal with it? Can we build a general framework, which can be fine-tuned for
specific problems? (Transfer learning)

— Non-stationarity of labels

— Increasing labeled data through crowdsourcing:
« Perception that it is easy to do --- it's NOT!!!
* |t cannot be done for any classes, e.g. crop specific, biodiversity, etc.

= Missing data, non-uniform coverage
— E.g. due to clouds/shadows in optical imagery

= Heterogeneous data sources

— Multiple scales (spatial resolutions), temporal (time-series), multiple spectral bands, continuous
and point-based coverage
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Open problems: AI/ML In RS (cont’)

= How to incorporate domain knowledge into ML models?
— Fusing physics-based models and ML models
— E.g. meteorology into crop mapping, shape in objects, ...

= From feature engineering to model engineering
— Complexity of optimizing ML models
— Sitill need understanding

= Need to provide QA/uncertainty!
— E.g., to avoid situations with misclassification with clouds
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