

Deep Neural Networks for Global Wildfire Spread

Prediction

By: Brittany Engle Supervisors: Prof. Xiaoxiang Zhu Dr. Lichao Mou Pu Jin

Wissen für Morgen

Introduction & Motivation

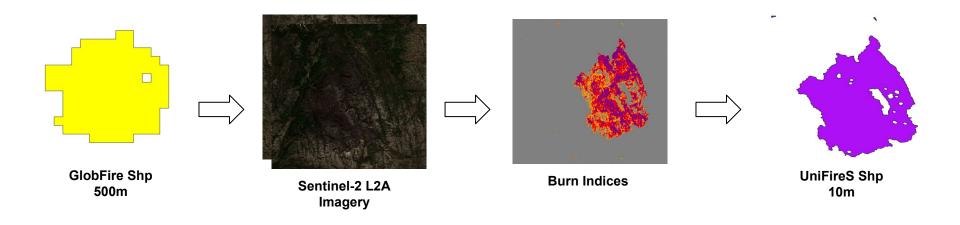
- Increase in wildfire events: extensive environmental, humanitarian, and economical damages
- Crucial knowledge for forest and park
 managers to estimate possible losses
- Use multi-temporal satellite imagery to predict forest fire spread in order to prevent damages caused by wildfires
- No currently existing dataset or approach to complete this task, must build own dataset

Image: Fires in Southern Europe in 2017

Overview of Thesis Goal

Research Questions:

• Can wildfire burn masks with low resolution, collected from multiple sources, be leveraged to build a world-scale dataset for spatiotemporal fire prediction?


Implementation:

• Create a global burn mask dataset that can be used for spatiotemporal fire prediction

Overview of Global Wildfire Database Process

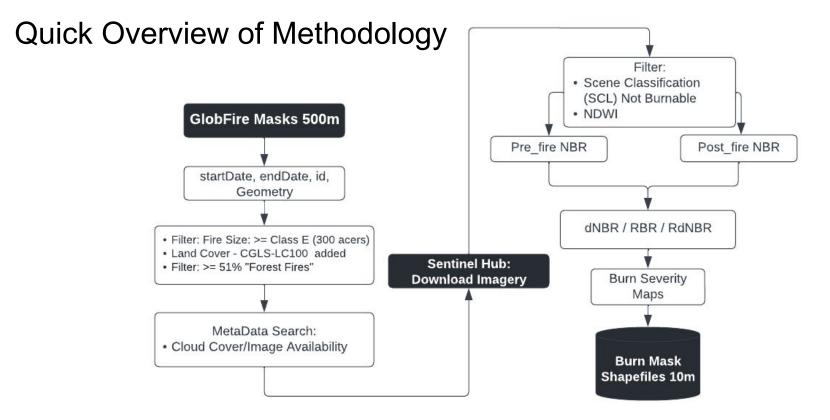
Data Sources

Satellite Imagery: Sentinel Hub

Optical Imagery from Sentinel-2

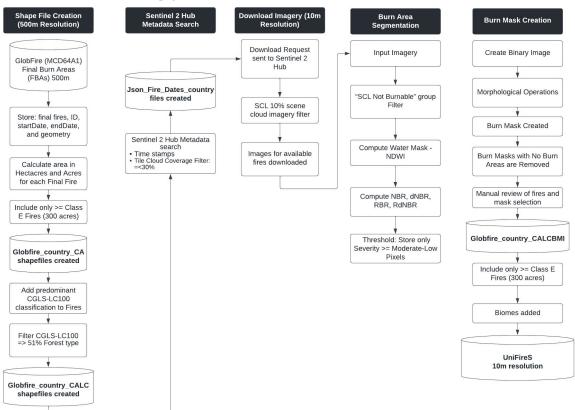
Burn AOI: Global Wildfire Information System (GWIS) - GlobFire (500m)

Burn Mask Methodology: European Forest Fire Information System (EFFIS)



Countries Selected by Biome Legend Selected Countries Temperate Grasslands & Savannas **Boreal Forests Tropical Forest Temperate Forest** Others Tropical & Subtropic Savanna Mediterranean Forests

Study Area



Overview of Methodology

Fire Selection Criteria - Temporal

- Spatial: pre-selected countries
- Temporal: 2018-2020
- Temporal Filter: 6 images
 - <= 120 before endDate and 40 days after endDate
 - Mask creation: code utilizes pre_fire and post_fire

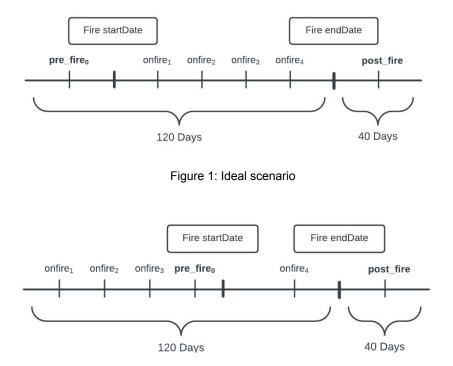
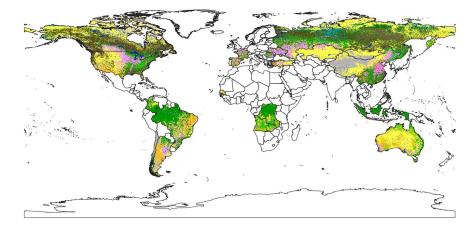


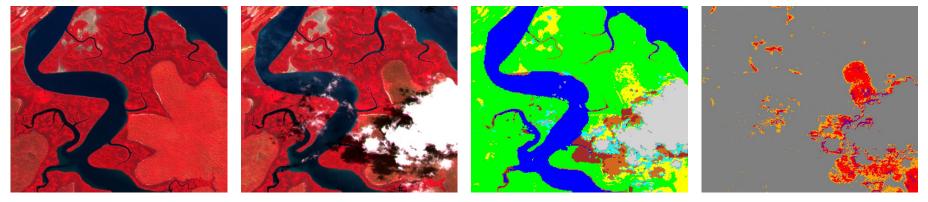
Figure 2: Minimum requirement scenario

Fire Selection Criteria - Fire Size & Land Cover

- Fire Size: >= Class E Fire (300a = 124ha)
- Land Cover Filter
 - Copernicus Global Land Service: Land Cover 100m (CGLS-LC100) Product ^[6]
 - >= 51% "forest" land covers

LEVEL 3								
value map	grouping	ing group code	R	G	в	class name		
0		0	40	40	40	unknown (no input data available)		
111		111	88			closed forest, needle-leaved, evergreen		
113		113	112	102	62	closed forest, needle-leaved, deciduous		
112		112	0		0	closed forest, broadleaved, evergreen		
114		114	0	204	0	closed forest, broadleaved, deciduous		
115		115	78		31	closed forest, mixed type		
116		116	0			closed forest, unknown type		
121		121	102	96	0	open forest, needle-leaved, evergreen		
123		123	141	116	0	open forest, needle-leaved, deciduous		
122		122	141	180	0	open forest, broadleaved, evergreen		
124		124	160	220	0	open forest, broadleaved, deciduous		
125		125	146	153	0	open forest, mixed type		
126		126	100	140	0	open forest, unknown type		
20		20	255	187	34	shrubland		
30		30	255	255	76	herbaceous vegetation		
90		90	0	150	160	herbaceous wetland		
100		100	250	230	160	moss & lichen		
60		60	180	180	180	bare / sparse vegetation		
40		40	240	150	255	cropland		
50		50	250			built-up		
70		70	240	240	240	snow & ice		
80		80	0	50	200	permanent inland water bodies		
200		200	0	0	128	sea		




Image 2: Study Areas with Land Cover ^[6]

Fire Selection Criteria - Cloud Coverage

- Cloud coverage tile: <= 30%
- Cloud coverage scene: <= 10%
- Pixel Availability scene: <= 30%

Pre Fire False Image Id: 22646734

Post Fire False Image Id: 22646734

SCL Id: 22646734

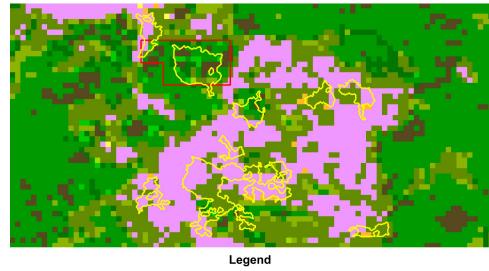
dNBR Burn Severity Id: 22646734

Images: Example of the *importance* of cloud coverage to the burn index

Review of Fire Filtering Process

Biome Type	CA Total	CALC Total	Downloaded Total	CALCBMI Total	CALCBMIB Total
Boreal Forests	157,099	8,483	1,310	541	504
Mediterranean Forests	84,470	18,967	1,060	406	401
Temperate Forest	96,607	2,224	991	446	393
Temperate Grasslands & Savannas	90,543	1,650	772	300	252
Tropical & Subtropic Savanna	992,265	134,670	6,766	1,984	1,978
Tropical Forest	194,739	1,644	1,780	571	553
Grand Total	1,615,723	178,638	12,679	4,248	4,081

Table 9.2 Comparison of available fires per biome through the filtering process.



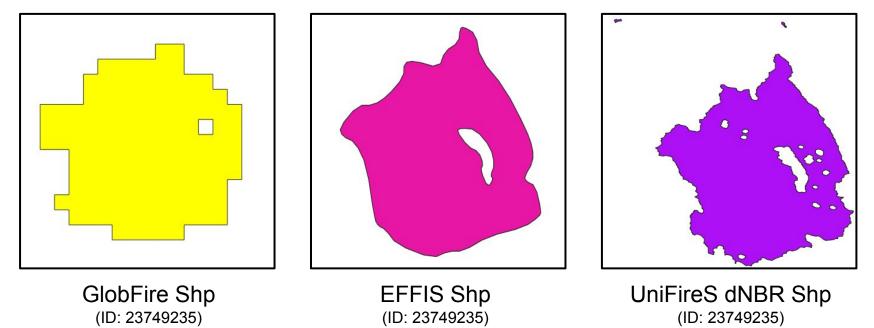
Manual Filtering

- Completed a second review of fire masks in order to ensure only "Very Good" burn masks were within the set
- Removed smaller fire sizes (< Class E)
- Re-ran the land cover classification to remove fires that were re-classified as predominantly agriculture

Post-Processing Agricultural Fire

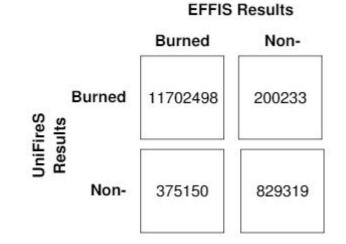
Land Cover Class

CALCBMIB Id: 23164189

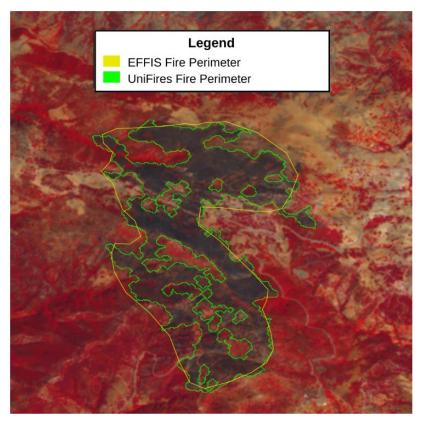

GlobFire Id: 23164189

40 - Cultivated and managed vegetation/agriculture (cropland)

Comparison GlobFire, EFFIS, & Thesis dNBR.Shp

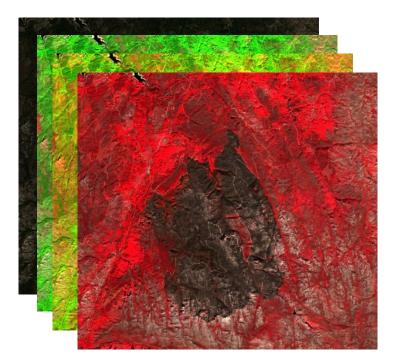


Validation of UniFireS Dataset to EFFIS Dataset


- Overall accuracy: 95.61%
- **F1-Score:** 0.742
- **Precision:** 80.55%
- **Recall:** 68.85%
- Reasons for differences:
 - EFFIS utilizes MODIS imagery at 250m then manually reviews and updates perimeters based on Sentinel 2 imagery
 - 20m EFFIS resolution vs 10m UniFireS

ТЛП

UniFireS Dataset vs EFFIS Dataset

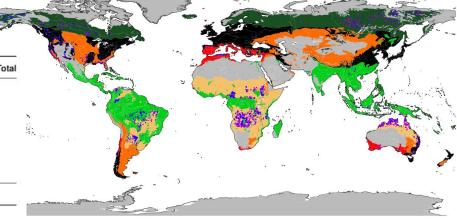


Overview of Finalized Dataset

• Imagery Variables

- 6 Images pre-fire, onfire, post-fire
- 12 bands
- Burn Mask 10m resolution

Post Fire False Imagery (Id: 23749235)



Distribution of Dataset - Biome

Biome Type	CA Total	CALC Total	Downloaded Total	CALCBMI Total	CALCBMIB Total
Boreal Forests	157,099	8,483	1,310	541	504
Mediterranean Forests	84,470	18,967	1,060	406	401
Temperate Forest	96,607	2,224	991	446	393
Temperate Grasslands & Savannas	90,543	1,650	772	300	252
Tropical & Subtropic Savanna	992,265	134,670	6,766	1,984	1,978
Tropical Forest	194,739	1,644	1,780	571	553
Grand Total	1,615,723	178,638	12,679	4,248	4,081

Table 9.2 Comparison of available fires per biome through the filtering process.

Burn Indexed Fires by Biome

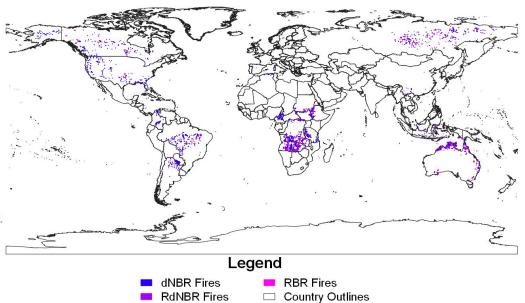
Legend

Department of Aerospace and Geodesy Technical University of Munich

Distribution of Dataset - Land Cover

Map Code	Land Cover Class	CALCBMIB Fire Count	CALCBMIB Total Area (ha)	Average Fire Size (ha)
20	Schrubs	121	587,886.8	4,858.6
30	Herbaceous Vegetation	216	888,552.0	4,113.7
90	Herbaceous Wetland	20	32,090.3	1,604.5
111	Closed Forest, Evergreen Needle Leaf	427	1,760,509.7	4,123.0
112	Closed Forest, Evergreen, Broad Leaf	431	1,534,390.0	3,560.1
113	Closed Forest, Deciduous Needle Lea	187	1,283,775.2	6,865.1
114	Closed Forest, Deciduous Broad Leaf	858	7,145,102.6	8,327.6
115	Closed Forest, Mixed	6	8,392.7	1,398.8
116	Closed Forest, Unknown	270	954,076.4	3,533.6
121	Open Forest, Evergreen Needle Leaf	12	37,513.7	3,126.1
122	Open Forest, Evergreen Broad Leaf	6	3,388.4	564.7
124	Open Forest, Deciduous Broad Leaf	551	9,461,606.8	17,171.7
126	Open Forest, Unknown	976	3,205,043.8	3,283.9
	Total	4,081	26,902,328.4	6,592.1

Table 9.7 Total fires per land cover that can be found within the complete CALCBMIB dataset.



Distribution of Dataset - Burn Index

Fires by Burn Index

Biome	dNBR Count	RBR Count	RdNBR Count	Total
Boreal Forests	188	10	290	488
Mediterranean Forests	43	0	29	72
Temperate Forest	185	7	67	259
Temperate Grasslands & Savannas	108	3	58	169
Tropical & Subtropic Savanna	589	51	1,820	2,460
Tropical Forest	261	19	353	633
Total	1,374	90	2,617	4,081

Table 9.6 Count of fires by burn mask that can be found within the complete CALCBMIB dataset.

References

- Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber, C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., ... Saleem, M. (2017). An ecoregion-based approach to protecting half the terrestrial realm. BioScience, 67(6), 534–545. https://doi.org/10.1093/biosci/bix014
- Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on Earth. BioScience, 51(11), 933. https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2
- 3. Padilla, M., Stehman, S. V., & Chuvieco, E. (2014). Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling. Remote Sensing of Environment, 144, 187–196. https://doi.org/10.1016/j.rse.2014.01.008
- 4. Hantson, S., Padilla, M., Corti, D., & Chuvieco, E. (2013). Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sensing of Environment, 131, 152–159. https://doi.org/10.1016/j.rse.2012.12.004
- 5. Stroppiana, D., Boschetti, L., Boschetti, M., Ranghetti, L., & Sali, M. (2021, March 24). ESA CCI ECV Fire Disturbance: D1.3 Product Validation Plan, version 2. ESA Climate Office. https://climate.esa.int/en/projects/fire/key-documents/
- Buchhorn, M., Smets, B., Bertels, L., Roo, B. D., Lesiv, M., Tsendbazar, N.-E., Li, nlin L., & Tarko, A. (2020, September 8). Copernicus Global Land Service: Land Cover 100m: Version 3 Globe 2015-2019: Product User Manual. Zenodo. https://zenodo.org/record/3938963
- 7. European Forest Fire Information System (EFFIS). (2022). EFFIS European Fire Database. European Forest Fire Information System EFFIS. https://effis.jrc.ec.europa.eu/apps/data.request.form/