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Remote Sensing Data Time Series

* Our ability to identify changes over time
has changed because:

* The availability of long-term satellite
data sets

* Landsat (30+ years)
* MODIS (18 years)
* Sentinel-2 A,B (8 years)

* Increased computing power and
cloud computing Improved
processing methods

Ghaderpour, E., Vujadinovic, T. 2020. Change Detection within Remotely Sensed Satellite Image Time Series via Spectral Analysis. Remote Sens., 12, 4001. https://doi.org/10.3390/rs12234001



Data Time Series

* Time series data is a collection of observations
obtained through repeated measurements over
time.

 Time series refers to a chain of data points
observed and recorded in a time order over a
specific period.

* It represents the output obtained from
monitoring and tracking specific events or
processes.

Time Series
Analysis

www.educba.com
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Annual vs. Seasonal Trends

 Annual Trends
Annual land cover/land use changes over long time periods : .
-0.025 -0.015 ; -0.005 0.005 0‘0!.5 0.025
Ex: Trends in vegetation greenness in China I TR R T

Annual mean Leaf Area Index (LAI) during 2000-2014 from
MODIS These data were used to analyze the change in
evapotranspiration and water yield

 Seasonal Trends
Driven by annual temperature and/or precipitation
Ex: Snow cover monitoring in the Himalayas

Seasonal snow cover based on MODIS snow cover time series
from Mar 2000 to Feb 2008. (Winter, (top), Spring, Summer,
Autumn (bottom) The values show the percentage of time that a
pixel was snow-covered during the season within the time period

Liu, Y., Xiao, J., Ju, W., Xu, K., Zhou, Y., Zhao, Y. 2016. Recent trends in vegetation gr reenness in China signi mificas tly altered annual evapotranspiration and water y1 eld. Environ. Res. Lett 11, 094010. https: //10 1088/1748 9326/11/9/094010. (top image)
Immerz el, W.W., Droogers, ., de ] ng, S.M. and Bierken: MFP 2009. Large-Scale Monitoring of Snow Cover and Run ffS mult n in Himalayan River Basins Usi gR 'mote Sensing. Remote Sens. Environ., 113, 40-49. https://doi.org/10.1016/j.rse.2008.08.010 (bottom image)



Gradual vs. Abrupt Changes

* Gradual changes:
* Land degradation

Regrowth

* Forest recovery

NDVI

* Abrupt changes:
« Wildfire

* Deforestation

1986 1988 1950 1992 1994 1996 1998 2000 2002 2004 2006

Time (Years)

* Urban development

Franks, S., Masek, ].G., Turner, M.G. 2013. Monitoring forest regrowth following large scale fire using satellite data-A case study of Yellowstone National Park, USA. Eur. ]. Remote Sens., 46:1, 551-569. https://10.5721/Eu]RS20134632 13
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Time Series of Forest Disturbance and Recovery

* Used for: L '('_.._L_\I'A
* Mapping disturbance patterns 06 groen | \V\
Vegetation
* Establishment of historic relationships N Oy \
between human and natural | “vegataton |

/

disturbance drivers — Urban
development vs. insects
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 Evolution of post-disturbance 4|
recovery N | \/
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 Two Primary Approaches: ° .

e Deviations (short events)

* Trends (long-term events)

Clark, R. 1999. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, in: Rencz, A. (ed.), Remote Sens. for the Earth Scien., 3-58, New York. (= Manual of Remote Sensing 3).
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Introduction to Forest
Ecosystem Problems in Central
Europe

* Research focused on the observation
of disturbances in forest ecosystems

 Bark beetle calamities (Ips
typographus, in combination with
wind calamities and drought)

* Observations of selected sites before
disturbance, during disturbance and
during the forest regeneration phase
in the Czech Republic, Slovakia and
Germany

Photo: R, Hladky (2017).
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Classification of TS Methods by Zhu 2017

Level 1 (Method Group)

Level 2 (Method

Classification of TS Menthods by Zhu
2017 Completed by EO4Landscape

Level 3 (Processing and Preprocessing
Subgroup)

Per-pixel Classification

Object Classification

Linear Unmixing

Nonlinear Unmixing

Raw SR; / BOA Data

Relative Radiometric Normalization

Sensors Harmonization

Sensors Cross-calibration

Subgroup)
Thresholding -
Classification
SMA
Differencing
Spectral / Index
Segmentation -
Hypothesized
: Trajector
Trajectory Mu{ r da’g;
Classification
Statistical Boundary -

Regression




Are sub-pixel classification methods,
commonly used for hyperspectral
data (Okujeni et al. 2013), suitable for
forest surface detection with
multispectral data?



1. Suitability of sub-pixel classification
for detection of bark beetle calamities

a) Forest| . .

d) RGB
composite

* Tested Unmixing methods on Landsat data time
series

* The different levels of land cover were created:
forest and non-forest areas

e Two methods: SVR and RFR

* The forest areas were then divided into coniferous
and deciduous areas using fractions

* Very high spatial resolution CIR aerial imagery
was used to assess accuracy and endmembers

* RMSE (classification error relative to reference
data) of 0.18 for SVR and 0.20 for RFR for forest

Bark beetle

stands

No forest

Stable forest

Windthrow

e RMSE 0.23 for both SVR and RFR for coniferous s -

forests . M

Cover fract
o
b

o
o
1
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WAV

My

 RMSE 0.24 for SVR and 0.25 for RFR for .
broadleaved forests

T T
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T T T
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T T T
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T T T
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Research Questions 2

Which of the frequently used vegetation indices (e.g. Jin
and Sader 2005, Hais et al. 2009, Musilova 2012) is the
most suitable for observing disturbance, regeneration
and early infection phases?

Is it possible to use short Sentinel-2 time series to observe
the evolution of forest ecosystems after disturbance?
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Landsat and Sentinel-2
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Research Questions 3

How do the phases of forest ecosystem
recovery after disturbance differ in the
no-management zones of Sumava NP

compared to the intervention areas of
Low Tatras NP?

Can these phases be distinguished using
satellite data?



3. Comparison of the evolution of forest health in selected sites
in the Czech Republic and Slovakia

* The selected study areas were in NP Sumava and
NP Low Tatras

 Both sites are geographically different, but they
were connected by similar events of wind and bark
beetle calamities

* Different regenerative evolution of each habitat was
shown to be caused by different forestry and
conservation intervention policies in the studied
sites

* In most of the Slovak sites studied, dead trees were
removed or new trees were planted, which was
shown to accelerate the onset of regeneration

* Slower, spontaneous habitat regeneration was
demonstrated at the Sumava sites, but with a
diverse composition of vegetation species

Photo: R. Hladky (2047) - -~ = . i1
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3. Selection of a suitable vegetation index to detect different
developmental stages of disturbance, forest recovery phase
after disturbance or sites without forest damage

* Difference indices: NDVI, NDMI, SR, TVI, FMI and wNDII
* Orthogonal indices: TCW and TCG

 NDMI, wNDII, NDVI and TCW suitable for disturbance
observations

* NDMI has also enabled observation of the early stages of bark beetle
infection

* NDMI for observation of the recovery phase

T

ne NDMI index perfectly reflected the ongoing phases of each

observed site

o Tl

he NDMI is suitable for all phases



Research Questions 4

What is the etfect of using both Sentinel-2A and Sentinel-2B
satellites on the temporal resolution?

What is the difference in temporal resolution between Landsat 8
and Sentinel-2 data?

What allows the higher spatial resolution of Sentinel-2 data to
better resolve within forest ecosystems?



5. Landsat 8 and Sentinel-2 data differences in spectral, spatial

and temporal resolution

Sentinel-2 data had a similar temporal
resolution to Landsat 8 data at the
beginning of its existence

* In 2017, Sentinel-2A was complemented
by Sentinel-2B, resulting in a significant
increase in temporal resolution and a
much higher number of images captured

* A total of 625 Landsat images and 1284
Sentinel-2 images were acquired for five
selected sites in Sumava and the Low
Tatras during the period 28 March 2017 -
31 December 2019

 Thanks to the improved spatial resolution
of Sentinel-2 (10/20 m), clouds, cloud
shadows, cirrus clouds and tree shadows
can be more accurately detected visually
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Photo: J. Lastovicka

Thank you for your attention. Time for your questions.

Next: Daniel Paluba — SAR Data in Forest Ecosystems
Stych and Lastovicka (2023)

stych@natur.cuni.cz and josef.lastovicka@natur.cuni.cz
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