Introduction to Polarimetric Synthetic Aperture Radar POLSAR

Armando Marino

The University of Stirling, Scotland, UK

Outline

\checkmark What is polarimetry?
\checkmark Quick recap:
\checkmark Scattering
\checkmark Basic concepts in polarimetry:
\checkmark Wave
\checkmark Single targets
\checkmark Partial targets
\checkmark Target decomposition:
\checkmark Coherent
\checkmark Incoherent
\checkmark Non-model based
\checkmark Model based

What is Polarimetry?

Polaroid Glasses

You may know how polarimetry can be exploited in optics:

1. Polaroid glasses
2. Modern 3D Cinema

Why Polarimetry in radar remote sensing?

\checkmark Different targets generally interact in a different way when illuminated by differently polarised plane waves

\checkmark We can use polarimetry to: \checkmark Classify
\checkmark Detect
\checkmark Separate returns

Few definition... (they will be treated in details later on):
\checkmark Isotropic: the target interacts at the same way with any polarisation (the interaction does NOT depend on the direction of the Electric field vector)
\checkmark Anisotropic: the scatterer has a different behaviour for different polarisations
\checkmark Depolarisation: the tendency of a target to change the polarisation of the incident wave, but in some contexts is only refereed to the lost of polarimetric purity (i.e. the polarisation changes in time/space)

Why Polarimetry in radar remote sensing?

Pauli RGB image of San Francisco Bay (AIRSAR). The polarimetric information is coded in the colours. As you can notice we can use colours to differentiate between targets.

Data courtesy of MDA and Canadian Space Agency.

Why Polarimetry in radar remote sensing?

Pauli RGB image around Buenos Aires (ALOS-1). The polarimetric information is coded in the colours. As you can notice we can use colours to differentiate between targets.

Data courtesy of JAXA.

Quick recap:

Scattering

Radar backscattering, sigma nought σ

Pixel values equate to the intensity of the backscattered microwave signal

The physical unit is the normalised radar cross section, or sigma nought $\sigma\left[\mathrm{dBm}^{2}\right]$
σ ranges generally from +5 (very bright) to -40 dB (very dark) depending on Noise Floor

What frequency?

\checkmark Choice of frequency governed by size of features to be imaged.
\checkmark As a rule of thumb the energy interacts more with objects of size equal or bigger than the wavelength.
\checkmark The penetration is also higher when the frequency is lower (e.g. P-band 0.3-1 GHz)

Interactions with objects and surface

\checkmark Intensity of the backscattered microwave signal depends on size， shape and orientation of objects．
\checkmark Surfaces whose roughness is much less than the radar wavelength exhibit specular（forward）scattering （e．g．calm water）．
\checkmark Rough surfaces scatter energy in all directions，but proportionally more in backwards direction towards the receiving antenna（e．g．rough soil）．

Three core concepts you should remember:

Idea1: Wave polarimetry

Wave Polarimetry：Plane waves

The most general way to describe any（macroscopic）electromagnetic phenomenon is by using the legendary Maxwell equations

After a series of hypothesis（i．e．monocromatic or narrowband signal，homogeneous， stationary and isotropic medium）we end up with a Plane Wave that can be＂easily＂ described knowing the currents over the surface of the target

Transverse plane： Perpendicular to the direction of propagation

Wave Polarimetry: mathematical expression

The mathematical expression of the plane wave is the following

Magnetic dipole

Loop of current

$$
\begin{aligned}
& \underline{E}(\underline{r})=-\frac{\beta \omega e^{-j \beta R}}{4 \pi \mu_{0} R}(\underline{r} \times \underline{m}) \\
& \underline{H}(\underline{r})=\frac{\beta^{2} e^{-j \beta R}}{4 \pi \mu_{0} R} \underline{r} \times(\underline{r} \times \underline{m}) \\
& \beta=\sqrt{\omega^{2} \varepsilon_{0} \mu_{0}} \quad \omega=2 \pi f
\end{aligned}
$$

\underline{E} : electric field, it's a complex vector (when \underline{E} is cleaned by the dependences on the distance is sometime refereed as Jones vector)
$\underline{H}:$ magnetic field, it's a complex vector and can be derived from \underline{E}
ε_{0} : electric permittivity of vacuum
μ_{0} : magnetic permeability of vacuum
f : frequency of monocromatic (or narrowband) wave
R: distance from the source (generator) of the wave

Currents on surface generating

\checkmark An impinging electromagnetic pulse of energy will produce current on the surface and inside the layer (depending on discontinuities).
\checkmark These currents are "alternating" and therefore they will scatter an electromagnetic field.
\checkmark The field gets tied up in a wave as the old good Maxwell was saying.

Modified from: Simon Horsley, Tutorial: Topology, waves, and the refractive index, 2022

Surface currents

E

Where are the current in the case of volume scattering？

Wave Polarimetry: useful abstraction

Parameters needec
\checkmark Problem: It is complicated to study the wave polarimetry starting from the Jones vectors.
\checkmark Solution: we use a geometrical abstraction and wave polarimetry becomes an ellipse. We need:
$\checkmark 2$ parameters for the ellipse shape
$\checkmark 1$ for the amplitude
$\checkmark 1$ for the phase

Fig. 2.2 Polarization Ellinse Relations (Courtesv of Prof. E. Pottier)

Three different concepts you must remember:

Idea2: Scattering polarimetry Deterministic targets

Single targets?!?! What is that?!?!?

\checkmark A single target is a target that does NOT change its polarimetric signature in time/space: it is a deterministic target
\checkmark Examples:
\checkmark calibration targets: corner reflectors
\checkmark Some metallic or man-made targets (but not all of them): a car, a wall
\checkmark Some natural target: a rock

How do they look like?

Corner reflectors in X-, C- and L-band SAR imagery.

Sentinel-1

${ }_{21}$ UNIVERSITY of STIRLING

Single targets：how to study polarimetric targets

\checkmark We want to use polarimetry to detect single targets and we can transmit and receive polarised waves：
\checkmark How many polarimetric acquisitions would we need？
\checkmark To characterise any polarised wave we need 2 polarisations，since the plane wave is 2 dimensional（2－D）．
\checkmark If we send a polarised wave（e．g．linear horizontal），this will generate currents on our target and these currents will scatter a wave with some polarisation．Therefore we need to collect 2 polarisations to characterise such scattered wave．
\checkmark But what happen if we change the polarisation of the transmitted wave（the wave that we send from the satellite）？．．．
\checkmark Well，we will have different currents on the surface．
\checkmark In order to cover each possible transmitter waves，we need to send two polarimetrically orthogonal waves．
\checkmark Summarising，we transmit 2 orthogonal waves and collect 2 orthogonal waves： $2 \times 2=4$ channels／acquisitions needed

Single targets：same as before，but with math

\checkmark We can arrange the 4 acquisitions discussed before in a matrix：the Scattering or Sinclair matrix
\checkmark H：horizontal linear
\checkmark V：vertical linear
\checkmark The matrix will represent a transformation from transmitted polarised waves to received waves：i．e．it describe the polarimetric behaviour of the target

Co－polarisations

Complex scalar depending on distance and medium where the wave propagates（e．g．air）

Single Look Complex

Data are stored in complex form, that is real plus imaginary part

Format Resize Background color

Single targets：same as before，but with vectors

Parameters needec
\checkmark An easier way to see the polarimetric information is vectorising the scattering matrix
\checkmark Also，we are often interested in polarimetry alone and not how much the target scatter：so we normalise the scattering vector and obtain the scattering mechanism（this is sometime called projection vector）．
\checkmark How many parameters we need：
\checkmark In general 8 since we have 4 complex numbers
\checkmark But for scattering mechanism we remove the overall power（length of vector）
\checkmark It can also be showed that the＂absolute phase＂（a phase term that we can put as overall factor）does not keep information．
\checkmark We end up with 6 parameters for a scattering vector

Scattering vector

$$
\underline{k}=\frac{1}{2} \operatorname{Trace}([S] \Psi)=\left[k_{1}, k_{2}, k_{3}, k_{4}\right]^{r^{7}}
$$

Scattering Mechanism
 $\underline{\omega}=\underline{k} /|\underline{k}|$

UNIVERSITY of STIRLING

国国
ณ凡ŋ
\checkmark In case the system is monostatic（one antenna as transmitter－receiver），and the medium observed is reciprocal（it behave at the same way independently by the direction of propagation of the wave）the two cross－polarisations are the same．
\checkmark We need less parameters to characterise targets in such situation．
\checkmark Please note，HV and VH are exactly the same except for thermal noise．
\checkmark Please note，at low frequencies（ P and sometime L band）the ionosphere is not reciprocal introducing non－reciprocity（i．e．Faraday rotation）．This is a problem only for satellites．

$$
\underline{k} \in C^{3}
$$

$$
S_{H V}=S_{V H}
$$

\square

$$
\underline{\underline{k}}=\frac{1}{2} \operatorname{Trace}([S] \Psi)=\left[k_{1}, k_{2}, k_{3}\right]^{T}
$$

Single targets: some physical interpretation

\checkmark The idea of using polarimetry is based on the physical concept that different targets will be excited with different currents. Therefore, it has a narrow relation with some physical interpretation.
\checkmark The scattering vector (as any vector) has to be expressed in some basis. The one that list the elements of the S matrix is called Lexicographic basis.
\checkmark There are also other basis that helps having some physical interpretation of the target. An example is the Pauli basis.
\checkmark Each of the components is sensitive to a specific target (you will learn more on this when specking about Decompositions).

Pauli bases: $\quad \vec{k}_{P}=\frac{1}{\sqrt{2}}\left[S_{H H}+S_{V V}, S_{H H}-S_{V V}, S_{H V}+S_{V H}\right]^{T}$

Lexicographic bases:

$$
\underline{k}_{l}=\left[S_{H H}, S_{H V}, S_{V V},\right]^{T}
$$

In the polarimetric space, is 1 vector representing one unique single target?

Three different concepts you must remember:

Idea3: scattering polarimetry Distributed/partial targets

Problem: statistic or distributed targets

\checkmark This is a concept narrowly related with what we said in the lecture about Speckle
\checkmark When the target changes spatially it can NOT be represented by a unique Scattering matrix. It is a random process.
\checkmark In this image, you can imagine the squares as the resolution cells...
\checkmark The target under analysis is the same (the same forest)... but the objects things inside the squares are different (as you can see):
\checkmark So, how do we deal with this variation? The scattering matrix will change pixel by pixel due to the speckle (because the targets in each resolution cell is slightly different).

Solution: second order statistics

\checkmark In order to extract information the second order statistics of the target can be extracted
\checkmark In case of Gaussian complex pixels, these contain all the information about the random process
\checkmark In Lexicographic basis, we often talk about COVARIANCE matrix
\checkmark In Pauli basis, we often talk about COHERENCY matrix (the difference is only the basis and we can transform one into the other)

General formulation (any basis)

$$
\begin{gathered}
\text { Second order } \\
\text { statistics as } \\
\text { outer product. } \\
{\left[C_{3}\right]=\left\langle\underline{k} \cdot \underline{k}^{*}\right\rangle \psi}
\end{gathered} \quad\left[C_{3}\right]=\left[\begin{array}{lll}
\left.\left.\langle | k_{1}\right|^{2}\right\rangle & \left\langle k_{1} k_{2}^{*}\right\rangle & \left\langle k_{1} k_{3}^{*}\right\rangle \\
\left\langle k_{2} k_{1}^{*}\right\rangle & \left.\left.\langle | k_{2}\right|^{2}\right\rangle & \left\langle k_{2} k_{3}^{*}\right\rangle \\
\left\langle k_{3} k_{1}^{*}\right\rangle & \left\langle k_{3} k_{2}^{*}\right\rangle & \left.\left.\langle | k_{3}\right|^{2}\right\rangle
\end{array}\right]
$$

Average

Pauli

$$
\left.\left\langle\left(S_{H H}+S_{V V}\right)\left(S_{H H}-S_{V V}\right)^{*}\right\rangle \quad 2\left\langle\left(S_{H H}+S_{V V}\right) S_{H V}^{*}\right\rangle\right\rangle
$$ basis

$$
[T]=\left[\begin{array}{c}
\left\langle\left(S_{H H}-S_{V V}\right)\left(S_{H H}+S_{V V}\right)^{*}\right\rangle \\
2\left\langle S_{H V}\left(S_{H H}+S_{V V}\right)^{*}\right\rangle
\end{array}\right.
$$

$$
\begin{array}{cc}
\left.\langle | S_{H H}-\left.S_{V V}\right|^{2}\right\rangle & 2\left\langle\left(S_{H H}-S_{V V}\right) S\right. \\
\left\langle S_{H V}\left(S_{H H}-S_{V V}\right)^{*}\right\rangle & \left.\left.4\langle | S_{H V}\right|^{2}\right\rangle
\end{array}
$$

Properties of Target Coherency Matrix

Parameters needed

$$
\begin{array}{ll}
\text { It is } & {[C]=[C]^{* T}} \\
\text { Hermittian: } \\
\text { Semi-positive } \\
\text { Definite } & I=\underline{\omega}^{* T}[C] \underline{\omega}
\end{array}
$$

Rank 1 [C] matrices has a unique representation as [S] matrices (unless one absolute phase)... i.e. they are built with one single scattering vector

Lower and upper triangular parts are complex conjugate
\checkmark How many parameters we need?
$\checkmark 3$ for the diagonal real positive terms
$\checkmark 6$ for the off diagonal complex terms
\checkmark If we neglect the overall amplitude (trace of the matrix) we reduce one parameter

How do we practically use this?

\checkmark An easy way to use this is by creating one image each element of the covariance matrix
\checkmark Pay attention that cross-diagonal elements are Complex numbers.
© Spyder (Python 3.6)

Editor - C:MyClTalks_2018|CONAEbprogramsITTutorial_CONAE_180927_solutions.py E V Variable explorer

囲 C12Full - NumPy array				
	0	1	2	3
0	(0.0145457825 +0.0112819625 j)	(0.007708212+0.003768239j)	(-0.030748777+0.0036208266j)	$(-0.012237186+0.009193638 j)$
1	(0.0005545728+0.030781973j)	(-0.009317523+0.012127403j)	(0.007266458+0.034893423j)	($-0.011122643+0.01017262 j)$
2	(-0.01802452-0.0024115592j)	(-0.01955137+0.0012981007j)	(-0.034278706-0.0059847683j)	(-0.007957747+0.059697345j)
	(0.032029703+0.0025845626j)	(-0.0054205414-0.024452088j)	(0.0005135682+0.00049541594...	(0.009434683+0.0063087144j)
4	(-0.006390075+0.016714128j)	(0.039637692+0.0011262847j)	(0.05489466+0.008085463j)	(0.0129286945+0.01801482j)
	(0.024336044-0.021858297j)	(-0.043478243+0.0412929j)	(0.02379073+0.0077017555j)	(0.0022853983+0.0003018279...
6	(0.0024066973-0.0026878137j)	(-0.046150185-0.011261776j)	(0.058944046-0.046654627j)	($-0.00066997623+0.01203581 . .$.

$(0.0021310826-0.00048958056 \mathrm{j})$
$(-0.0018902698-0.000510095 \mathrm{j})$
$(-0.06374178+0.03488311 \mathrm{j})$
$(0.0035462547-0.027169514 \mathrm{j})$
$(0.0052719237-0.0061142254 \mathrm{j})$
$(0.0052460665-0.0066166753 \mathrm{j})$
$(0.0021754978-0.008668138 \mathrm{j})$

$(-0.0055696126+0.013920422 \mathrm{j})$
$(-0.0021518082-0.00040983662 \mathrm{j})$
$(0.0106113115-0.021453666 \mathrm{j})$
$(-0.017103825-0.008943477 \mathrm{j})$
$(0.023920152+0.01425597 \mathrm{j})$
$(-0.0096098855+0.00792744 \mathrm{j})$
$(0.021249032+0.031643406 \mathrm{j})$

Resize \square Background color

What happen if we just average the complex pixels (not the out product of the vectors)?

Summary of basic concepts

Reminder: single and partial target representation

Scattering matrix:

Scattering vector:

$$
[S]=\left(\begin{array}{ll}
S_{H H} & S_{H V} \\
S_{V H} & S_{V V}
\end{array}\right)
$$

Scattering mechanism:

$$
\underline{\omega}=\underline{k} /|\underline{k}|
$$

$$
\underline{k}=\frac{1}{2} \operatorname{Trace}([S] \Psi)=\left[k_{1}, k_{2}, k_{3}\right]^{T}
$$

The second order statistics are necessary.

$$
\left[C_{3}\right]=\left\langle\underline{k} \cdot \underline{k}^{+}\right\rangle
$$

Covariance matrix:

$$
\left[C_{3}\right]=\left[\begin{array}{ccc}
\left.\left.\langle | k_{1}\right|^{2}\right\rangle & \left\langle k_{1} k_{2}^{*}\right\rangle & \left\langle k_{1} k_{3}^{*}\right\rangle \\
\left\langle k_{2} k_{1}^{*}\right\rangle & \left\langle\left. k_{2}\right|^{2}\right\rangle & \left\langle k_{2} k_{3}^{*}\right\rangle \\
\left\langle k_{3} k_{1}^{*}\right\rangle & \left\langle k_{3} k_{2}^{*}\right\rangle & \left.\left.\langle | k_{3}\right|^{2}\right\rangle
\end{array}\right]
$$

Scattering matrix

Data are stored in complex form, that is real plus imaginary part

Format Resize \square Background color

Covariance matrix

\checkmark An easy way to use this is by creating one image each element of the covariance matrix
\checkmark Pay attention that cross-diagonal elements are Complex numbers.
© Spyder (Python 3.6)

囲 C12Full - NumPy array				
0		1	2	3
0	(0.0145457825+0.0112819625j)	(0.007708212+0.003768239j)	(-0.030748777+0.0036208266j)	$(-0.012237186+0.009193638 j)$
1	(0.0005545728+0.030781973j)	$(-0.009317523+0.012127403 \mathrm{j})$	(0.007266458+0.034893423j)	$(-0.011122643+0.01017262 j)$
2	(-0.01802452-0.0024115592j)	(-0.01955137+0.0012981007j)	(-0.034278706-0.0059847683j)	($-0.007957747+0.059697345 j)$
3	(0.032029703+0.0025845626j)	(-0.0054205414-0.024452088j)	(0.0005135682+0.00049541594...	(0.009434683+0.0063087144j)
4	($-0.006390075+0.016714128 \mathrm{j})$	(0.039637692+0.0011262847j)	(0.05489466+0.008085463j)	(0.0129286945+0.01801482j)
	(0.024336044-0.021858297j)	(-0.043478243+0.0412929j)	(0.02379073+0.0077017555j)	(0.0022853983+0.0003018279...
	(0.0024066973-0.0026878137j)	$(-0.046150185-0.011261776 \mathrm{j})$	(0.058944046-0.046654627j)	($-0.00066997623+0.01203581 . .$.

$(-0.0055696126+0.013920422 \mathrm{j})$	$(-0.023065198+0.0055310074 \mathrm{j})$	$(0.019580366-1$
$(-0.0021518082-0.00040983662 \mathrm{j})$	$(0.0045812223+0.021286389 \mathrm{j})$	$(-0.006360942$
$(0.0106113115-0.021453666 \mathrm{j})$	$(-0.043256726-0.0047023185 \mathrm{j})$	$(0.015702989-1$
$(-0.017103825-0.008943477 \mathrm{j})$	$(0.001655386-0.006919672 \mathrm{j})$	$(0.008182942-1$
$(0.023920152+0.01425597 \mathrm{j})$	$(0.019047242-0.053946618 \mathrm{j})$	$(-0.022478918$
$(-0.0096098855+0.00792744 \mathrm{j})$	$(-0.01565314+0.00020128489 \mathrm{j})$	$(0.031087045+1$
$(0.021249032+0.031643406 \mathrm{j})$	$(0.0031516273+0.012148932 \mathrm{j})$	$(0.009013542+1$

Format Resize \square Background color

Are ships single or partial targets?

Pauli RGB image around Buenos Aires (ALOS-1). The polarimetric information is coded in the colours. As you can notice we can use colours to differentiate between targets.

Data courtesy of JAXA.

Are ships single targets?

Pauli RGB image around Buenos Aires (ALOS-1). The polarimetric information is coded in the colours. As you can notice we can use colours to differentiate between targets.

Data courtesy of JAXA.

Target decomposition

What is a decomposition?

Wikipedia definition: Decomposition (or rotting) is the process by which organic substances are broken down into simpler forms of matter.

Collins definition:

 decompose (.di:kəm'pəuz)1) to break down (organic matter) or (of organic matter) to be broken down physically and chemically by bacterial or fungal action;
2) chem to break down or cause to break down into simpler chemical compounds
3) to break up or separate into constituent parts
4) (tr) maths to express in terms of a number of independent simpler components, as a set as a canonical union of disjoint
 subsets, or a vector into orthogonal components

What is a decomposition?

\checkmark On the scene, several targets are combined/mixed each other inside the resolution cell AND the averaging window.
\checkmark It makes image interpretation and retrieval of parameters very complex
\checkmark We want to use polarimetry to separate (or decompose) the different contributors and extract some physical interpretation.

UNIVERSITY of STIRLING

What shall we decompose?

As for the basic concepts of polarimetry, we should separate deterministic and statistical targets

1) Coherent Decompositions

Covariance matrix
2) Incoherent decompositions

Coherent decompositions: Scattering matrix

Coherent decompositions

$$
\begin{gathered}
{[S]=c_{1}\left[S_{1}\right]+c_{2}\left[S_{2}\right]+c_{3}\left[S_{3}\right]} \\
\mathrm{c}_{1}, \mathrm{c}_{1}, \mathrm{c}_{1} \in C
\end{gathered}
$$

$$
\begin{gathered}
S=\left[\begin{array}{ll}
S_{H H} & S_{H V} \\
S_{V H} & S_{V V}
\end{array}\right] \\
S=e^{j \varphi_{H H}}\left[\begin{array}{cc}
A_{H H} & A_{H V} e^{j\left(\varphi_{H V}-\varphi_{H H}\right)} \\
A_{V H} e^{j\left(\varphi_{V H}-\varphi_{H H}\right)} & A_{V V} e^{j\left(\varphi_{V V}-\varphi_{H H}\right)}
\end{array}\right]
\end{gathered}
$$

Absolute phase
\checkmark Definition: they are called COHERENT because they separate the contributions at the sub-pixel level starting from the scattering matrix and the contributors sum "coherently" (i.e. with the phase)

Pauli coherent decomposition

Pauli decomposition

Pauli RGB image around Buenos Aires (ALOS-1). The polarimetric information is coded in the colours. As you can notice we can use colours to differentiate between targets.

Data courtesy of JAXA.

Can we use coherent decompositions for ships？

Incoherent decompositions: Covariance matrix

Incoherent decompositions

$$
\begin{gathered}
{[T]=c_{1}\left[T_{1}\right]+c_{2}\left[T_{2}\right]+c_{3}\left[T_{3}\right]} \\
\mathrm{C}_{1}, \mathrm{C}_{1}, \mathrm{C}_{1} \in R
\end{gathered}
$$

$$
[T]=\left[\begin{array}{ccc}
\left.\left.\langle | k_{1}\right|^{2}\right\rangle & \left\langle k_{1} k_{2}^{*}\right\rangle & \left\langle k_{1} k_{3}^{*}\right\rangle \\
\left\langle k_{2} k_{1}^{*}\right\rangle & \left.\left.\langle | k_{2}\right|^{2}\right\rangle & \left\langle k_{2} k_{3}^{*}\right\rangle \\
\left\langle k_{3} k_{1}^{*}\right\rangle & \left\langle k_{3} k_{2}^{*}\right\rangle & \left.\left.\langle | k_{3}\right|^{2}\right\rangle
\end{array}\right]
$$

\checkmark Definition: they are defined incoherent because they separate the contribution starting from the coherency matrix, therefore the components sum each other WITHOUT the phase
\checkmark This is based on the assumption that the components/contributors are independent of each other and therefore they sum incoherently (without phase).

Incoherent decompositions: Non-model based

Diagonalising the coherency matrix: Cloude-Pottier

It is based on the diagonalisation of the coherency matrix which is Hermittian positive semi-definite

$$
I=\underline{\omega}^{* T}[T] \underline{\omega} \geq 0
$$

$[U]^{{ }^{2}}[U]=[I] \Rightarrow[U]^{* T}=[U]^{-1}$
Unitary matrix
Eigenvalues
Eigenvectors

\checkmark Each component represents a deterministic target (it could be expressed by a single scattering matrix): i.e. each component is a rank one matrix.

Cloude－Pottier：interpreting eigenvalues

Nice math，but what all this eigenvalues tells us？
We can define a probability of each eigenvdlue $\frac{\lambda_{i}}{\lambda_{1}+\lambda_{2}+\lambda_{3}}$

We can calculate the Entropy： of the scattering process

$$
H=\sum_{i=1}^{3}\left(-P_{i} \log _{3} P_{i}\right)
$$

We can also calculate the Anisotropy：$\quad A=\frac{\lambda_{2}-\lambda_{3}}{\lambda_{2}+\lambda_{3}}$
An interesting property is that the parameters on this slide are basis invariant： i．e．the same results are obtained independently on the basis used to represent the scattering vector．This is a property of diagonalisations．．．and we like it， since it makes the result more general．

Cloude-Pottier: interpreting eigenvalues

\checkmark The entropy tells us the confusion of the scattering process. If there is a component (i.e. one eigenvector) that is much stronger than the other, than the entropy is LOW (close to 0) and we know there is only one dominant target in the scene (i.e. this is a more deterministic problem that could be treated with a single scattering matrix). An example is a man-made target.
\checkmark If the entropy is HIGH (close to 1) there are three or more equally strong scattering processes in the scene that they confuse a lot the polarisation of the pixels. An example is a forested area.
\checkmark The anisotropy tells about the imbalance of second and third scattering mechanisms (eigenvalues). It is used to complement the entropy... you will learn more next lecture.

国国

Cloude-Pottier: interpreting eigenvectors

\checkmark What about the eigenvectors? They are 3 scattering mechanisms orthogonal each other
\checkmark Their representation (i.e. the numbers in the vector components) is not basis invariant and we need to select a basis to visualise them (since they are vectors)
\checkmark The Cloude-Pottier decomposition consider using the Pauli basis and perform a parameterisation based on spherical coordinates (with unitary radius)

Scattering vector in Pauli basis with spherical coordinates
$\underline{u}_{i}=\left[\cos \alpha_{i}, \sin \alpha_{i} \cos \beta_{i} \cdot e^{j \varepsilon_{i}}, \sin \alpha_{i} \sin \beta_{i} \cdot e^{j \eta_{i}}\right]^{T}, \quad \mathrm{i}=1,2,3$
Each one of the eigenvectors can be represented this way

Cloude-Pottier: interpreting eigenvectors

1) The parameter $\boldsymbol{\alpha}$ is related to the type of scattering mechanism (it can be easily proved substituting the values of alpha in the previous parameterisation)

2) The parameter $\boldsymbol{\beta}$ is related to the orientation of the scattering mechanism (also can be easily proved substituting the values in the previous parameterisation)
3) The parameters $\boldsymbol{\varepsilon}$ and $\boldsymbol{\eta}$ are phases with complicated physical interpretation (but they stay the same once decided the target to represent)

Cloude-Pottier: interpreting eigenvectors

\checkmark We have three $\boldsymbol{\alpha}$ angles in the decomposition (one from each scattering mechanism). Which one shall we use?
\checkmark If the entropy is low (one dominant target) we can use the dominant α
\checkmark If the entropy is high, the process is very confused and it is better to use an averaged value for $\boldsymbol{\alpha}$.
\checkmark We consider a Bernulli process to average the $\boldsymbol{\alpha}$ (i.e. we do a weighted average where the weights are the probability of the eigenvalues).
\checkmark The same is for $\boldsymbol{\beta}$, we can consider dominant or averaged values

It is useful to calculate an average $\boldsymbol{\alpha}$, obtained as the result of a Bernulli process

$$
\hat{\alpha}=\sum_{i=1}^{3}\left(P_{i} \alpha_{i}\right)
$$

Cloude-Pottier: Buenos Aires (ALOS-1)

Second eigenvalue

Pauli 1 element

Cloude-Pottier: Buenos Aires (ALOS-1)

Cloude－Pottier：Buenos Aires（ALOS－1）

What do you think is a target that could produce low entropy and 45 degrees alpha?

Incoherent decompositions: Model based

Yamaguchi decomposition

It is based on a model for the backscattering of forested areas.
The total return is decomposed in Surface, Dihedral, Volume and Helix scattering.

In order to solve the problem with the orientation of the dihedrals, it perform a correction for the orientation angle

It rotates the partial target in order to give it an overall horizontal orientation

Yamaguchi decomposition: Buenos Aires (ALOS-1)

Practical

SNAP

\checkmark Today you will use the SNAP software to investigate some of the polarimetric theory you have studied.
\checkmark Creating the covariance matrices STIRLING

Python

\checkmark Tomorrow you will use Python to process polarimetric data.
\checkmark Pauli decomposition
\checkmark Covariance and Coherency matrix
\checkmark Claude Pottier decomposition
\checkmark Ship detection
\checkmark You will be give the code with missing parts to complete.

What is the hardest concept you have learned today?

What would you like me to explain more right

 now?

Thank you for your attention!

