

•eesa biomass

Klaus Scipal 7th Advanced Training Course on Radar Polarimetry, Toulouse, France

16/06/2023

ESA UNCLASSIFIED - For ESA Official Use Only

The Biomass Mission –

ESA's PollnSAR mission

THE EUROPEAN SPACE AGENCY

The BIOMASS Mission

ESA's 7th Earth Explorer to be deployed in 2023 An interferometric, polarimetric P-band SAR Designed to observe forest height and biomass

ESA-DEVELOPED EARTH OBSERVATION MISSIONS

How well do we understand the CO2 fluxes ?

(Graphic by the Global Carbon Project)

Beyond Carbon: Changes in forest affect the benefits we gain from forests

Changes in forest have major effects on the socio-economics, material, energy, protective, biodiversity & cultural benefits offered by forests.

What information do we need?

1. We need estimates of forest biomass (AGB), height and disturbances.

2. The crucial information need is in the tropics:

deforestation (~95% of the Land Use Change flux) regrowth (~50% of the global biomass sink)

- 3. Biomass measurements are needed where the changes occur and at the **effective scale of change**: hectare scale.
- 4. Measurements are needed **wall-to-wall** with **repeated measurements** over multiple years to identify deforestation and regrowth.
- 5. A biomass accuracy of 20% at the hectare scale, **comparable to ground-based observations**.

How to measure biomass from space?

Synthetic Aperture Radar contains structure information @esa

THE EUROPEAN SPACE AGENCY

Choice of frequency

P-band 'sees' the trunk and (big) branches, provide 'more direct' information on woody above ground biomass

Choice of Frequency

- \Rightarrow P-Band provides sensitivity to the whole forest vertical structure, as demonstrated by 3D tomographic analyses.
- \Rightarrow Enables interferometry with a repeat pass system

Biomass Mission Concept

- ✓ Full polarimetric P-band (435 MHz) Synthetic Aperture Radar with 6 MHz bandwidth
- Single satellite, operated in a polar sun-synchronous orbit
- Two mission phases: Tomography (first 18 months), Interferometry (rest of the mission lifetime)
- Multi-repeat pass interferometry (3 passes in nominal operations) with a 3 days repeat cycle
- ✓ Global coverage in ~9 months on asc. and des. passes
- ✓ 5 years lifetime

The satellite is taking shape

Feed Array

Power Amplifier

Receiver

Biomass Mission Specifications

Key Parameters	
Sensitivity (NESZ)	≤ -27 dB
Total Ambiguity Ratio	≤ -18 dB
SLC resolution	≤ 60m x 8m
Dynamic Range	35 dB
Radiometric Stability	≤ 0.5 dB
Radiometric Bias	≤ 0.3 dB
Crosstalk	≤ -30 dB
Swath Width	~ 50 km

Coverage

- 1. Systematic Acquisitions for forested land (red area)
- 2. Global coverage in 9 months (INT phase) and 18 months (TOM phase).
- 3. Best effort acquisitions for non forested areas (yellow + ocean/sea ice ROIs)
- 4. Acquisition mask restricted by US Space Objects Tracking Radar (SOTR)

(Red = Primary objective coverage mask, Yellow = Secondary objective coverage mask)

→ THE EUROPEAN SPACE AGENC

Biomass Products

<image/> <text></text>	Forest heightUpper canopy height (meter)	<image/> <text></text>
200 m resolution accuracy of 20%, or 10 t ha–1 for biomass < 50 t ha–1	 200 m resolution accuracy of 20-30%	50 m resolution90% classification accuracy

• 1 map every 9 months of all forested areas (excl. SOTR region)

→ THE EUROPEAN SPACE AGENCY

Banda, F.; Giudici, D.; Le Toan, T.; Mariotti d'Alessandro, M.; Papathanassiou, K.; Quegan, S.; Riembauer, G.; Scipal, K.; Soja, M.; Tebaldini, S.; Ulander, L.; Villard, L. "The BIOMASS Level 2 Prototype Processor: Design and Experimental Results of Above-Ground Biomass Estimation" Remote Sensing, 2020, 12, 985. doi.org/10.3390/rs12060985

= Open Source Software Project

BioPAL

- = official BIOMASS algorithms python
- = first time that official algorithms are made publicly accessible

BIOMASS Product Algorithm Laboratory

biopal@esa.int biopal.org

github.com/BioPA

Beyond Forest Biomass

Ionosphere: Total Electron Content • Structure **Topography:** • Subcanopy Topography **Desert:** • Subsurface structure Ocean: Paleoclimatology • Salinity • Wind/Waves Sea Ice Ice Shelf/Ice Sheet Margin: • Ice flow Ice Structure • Bathymetry

29

→ THE EUROPEAN SPACE AGENCY

NASA-ESA Multi-Mission Algorithm and Analysis Platform Cesa

Unified user access to the functions of joint NASA-ESA MAAP

Summary – BIOMASS a true Earth Explorer

- 1. BIOMASS was proposed in 2005. Implementation started in Nov. 2013. The satellite is almost fully assembled and currently in the Test Facility. We are working towards a launch in 2024.
- 2. BIOMASS is the first P-band SAR and first systematic radar tomographic space mission; it is a true Earth Explorer with a lot of unknowns and exciting science for global biomass mapping.
- 3. It is the first Open Source Earth Explorer.
- 4. The new unique vision of Earth from Biomass will extend beyond forests and into measurements of ice, sub-surface geomorphology in deserts, topography, the ionosphere, ocean ...