Introduction to Polarimetric Synthetic Aperture Radar POLSAR

Armando Marino The University of Stirling, Scotland, UK

Outline

- ✓ What is polarimetry?
- ✓ Quick recap:
 - ✓ Scattering
- ✓ Basic concepts in polarimetry:
 - ✓ Wave
 - ✓ Single targets
 - ✓ Partial targets
- ✓ Target decomposition:
 - ✓ Coherent
 - ✓ Incoherent
 - ✓ Non-model based
 - ✓ Model based

What is Polarimetry?

You may know how polarimetry can be exploited in optics:

- 1. Polaroid glasses
- 2. Modern 3D Cinema

Why Polarimetry in radar remote sensing?

✓ Different targets generally interact in a different way when illuminated by differently polarised plane waves

Few definition... (they will be treated in details later on):

- Isotropic: the target interacts at the same way with any polarisation (the interaction does NOT depend on the direction of the Electric field vector)
- ✓ Anisotropic: the scatterer has a different behaviour for different polarisations
- ✓ Depolarisation: the tendency of a target to change the polarisation of the incident wave, but in some contexts is only refereed to the lost of polarimetric purity (i.e. the polarisation changes in time/space)

Why Polarimetry in radar remote sensing?

Pauli RGB image of San Francisco Bay (AIRSAR). The polarimetric information is coded in the colours. As you can notice we can use colours to differentiate between targets. Data courtesy of MDA and Canadian Space Agency.

Why Polarimetry in radar remote sensing?

Pauli RGB image around Buenos Aires (ALOS-1). The polarimetric information is coded in the colours. As you can notice we can use colours to differentiate between targets. Data courtesy of JAXA.

Quick recap:

Scattering

Radar backscattering, sigma nought o

Pixel values equate to the intensity of the backscattered microwave signal

The physical unit is the normalised radar cross section, or sigma nought σ [dBm²]

σ ranges generally from +5 (very bright) to -40 dB (very dark)depending on Noise Floor

What frequency?

- Choice of frequency governed by size of features to be imaged.
- As a rule of thumb the energy interacts more with objects of size equal or bigger than the wavelength.
- ✓ The penetration is also higher when the frequency is lower (e.g. P-band 0.3-1 GHz)

Interactions with objects and surface

- ✓ Intensity of the backscattered microwave signal depends on size, shape and orientation of objects.
- Surfaces whose roughness is much less than the radar wavelength exhibit specular (forward) scattering (e.g. calm water).
- Rough surfaces scatter energy in all directions, but proportionally more in backwards direction towards the receiving antenna (e.g. rough soil).

UNIVERSE

xsbinetsing and voice and voice 法不可保 一下 医下水 化化化合合 化化合合化 **メキーメルはゆうせんせわのしんとたい** 1 Febblesberg
 Febble シーログトンホンローーロショッキロローシャー 242 A M M & R M M & D R & R & D N Q M & S & L & D L D N D M ムたた中国民民の事業は自己があたいのまでの SALTING BOX 40 I M 4210 V dismale w 유 C 박 L 박 네 마 아 ********* -1 + 0 M F V & L No & Frank Prove Service Servi 中有年后本有白的冬島上川出入日本州由本部日前 伊西市省内山各部市山山市内北京州市本部日 キャンシンロロロカーロー・ローロロンシメール 0 0 0 0 H 4 X 8 0 + 0 - 1 日本台外关手由手一关 建山口分式日日 (なくのための自由をなられたなくなる) NX R NX I V CON - D + 10 IP - 01 IP I ~ @ # w @ ^ ! Pig Pigs of 1 医下颌的 1 m m m 4-5 -

キンソンとちた ムルドカ 水子 学会会 ほの 2 千 中国市政的参与各部和政府的 トトロのの合名サトトンを曲め入りメトト

-

.

Three core concepts you should remember:

Idea1: Wave polarimetry

Wave Polarimetry: Plane waves

The most **general** way to describe any (macroscopic) electromagnetic phenomenon is by using the legendary **Maxwell equations**

After a series of hypothesis (i.e. monocromatic or narrowband signal, homogeneous, stationary and isotropic medium) we end up with a **Plane Wave** that can be "*easily*" described knowing the currents over the surface of the target

Transverse plane: Perpendicular to the direction of propagation

Wave Polarimetry: mathematical expression

The mathematical expression of the plane wave is the following

Loop of current

$$\underline{E}(\underline{r}) = -\frac{\beta \omega e^{-j\beta R}}{4\pi \mu_0 R} (\underline{r} \times \underline{m})$$

$$\underline{H}(\underline{r}) = \frac{\beta^2 e^{-j\beta R}}{4\pi \mu_0 R} \underline{r} \times (\underline{r} \times \underline{m})$$

$$y$$

$$r$$

$$\beta = \sqrt{\omega^2 \varepsilon_0 \mu_0} \qquad \omega = 2\pi f$$

<u>E</u>: electric field, it's a complex vector (when <u>E</u> is cleaned by the dependences on the distance is sometime refereed as **Jones** vector) <u>H</u>: magnetic field, it's a complex vector and can be derived from <u>E</u> ε_0 : electric permittivity of vacuum μ_0 : magnetic permeability of vacuum f: frequency of monocromatic (or narrowband) wave R: distance from the source (generator) of the wave

Currents on surface generating

Modified from: Simon Horsley, Tutorial: Topology, waves, and the refractive index, 2022

- An impinging electromagnetic pulse of energy will produce current on the surface and inside the layer (depending on discontinuities).
- ✓ These currents are "alternating" and therefore they will scatter an electromagnetic field.
- ✓ The field gets tied up in a wave as the old good Maxwell was saying.

Where are the current in the case of volume scattering?

Wave Polarimetry: useful abstraction

4 or 2

Parameters needed

- Problem: It is complicated to study the wave polarimetry starting from the Jones vectors.
- Solution: we use a geometrical abstraction and wave polarimetry becomes an ellipse. We need:
 - ✓ 2 parameters for the ellipse shape
 - ✓ 1 for the amplitude
 - ✓ 1 for the phase

Fig. 2.2 Polarization Ellipse Relations (Courtesv of Prof. E. Pottier)

Three different concepts you must remember:

Idea2: Scattering polarimetry Deterministic targets

Single targets?!?! What is that?!?!?

- ✓ A single target is a target that does NOT change its polarimetric signature in time/space: it is a **deterministic** target
- ✓ Examples:
 - ✓ calibration targets: corner reflectors
 - ✓ Some metallic or man-made targets (but not all of them): a car, a wall
 - ✓ Some natural target: a rock

Trihedral corner reflector

How do they look like?

Corner reflectors in X-, C- and L-band SAR imagery.

Corner Reflectors as the tie between InSAR and GNSS measurements: Case Study of Resource Extraction in Australia March 2015 DOI: 10.5270/Fringe2015.pp60

Armando Marino

Single targets: how to study polarimetric targets

- ✓ We want to use polarimetry to detect single targets and we can transmit and receive polarised waves:
 - ✓ How many polarimetric acquisitions would we need?
- ✓ To characterise any polarised wave we need 2 polarisations, since the plane wave is 2 dimensional (2-D).
- ✓ If we send a polarised wave (e.g. linear horizontal), this will generate currents on our target and these currents will scatter a wave with some polarisation. Therefore we need to collect 2 polarisations to characterise such scattered wave.
- ✓ But what happen if we change the polarisation of the transmitted wave (the wave that we send from the satellite)?...
 - \checkmark Well, we will have different currents on the surface.
- In order to cover each possible transmitter waves, we need to send two polarimetrically orthogonal waves.
- Summarising, we transmit 2 orthogonal waves and collect 2 orthogonal waves:
 2x2=4 channels/acquisitions needed

Single targets: same as before, but with math

- ✓ We can arrange the 4 acquisitions discussed before in a matrix: the Scattering or Sinclair matrix
 - ✓ H: horizontal linear
 - ✓ V: vertical linear
- The matrix will represent a transformation from transmitted polarised waves to received waves: i.e. it describe the polarimetric behaviour of the target

Single Look Complex

Data are stored in complex form, that is real plus imaginary part

Spyder (Python 3.6		Run Debug Consoles Projects Tools	View Help							_	Ø	×	
			-		∂	C:\Users\am221					~ ►	•	
Editor - C:\/MyC\Talks\20	18\CONAE	E\programs\Tutorial_CONAE_180927_solutions.py	₽ × Variable explore	er								₽×	
	IAE.py 🔝	Tutorial_CONAE_180927_solutions.py 🗵 🔳	• • * • •	2								Q.	
69 70			^ Name	Туре	Size			Value				^	
	######	## Loading HH ################	HHFull										
72 # real part of HH			HVFull	complex64 (1248	, 18432)								
73filei_HH = "i_HH" 74i HHFull = sar.Open ENVIasFloat(path + file				complex64 (1248	, 18432)	array([[0.03976065+0. 0.0							
		calling a function by writing library sar, and take the fun		complex64 (1248	3, 18432)	array([[0.23054181+0.04004149j, 0.2626125 +0.18533355j, 0.1							
		hen calling a function in a l		module 1		module object of builtins module							
		n Open_ENVIasFloat is contain o open this file by pressing (str 1		i_HH							
80			filei HV	str 1		i HV							
81 <i># imagi</i> 82 fileq H	I HHFu	ull - NumPy array								- 0) ×		
83 q_HHFul		6		7		8	9	10	11	12	^		
84 85 # Now w	208	(0.07107788+0.0001118965j)		-0.11895645j)	(-0.0]	37696168+0.027938405j)	(0.16672957-0.25383106j)	(0.09106964-0.16733629j)	(-0.2292527+0.13909335j)	(-0.11490008+0.11884244j)	(0		
86 <mark>HHFull</mark>	209	(-0.28057334-0.042206895j)	(0.38021272+	0.029810535j)	(0.4	13548566+0.26694945j)	(-0.138532+0.40491346j)	(-0.5769423+0.1847391j)	(-0.015036544-0.05962692j)	(0.26831898-0.1743832j)	(-		
87 88	210	(0.030044155+0.34601098j)		-0.025732089j)		29259968-0.14295235j)	(0.20367235-0.5841537j)	(0.37775946-0.262635j)	(-0.21820979+0.16362272j)	(-0.17708418-0.09521227j)	(0		
89 # Notic	211	(-0.41205642+0.051513102j)		+0.32724288j)		0687426+0.5270206j)	(0.054809444+0.82367045j)	(-0.3507389+0.1318827j)	(0.21761155-0.41316128j)	(0.08479531-0.22683923j)	(-		
90 # You c 91 # Notic	212	(-1.1572694-0.38786665j)		+0.3208726j)		.9236386+1.241693j)	(-1.1034379+2.4863272j)	(-2.1077378+0.6184698j)	(0.90856504-0.7555746j)	(1.2048659-0.31549478j)	(-	~	
92	213	(0.03483691+0.24929173j)		3-0.19649513j)		052806515+0.14856093j)	(-0.33817375+0.041899033j)	(-0.325384-0.35427806j)	(0.15580273+0.25812522j)	(0.3568068+0.18579605j)	(0	ъ×	
93 # It is 94 # they	214	(0.05983149+0.14247231j)		-0.019802434j)		056780856-0.08619735j)	(0.0276807+0.026372923j)	(0.004342114+0.07160738j)	(-0.16508183-0.13053997j)	(-0.10213288-0.1436391j)	(-	· A	
95 <mark>del i_H</mark> 96 <mark>del q_H</mark>	215	(-0.23911689+0.13675046j)		+0.20256251j)		1657779+0.29408714j)	(-0.14119186+0.3051973j)	(-0.14424676+0.11273051j)	(0.019122131-0.149513j)	(0.011736556-0.17397477j)	(-	^	
97	215	(0.14865826+0.14563574j)		2+0.18294339j)		08458038+0.04554746j)	(0.11610123-0.26472777j)	(0.27141842-0.2700538j)	(0.014428847+0.092346266j)	(-0.16020864+0.009083515j)			
98 99 #######	210	(0.14413048+0.050818104j)	,	+0.08817709j)		23391057-0.08530626j)	(0.035040505+0.107569896j)	(-0.057849325+0.24947123j)	(0.12625532-0.06831674j)	(0.2286333-0.123649314j)			
100 # real													
101 filei_H 102 i_HVFul	218	(0.035153415+0.10457542j)		L+0.120111205j)		03158148+0.0710468j)	(0.17607468-0.20794402j)	(0.22993661-0.093825236j)	(-0.052824214+0.10840995j)	(-0.13797311+0.015566013j)			
103		(0.03727213-0.21260321j)		0.031192722j))3230082-0.16893798j)	(-0.08027681-0.031375308j)	(-0.05084166+0.05267703j)	(-0.06616261-0.09878135j)	(-0.100596376-0.028747175			
104 <i># imagi</i> 105 fileq_H	220	(0.26260537-0.008604212j)		-0.14325972j)		21277122-0.3136897j)	(-0.06775208-0.13144417j)		(-0.038857333+0.015634881j)	(0.023326596+0.09556501j)			
106 <mark>q_HVFul</mark>	221	(-0.042971827+0.23937722j)		3+0.1270226j)		48672948-0.06346875j)	(0.021206522-0.088813424j)	(0.1901794-0.2169216j)	(-0.029284136+0.024858948j)	(-0.29060984+0.03422946j)			
107 108 # Now w	222	(-0.037735436+0.0066418382j)		6-0.12131322j)		05169738-0.36016986j)	(-0.14253348+0.10819008j)	(-0.116834626+0.09651822j)	(0.056414068-0.17803384j)	(0.1667285-0.24515238j)	(0)		
109 HVFull	223	(0.070434734-0.07451398j)		-0.12745978j)		08949843-0.15957025j)	(0.03456987-0.07367534j)	· · · · · · · · · · · · · · · · · · ·	(0.0029854525+0.062434208j)	(0.08751949-0.08023951j)	(0		
110 111# We ca	<	(0 0606/173 0 110066334)	(0 10202260)	·0 10E(01004)	(0.1)	1401600.0 0040000041	(0 000160700.0 061001E-)	(0 111207/ 0 010/2E7//-)	/ A AECIDDIDE A AD0/707664)	/ 0 07070726.0 011260124)	>		
112 del i_H	For	rmat Resize Background color											
113 114										ОК	Cancel	~	
<	_							.					
								Permissions: RW	End-of-lines: CRLF Encoding: UTF-	8 Line: 69 Column: 1 M	emory: 22	. %	
									UNIVER	SITY of		1	
						Ar	mando Marino		²⁴ CTID		MM	h	

SI

Single targets: same as before, but with vectors

Parameters needed

- ✓ An easier way to see the polarimetric information is vectorising the scattering matrix
- Also, we are often interested in polarimetry alone and not how much the target scatter: so we **normalise** the scattering vector and obtain the **scattering mechanism** (this is sometime called projection vector).
- ✓ How many parameters we need:
 - ✓ In general 8 since we have 4 complex numbers
 - ✓ But for scattering mechanism we remove the overall power (length of vector)
 - ✓ It can also be showed that the "absolute phase" (a phase term that we can put as overall factor) does not keep information.
 - \checkmark We end up with 6 parameters for a scattering vector

Scattering vector

$$\underline{k} = \frac{1}{2} Trace([S]\Psi) = [k_1, k_2, k_3, k_4]^T$$

Scattering Mechanism $\omega = k/|k|$

UNIVERSITY of

STIRLING

Single targets: same as before, but with a simplification

Parameters needed

- ✓ In case the system is monostatic (one antenna as transmitter-receiver), and the medium observed is reciprocal (it behave at the same way independently by the direction of propagation of the wave) the two cross-polarisations are the same.
- ✓ We need less parameters to characterise targets in such situation.
- ✓ *Please note*, HV and VH are exactly the same except for **thermal noise**.
- Please note, at low frequencies (P and sometime L band) the ionosphere is not reciprocal introducing non-reciprocity (i.e. Faraday rotation). This is a problem only for satellites.

$$\underline{k} \in C^3$$

Single targets: some physical interpretation

- ✓ The idea of using polarimetry is based on the physical concept that different targets will be excited with different currents. Therefore, *it has a narrow relation with some physical interpretation*.
- The scattering vector (as any vector) has to be expressed in some basis.
 The one that list the elements of the S matrix is called Lexicographic basis.
- There are also other basis that helps having some physical interpretation of the target. An example is the **Pauli basis**.
 - ✓ Each of the components is sensitive to a specific target (you will learn more on this when specking about *Decompositions*).

Pauli bases: $\vec{k}_{P} = \frac{1}{\sqrt{2}} \left[S_{HH} + S_{VV}, S_{HH} - S_{VV}, S_{HV} + S_{VH} \right]^{T}$

Lexicographic bases:

$$\underline{k}_l = [S_{HH}, S_{HV}, S_{VV},]^T$$

In the polarimetric space, is 1 vector representing one unique single target?

Three different concepts you must remember:

Idea3: scattering polarimetry Distributed/partial targets

Problem: statistic or distributed targets

- ✓ This is a concept narrowly related with what we said in the lecture about **Speckle**
- ✓ When the target *changes* spatially it can NOT be represented by a *unique* Scattering matrix. It is a random process.
- ✓ In this image, you can imagine the squares as the resolution cells...
- ✓ The target under analysis is the same (the same forest)... but the objects things inside the squares are different (as you can see):
 - So, how do we deal with this variation? The scattering matrix will change pixel by pixel due to the speckle (because the targets in each resolution cell is slightly different).

Solution: second order statistics

- In order to extract information the second order statistics of the target can be extracted
- ✓ In case of Gaussian complex pixels, these contain all the information about the random process
- ✓ In *Lexicographic basis*, we often talk about **COVARIANCE** matrix

Pau

basi

✓ In Pauli basis, we often talk about COHERENCY matrix (the difference is only the basis and we can transform one into the other)

General formulation (any basis)

Second order
statistics as
outer product.

$$[C_{3}] = \left\langle \underline{k} \cdot \underline{k}^{*T} \right\rangle \qquad [C_{3}] = \begin{bmatrix} \left\langle |k_{1}|^{2} \right\rangle & \left\langle k_{1}k_{2}^{*} \right\rangle & \left\langle k_{1}k_{3}^{*} \right\rangle \\ \left\langle k_{2}k_{1}^{*} \right\rangle & \left\langle |k_{2}|^{2} \right\rangle & \left\langle k_{2}k_{3}^{*} \right\rangle \\ \left\langle k_{3}k_{1}^{*} \right\rangle & \left\langle k_{3}k_{2}^{*} \right\rangle & \left\langle |k_{3}|^{2} \right\rangle \end{bmatrix}$$
Average

$$\begin{bmatrix} \left\langle |S_{HH} + S_{VV}|^{2} \right\rangle & \left\langle (S_{HH} + S_{VV})(S_{HH} - S_{VV})^{*} \right\rangle & 2\left\langle (S_{HH} + S_{VV})S_{HV}^{*} \right\rangle \\ \left\langle (S_{HH} - S_{VV})(S_{HH} + S_{VV})^{*} \right\rangle & \left\langle |S_{HH} - S_{VV}|^{2} \right\rangle & 2\left\langle (S_{HH} - S_{VV})S_{HV}^{*} \right\rangle \\ 2\left\langle S_{HV}(S_{HH} + S_{VV})^{*} \right\rangle & 2\left\langle S_{HV}(S_{HH} - S_{VV})^{*} \right\rangle & 4\left\langle |S_{HV}|^{2} \right\rangle$$

Properties of Target Coherency Matrix

Parameters needed

It is $[C] = [C]^{*T}$ Hermittian: Semi-positive Definite $I = \underline{\omega}^{*T} [C] \underline{\omega} \ge 0$

Rank 1 [C] matrices has a unique representation as [S] matrices (unless one absolute phase)... i.e. they are built with one single scattering vector

Real positive Complex $\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} \left\langle \left| k_1 \right|^2 \right\rangle & \left\langle k_1 k_2^* \right\rangle & \left\langle k_1 k_3^* \right\rangle \\ \left\langle k_2 k_1^* \right\rangle & \left\langle \left| k_2 \right|^2 \right\rangle & \left\langle k_2 k_3^* \right\rangle \\ \left\langle k_3 k_1^* \right\rangle & \left\langle k_3 k_2^* \right\rangle & \left\langle \left| k_3 \right|^2 \right\rangle \end{bmatrix}$

Lower and upper triangular parts are complex conjugate

- ✓ How many parameters we need?
 - \checkmark 3 for the diagonal real positive terms
 - \checkmark 6 for the off diagonal complex terms
 - If we neglect the overall amplitude (trace of the matrix) we reduce one parameter

How do we practically use this?

- An easy way to use this is by creating one image each element of the covariance matrix
- ✓ Pay attention that cross-diagonal elements are Complex numbers.

yder (P	Python 3.6)																	- 0	
Edit	Search Source	Run Debug	Consoles Proje	ects Tools View															
	B 🗣 📕	@	H 🛃 🕪 🧲) N 🕻 🚝	ç≡ 🕨 🔳	EX /	- 🔶 🍦 ۶	C:\Users\am221										~	
- C: \My	yC\Talks\2018\CONA	AE\programs\Tutoria	al_CONAE_180927_sc		Variable explorer														
_			IAE_180927_solution	s.py 🔀 🔄 🕨 i 🕏	1 🕹 🖻 🎙 /														
	= HVFull[d = VHFull[d				Name	Туре	Size						Value						
vv	= VVFull[d	lr1:dr2, da	1:da2]			float32 (1000, 6000) a	array [[0.0284	43286, 0.11281	456, 0.1921	399,, 0.	11451569, 0.0	0627168						
de:	l HHFull, H	WFull, VHF	ull, VVFull	#	C12Full	C12Full complex64 (1000, 6000) array [[1.45457825e-02+0.01128196j, 7.70821190e-03+0.00376824j,													
	Check the V	/ariable Ex	plorer and s	see how t.	C13Full	C13Full complex64 (1000, 6000) array [[0.01435393-0.01395321j, 0.11613512+0.00352166j, 0.0 array [] 1.19179888e-02, 6.52541290e-04, 4.98843566e-03,,													
	107				C22Full	float32 (1000, 6000) '	array [[1.191] 9	79888e-02, 6.5	2541290e-04	4.98843566e	-03,,							
#%) ##1			###########	#########	C23Full	complex64 (1000, 6000) a	array [[1.800	569781e-03-0.0	1283378j,	3.05272441e-0	3-0.00363853	j,						
#					C33Full	float32 (1000, 6000)	array [[0.0140	09382, 0.11966	334, 0.0678	319,, 0.	10910278, 0.0	0680876						
#			ING THE COVA	ARIANCE M		•												_	-
C11F	-ull - NumPy array				_													- 0	
_	0		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	-
	0.0284329	0.112815	0.192164	0.0696964	0.00977801	0.091945	0.0765197	0.115472	0.0576391	0.0892011	0.27376	0.0235134	0.00875837	0.2234	0.0880832	0.019835	0.0285191	0.00658374	
	0.15936	0.0309374	0.241725	0.100041	0.0452113	0.314009	0.0665284	0.0419675	0.123675	0.0274823	0.0421274	0.0443142	0.240537	0.00357138	0.138227	0.0619979	0.0970914	0.0458256	
	0.0438354	0.214579	0.058059	0.092448	0.258334	0.0500391	0.199267	0.101509	0.0680541	0.128033	0.00781235	0.00219264	0.0293388	0.0250444	0.12638	0.131971	0.0275621	0.016508	
	0.207855	0.119369	0.000719917		0.0301519	0.0247315	0.00830485	0.07295	0.209398	0.330004	0.0114797	0.0991345	0.235359	0.134207	0.011273	0.0753751	0.00321607	0.0527594	
	0.0570053	0.132377	0.0792781	0.103252	0.247283	0.130179	0.117291	0.353488	0.505952	0.0482432	0.0584333	0.0743887	0.0500249	0.0111193	0.0628825	0.098449	0.288889	0.162527	
	0.624295	0.26706	0.0635061	0.00456994	0.00365802	0.0246228	0.00758548	0.0763015	0.0308939	0.2255	0.0952573	0.023491	0.21724	0.0472077	0.0946453	0.0102976	0.0233078	0.0614216	
_	0.107482	0.749921	0.521945	0.0526716	0.128643	0.202174	0.0588344	0.236714	0.0425943	0.165698	0.00416545	0.0774513	0.0740566	0.337991	0.284731	0.0110099	0.0759539	0.131773	ļ
	mat Berize	Backgrou	e di e el e e																-
		✓ Backgrou																	-
-ull -	- NumPy array																	- 0	
_		0		1		2			3		4			5		6		7	-
(6	0.0145457825	+0.011281962	5j) (0.007	708212+0.00370	68239j) (-@	0.030748777+0	.0036208266j)	(-0.0122371	86+0.009193638	3j) (0.002	1310826-0.00	048958056j)	(-0.005569	6126+0.013920	422j) (-0.0	023065198+0.0	055310074j)	(0.019580366	5-
0 (0.0145457825+0.0112819625j) (0.007708212+0.003768239j) 1 (0.0005545728+0.030781973j) (-0.009317523+0.012127403j)			127403i) ((0.007266458+0	.034893423j)	(-0.0111226	543+0.01017262	i) (-0.0	(-0.0018902698-0.000510095j)			(-0.0021518082-0.00040983662j) (0.004			45812223+0.021286389j)				
-				955137+0.00129	<u>, , , , , , , , , , , , , , , , , , , </u>				47+0.059697345									(0.015702989	9_
2 (-0.01802452-0.0024115592j) (-0.01955137+0.001298 3 (0.032029703+0.0025845626j) (-0.0054205414-0.02445												(0.0106113115-0.021453666j) (-0.043256726-0.0047023185 (-0.017103825-0.008943477j) (0.001655386-0.006919672							
- '									3+0.0063087144									(0.008182942	
((-0.006390075			637692+0.00112		0.05489466+0			945+0.01801482		52719237-0.00			152+0.0142559		019047242-0.0		(-0.02247891	
		-0 021858297	i) (-0.04	43478243+0.041	(P	0.02379073+0.	0077017555j)	(0.00228539	83+0.000301827	/9 (0.00	52460665-0.00	66166753j)	(-0.009609	8855+0.00792	744j) (-0.0	01565314+0.00	020128489j)	(0.031087049	5+
((0.024336044	0.021050257	<i>37</i>		37 1														
	(0.024336044 0.0024066973			5150185-0.0112		0.058944046-0	0.046654627j)	(-0.0006699	7623+0.0120358	31 (0.00	21754978-0.0	08668138j)	(0.021249	032+0.0316434	06j) (0.0	031516273+0.0)12148932j)	(0.009013542	2+

JIILINU

What happen if we just average the complex pixels (not the out product of the vectors)?

Summary of basic concepts

Reminder: single and partial target representation

Scattering matrix

Data are stored in complex form, that is real plus imaginary part

Spyder (Python 3.			16 11 1							_	Ø	\times
	Source	e Run Debug Consoles Projects Tools	-		ج 🐣 ع	C:\Users\am221					~ ►	•
		AE\programs\Tutorial_CONAE_180927_solutions.py	₽ × Variable explore									₽×
SAR_Utilities_CO			••• • • • •									Q.
69 70			^ Name	Туре	Size			Value				^
	######	### Loading HH #################	## HHFull	complex64 (1	1248, 18432)	array([[1.70937300e-6	01-0.07887045j, 2.42148161e-	-01+0.09545995j,				
72 <mark># real</mark> 73 filei H			HVFull	complex64 (1	.248, 18432)		5.5295121e-02j, -0.07140828+2.	••				
		ı_HH" ar.Open_ENVIasFloat(path + file	le VHFull	complex64 (1	.248, 18432)	array([[0.03976065+0. 0.0 array([[0.23054181+0.						
		n calling a function by writing library sar, and take the fund		complex64 (1	.248, 18432)) array([[0.23054181+0. 0.1						
77 <mark>#</mark> use a	dot w	when calling a function in a l	<mark>li</mark> envi	module 1		module object of built	tins module					
		on Open_ENVIasFloat is contain so open this file by pressing (str 1		i_HH						
80			filei HV	str 1		i HV						47
81 <mark># imagi</mark> 82 fileq_H		IFull - NumPy array								- 0		1
83 <mark>q_HHFul</mark>		6		7		8	9	10	11	12	^	
84 85 # Now w	208	(0.07107788+0.0001118965j)		0.11895645j)	(-0.0	37696168+0.027938405j)	(0.16672957-0.25383106j)	(0.09106964-0.16733629j)	(-0.2292527+0.13909335j)		(0	
86 <mark>HHFull</mark>	209			+0.029810535j)		43548566+0.26694945j)	(-0.138532+0.40491346j)	(-0.5769423+0.1847391j)	(-0.015036544-0.05962692j)	(0.26831898-0.1743832j)	(-	1
87 88	210			-0.025732089j)		29259968-0.14295235j)	(0.20367235-0.5841537j)	(0.37775946-0.262635j)	(-0.21820979+0.16362272j)	(-0.17708418-0.09521227j)	(0	1
89 <mark># Notic</mark>	211			+0.32724288j)		.0687426+0.5270206j)	(0.054809444+0.82367045j)	(-0.3507389+0.1318827j)	(0.21761155-0.41316128j)	(0.08479531-0.22683923j)		
90 # You c 91 # Notic	212			'+0.3208726j)		.9236386+1.241693j)	(-1.1034379+2.4863272j)	(-2.1077378+0.6184698j)	(0.90856504-0.7555746j)	(1.2048659-0.31549478j)	i.	~
92 93# It is	212			3-0.19649513j)		052806515+0.14856093j)	(-0.33817375+0.041899033j)	(-0.325384-0.35427806j)	(0.15580273+0.25812522j)	(0.3568068+0.18579605j)	(9	8 ×
93 # 1t is 94 # they	213			-0.019802434j)		0.0056780856-0.08619735j)	(0.0276807+0.026372923j)	(0.004342114+0.07160738j)	(-0.16508183-0.13053997j)	(-0.10213288-0.1436391j)		۳×.
95 <mark>del i_H</mark> 96 del q_H				+0.20256251j)		1657779+0.29408714j)	(-0.14119186+0.3051973j)	(-0.14424676+0.11273051j)	(0.019122131-0.149513j)	(0.011736556-0.17397477j)		^
97	215			2+0.18294339j)		08458038+0.04554746j)	(0.11610123-0.26472777j)	(0.27141842-0.2700538j)		(-0.16020864+0.009083515j)		
98 99 #######				+0.08817709j)		023391057-0.08530626j)	(0.035040505+0.107569896j)	(-0.057849325+0.24947123j)		(0.2286333-0.123649314j)		
100 # real	240			1+0.120111205j)		03158148+0.0710468j)				(0.2286555-0.125649514J) (-0.13797311+0.015566013j)		
101 filei_H 102 i_HVFul							(0.17607468-0.20794402j)	(0.22993661-0.093825236j)				
103	215			0.031192722j)		03230082-0.16893798j)	(-0.08027681-0.031375308j)	(-0.05084166+0.05267703j)		(-0.100596376-0.028747175		
104 <i># imagi</i> 105 fileq_H	220			0.14325972j)		.21277122-0.3136897j)	(-0.06775208-0.13144417j)					
106 <mark>q_HVFul</mark>	221			8+0.1270226j)		048672948-0.06346875j)	(0.021206522-0.088813424j)	(0.1901794-0.2169216j)	(-0.029284136+0.024858948j)			
107 108 # Now w	222			6-0.12131322j)		05169738-0.36016986j)	(-0.14253348+0.10819008j)	(-0.116834626+0.09651822j)		(0.1667285-0.24515238j)		
109 <mark>HVFull</mark>	223			-0.12745978j)		08949843-0.15957025j)	(0.03456987-0.07367534j)		(0.0029854525+0.062434208j)			
110 111 # We ca	<	(0 06061173 0 110066334)	70 10202040.	1.0 10040404	(1)-1-	11401600.0 204020004)	/ & &&>160700.8 061040404		(& AEC13313E & A304707664)	(0 07070726.0 0112601041	<u>></u>	
112 del i_H	For	ormat Resize 🗹 Background color										
113 114										ОК	Cancel	~
<	_				_			Demining PW	The second secon	Li co Column d M		- N/,
	_							Permissions: RW	End-of-lines: CRLF Encoding: UTF-1	-8 Line: 69 Column: 1 Me	emory: 22	
									UNIVER	RSITY of		4
	Armando Marino 37 OTIDI INO MMM											

ST

IRLIN

Covariance matrix

- An easy way to use this is by creating one image each element of the covariance matrix
- ✓ Pay attention that cross-diagonal elements are Complex numbers.

	B 🖣 📕	@ 🕨 🖪	l 🛃 🕪 🧲	N C 🖻	de M ≡		- ج ا 🗧 -	C:\Users\am221										~	
			CONAE_180927_so		Variable explorer														
			AE_180927_solutions	.ру 🗵 🔄 🕩 🗱	🛓 🖹 🍡 Z														
l75 HV = HVFull[dr1:dr2, da1:da2] l76 VH = VHFull[dr1:dr2, da1:da2]					Name Type Size Value C11F_11 C1=+22 (1000_C000_C000) 0.112914EC_0.10216200 0.114E1EC0.0.05274ER														
77 VV = VVFull[dr1:dr2, da1:da2]					C11Full float32 (1000, 6000) array [[0.02843286, 0.11281456, 0.19216399,, 0.11451569, 0.0627168														
178 del HHFull, HVFull, VHFull, WFull # 179 80 # Check the Variable Explorer and see how t 181 81 182 #%% 83 ####################################																			
					C13Full	complex64 (1	.000, 6000)	6 6	9 [[0.01435353-0.01395321], 0.11015312+0.00552100], 0.0. 39 1.19179888e-02, 6.52541290e-04, 4.98843566e-03,,										
					C22Full	float32 (1	.000, 6000)	9											
					C23Full	C23Full complex64 (1000, 6000) array [[1.80669781e-03-0.01283378j, 8.05272441e-03-0.00363853j,													
					C33Full float32 (1000, 6000) array [[0.01409382, 0.11966334, 0.06784319,, 0.10910278, 0.0680876														
11Fi	ull - NumPy array	DOILDI	LING THE COVA	MIMNEL PA				/										- 0	
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
	0.0284329	0.112815	0.192164	0.0696964	0.00977801	0.091945	0.0765197	0.115472	0.0576391	0.0892011	0.27376	0.0235134	0.00875837	0.2234	0.0880832	0.019835	0.0285191	0.00658374	4
	0.15936	0.0309374	0.241725	0.100041	0.0452113	0.314009	0.0665284	0.0419675	0.123675	0.0274823	0.0421274	0.0443142	0.240537	0.00357138	0.138227	0.0619979	0.0970914	0.0458256	Ł
	0.0438354	0.214579	0.058059	0.092448	0.258334	0.0500391	0.199267	0.101509	0.0680541	0.128033	0.00781235	0.00219264	0.0293388	0.0250444	0.12638	0.131971	0.0275621	0.016508	
	0.207855	0.119369	0.000719917	0.148365	0.0301519	0.0247315	0.00830485	0.07295	0.209398	0.330004	0.0114797	0.0991345	0.235359	0.134207	0.011273	0.0753751	0.00321607	0.0527594	Ļ
	0.0570053	0.132377	0.0792781	0.103252	0.247283	0.130179	0.117291	0.353488	0.505952	0.0482432	0.0584333	0.0743887	0.0500249	0.0111193	0.0628825	0.098449	0.288889	0.162527	
	0.624295	0.26706	0.0635061	0.00456994	0.00365802	0.0246228	0.00758548	0.0763015	0.0308939	0.2255	0.0952573	0.023491	0.21724	0.0472077	0.0946453	0.0102976	0.0233078	0.0614216	ŗ
	0.107482	0.749921	0.521945	0.0526716	0.128643	0.202174	0.0588344	0.236714	0.0425943	0.165698	0.00416545	0.0774513	0.0740566	0.337991	0.284731	0.0110099	0.0759539	0.131773	
																			_
For	mat Perizo	Backgrour	nd color																1
ill -	NumPy array																	- 0	
				1		2			3		4			5		6		7	
(9	0.0145457825+	0 0 011281962	5i) (0 007)	, 708212+0.0037	68239i) (-0		.0036208266j)	(-0 0122371	.86+0.00919363	8i) (0.002	4	489580561)	(-0.0055696	5 5126+0.0139204	122i) (-0 (0 23065198+0.0	055310074 i)	(0.01958036	56
(0.0005545728+0.030781973j) (-0.009317523+0.0					.007266458+0		(-0.011122643+0.01017262j) (-0.0018902698-0.000510095j								(-0.0063609				
(-0.01802452-0.0024115592j) (-0.01955137+0.00												(-0.0021518082-0.00040983662j) (0.0045812223+0.021286389j (0.0106113115-0.021453666j) (-0.043256726-0.0047023185					(0.01570298		
						.0059847683j)	(-0.007957747+0.059697345j) (-0.06374178+0.03488311j)												
							(0.009434683+0.0063087144j) (0.0035462547-0.027169514j)									(0.00818294			
(-0.006390075+0.016714128j) (0.039637692+0.00					0.05489466+0.			945+0.01801482		52719237-0.00		(0.023920152+0.01425597j)			019047242-0.0	(-0.0224789			
(0.024336044-0.021858297j) (-0.043478243+0.			3478243+0.041	0412929j) (0.02379073+0.0077017555j)			(0.0022853983+0.0003018279 (0.0052460665-0.0066166753j)					(-0.0096098855+0.00792744j)			01565314+0.00	(0.03108704	<i>4</i> 5		
		0.002687813		150185-0.0112			.046654627i)	(7623+0.012035	04 (0.00	21754978-0.0	00001303	(0.0010400	32+0.0316434	0.4) (0.0	031516273+0.0	121400224	(0.00901354	62

JIINLINU

ormat Resize 🗹 Background co

Are ships single or partial targets?

Pauli RGB image around Buenos Aires (ALOS-1). The polarimetric information is coded in the colours. As you can notice we can use colours to differentiate between targets. Data courtesy of JAXA.

Are ships single targets?

It depends on the size of the ship, but generally they are a collection of several single targets.

Pauli RGB image around Buenos Aires (ALOS-1). The polarimetric information is coded in the colours. As you can notice we can use colours to differentiate between targets. Data courtesy of JAXA.

Target decomposition

What is a decomposition?

Wikipedia definition: **Decomposition (or rotting)** is the process by which organic substances are broken down into simpler forms of matter.

Collins definition:

decompose (diːkəm pəʊz)

1) to break down (organic matter) or (of organic matter) to be broken down physically and chemically by bacterial or fungal action;

2) chem to break down or cause to break down into simpler chemical compounds

3) to break up or separate into constituent parts

4) (tr) maths to express in terms of a number of independent simpler components, as a set as a canonical union of disjoint subsets, or a vector into orthogonal components

What is a decomposition?

- On the scene, several targets are combined/mixed each other inside the resolution cell AND the averaging window.
- ✓ It makes image *interpretation* and *retrieval* of parameters very complex
- ✓ We want to use polarimetry to separate (or decompose) the different contributors and extract some physical interpretation.

What shall we decompose?

Coherent decompositions: Scattering matrix

Coherent decompositions

 $[S] = c_1[S_1] + c_2[S_2] + c_3[S_3]$ $c_1, c_1, c_1 \in C$

$$S = \begin{bmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{bmatrix}$$
$$S = e^{j\varphi_{HH}} \begin{bmatrix} A_{HH} & A_{HV}e^{j(\varphi_{HV} - \varphi_{HH})} \\ A_{VH}e^{j(\varphi_{VH} - \varphi_{HH})} & A_{VV}e^{j(\varphi_{VV} - \varphi_{HH})} \end{bmatrix}$$

Absolute phase

✓ Definition: they are called COHERENT because they separate the contributions at the sub-pixel level starting from the scattering matrix and the contributors sum "coherently" (i.e. with the phase)

Pauli coherent decomposition

Pauli decomposition

Pauli RGB image around Buenos Aires (ALOS-1). The polarimetric information is coded in the colours. As you can notice we can use colours to differentiate between targets. Data courtesy of JAXA.

Can we use coherent decompositions for ships?

Incoherent decompositions: Covariance matrix

Incoherent decompositions

$$\begin{bmatrix} T \end{bmatrix} = c_1 \begin{bmatrix} T_1 \end{bmatrix} + c_2 \begin{bmatrix} T_2 \end{bmatrix} + c_3 \begin{bmatrix} T_3 \end{bmatrix}$$

C₁, C₁, C₁, C₁ ∈ R

$$\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} \left\langle \left| k_1 \right|^2 \right\rangle & \left\langle k_1 k_2^* \right\rangle & \left\langle k_1 k_3^* \right\rangle \\ \left\langle k_2 k_1^* \right\rangle & \left\langle \left| k_2 \right|^2 \right\rangle & \left\langle k_2 k_3^* \right\rangle \\ \left\langle k_3 k_1^* \right\rangle & \left\langle k_3 k_2^* \right\rangle & \left\langle \left| k_3 \right|^2 \right\rangle \end{bmatrix}$$

- Definition: they are defined incoherent because they separate the contribution starting from the **coherency matrix**, therefore the components sum each other **WITHOUT the phase**
- This is based on the assumption that the components/contributors are independent of each other and therefore they sum incoherently (without phase).

Incoherent decompositions: Non-model based

Diagonalising the coherency matrix: Cloude-Pottier

It is based on the **diagonalisation** of the coherency matrix which is *Hermittian* positive semi-definite

$$I = \underline{\omega}^{*T}[T]\underline{\omega} \ge 0$$

$$\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} U \end{bmatrix} \begin{bmatrix} \Sigma \end{bmatrix} \begin{bmatrix} U \end{bmatrix}^{*T} = \sum_{i=1}^{3} \lambda_{i} \underline{u}_{i} \underline{u}_{i}^{*T} = \lambda_{1} \underline{u}_{1} \underline{u}_{1}^{*T} + \lambda_{2} \underline{u}_{2} \underline{u}_{2}^{*T} + \lambda_{3} \underline{u}_{3} \underline{u}_{3}^{*T}$$

$$\begin{bmatrix} U \end{bmatrix}^{*T} \begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} I \end{bmatrix} \Rightarrow \begin{bmatrix} U \end{bmatrix}^{*T} = \begin{bmatrix} U \end{bmatrix}^{-1}$$

$$\begin{bmatrix} U \end{bmatrix}^{*T} = \begin{bmatrix} U \end{bmatrix}^{-1} \\ \forall k_{1}k_{2}^{*} & \langle k_{1}k_{2}^{*} \rangle & \langle k_{1}k_{3}^{*} \rangle \\ \langle k_{2}k_{1}^{*} \rangle & \langle k_{2}k_{3}^{*} \rangle \\ \langle k_{3}k_{1}^{*} \rangle & \langle k_{3}k_{2}^{*} \rangle & \langle k_{3}k_{3}^{*} \rangle \\ \end{bmatrix}$$

 Each component represents a deterministic target (it could be expressed by a single scattering matrix): i.e. each component is a rank one matrix.

Cloude-Pottier: interpreting eigenvalues

Nice math, but what all this eigenvalues tells us?

We can define a **probability** of each eigenvalue $\frac{\lambda_i}{\lambda_1 + \lambda_2 + \lambda_3}$

We can calculate the **Entropy**: $H = \sum_{i=1}^{3} (-P_i \log_3 P_i)$ of the scattering process

We can also calculate the **Anisotropy**:

$$A = \frac{\lambda_2 - \lambda_3}{\lambda_2 + \lambda_3}$$

An interesting property is that the parameters on this slide are **basis invariant**: i.e. the same results are obtained independently on the basis used to represent the scattering vector. This is a property of diagonalisations... and we like it, since it makes the result more general.

Cloude-Pottier: interpreting eigenvalues

- The entropy tells us the confusion of the scattering process. If there is a component (i.e. one eigenvector) that is much stronger than the other, than the entropy is LOW (close to 0) and we know there is only one dominant target in the scene (i.e. this is a more deterministic problem that could be treated with a single scattering matrix). An example is a man-made target.
- ✓ If the entropy is HIGH (close to 1) there are three or more equally strong scattering processes in the scene that they confuse a lot the polarisation of the pixels. An example is a forested area.
- ✓ The anisotropy tells about the **imbalance** of second and third scattering mechanisms (eigenvalues). It is used to complement the entropy... you will learn more next lecture.

Cloude-Pottier: interpreting eigenvectors

- What about the eigenvectors? They are 3 scattering mechanisms orthogonal each other
- ✓ Their representation (i.e. the numbers in the vector components) is not basis invariant and we need to select a basis to visualise them (since they are vectors)
- The Cloude-Pottier decomposition consider using the Pauli basis and perform a parameterisation based on spherical coordinates (with unitary radius)

Scattering vector in Pauli basis with spherical coordinates

$$\underline{u}_{i} = \left[\cos\alpha_{i}, \sin\alpha_{i}\cos\beta_{i}\cdot e^{j\varepsilon_{i}}, \sin\alpha_{i}\sin\beta_{i}\cdot e^{j\eta_{i}}\right]^{T}, \quad i=1,2,3$$

Each one of the eigenvectors can be represented this way

Cloude-Pottier: interpreting eigenvectors

1) The parameter α is related to the type of scattering mechanism (it can be easily proved substituting the values of alpha in the previous parameterisation)

2) The parameter β is related to the orientation of the scattering mechanism (also can be easily proved substituting the values in the previous parameterisation)

3) The parameters $\boldsymbol{\epsilon}$ and $\boldsymbol{\eta}$ are phases with complicated physical interpretation (but they stay the same once decided the target to represent)

Cloude-Pottier: interpreting eigenvectors

- We have three α angles in the decomposition (one from each scattering mechanism). Which one shall we use?
 - ✓ If the entropy is **low** (one dominant target) we can use the dominant α
 - ✓ If the entropy is **high**, the process is very confused and it is better to use an **averaged** value for α .
 - ✓ We consider a **Bernulli** process to average the α (i.e. we do a weighted average where the weights are the probability of the eigenvalues).
- \checkmark The same is for β , we can consider dominant or averaged values

It is useful to calculate an average $\pmb{\alpha},$ obtained as the result of a Bernulli process

 $\hat{\alpha} = \sum (P_i \alpha_i)$

Cloude-Pottier: Buenos Aires (ALOS-1)

Cloude-Pottier: Buenos Aires (ALOS-1)

Cloude-Pottier: Buenos Aires (ALOS-1)

63 UNIVERSITY of STIRLING

Armando Marino

What do you think is a target that could produce low entropy and 45 degrees alpha?

Incoherent decompositions: Model based

Yamaguchi decomposition

It is based on a model for the backscattering of **forested areas**. The total return is decomposed in Surface, Dihedral, Volume and Helix scattering.

In order to solve the problem with the **orientation** of the dihedrals, it perform a **correction** for the orientation angle

It rotates the partial target in order to give it an overall horizontal orientation

$$[T]_{surface} + [T]_{dihedral} + [T]_{volume} + [T]_{helix}$$

volume
dihedral
surface
$$-[T]_{helix}$$

[T] =

Yamaguchi decomposition: Buenos Aires (ALOS-1)

Practical

SNAP

- Today you will use the SNAP software to investigate some of the polarimetric theory you have studied.
 - ✓ Creating the covariance matrices

Armando Marino

Python

✓ Tomorrow you will use Python to process polarimetric data.

- ✓ Pauli decomposition
- ✓ Covariance and Coherency matrix
- ✓ Claude Pottier decomposition
- ✓ Ship detection
- \checkmark You will be give the code with missing parts to complete.

What is the hardest concept you have learned today?

What would you like me to explain more right now?

Thank you for your attention!