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v Quick recap

v Maritime applications
v" Icebergs and acquaculture
v Target detectors

v" Agriculture/Urban/hydrology applications
v" Flooding
v Physical change detectors
v’ Statistical change detectors
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Naming conventions &
Warming up




Partial vs Single targets

Scattering matrix: Scattering vector:

S S 1
T k= —Trace([S]¥)= [k, ky, kyn K, |
SVH SVV 2
_ ] Backscattering &
Scattering mechanism, 1 reciprocity
Projection vector:

Q:l_c/‘l_(‘ ([S] ) [k19k29k3]T

The second order Covariance matrix:

T (i) () (o)

[C]=(k k") (ki) (kF) (k)
(ki) (ks ) <\k3\2>_




Quadratic forms

v' The projection vector represents idealised targets.
v" Once we have covariance matrices we can evaluate the power over
any projection vector by calculating its quadratic form

w* T [Clw

/ For the curious ones \
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the intensity space?

https://PollEv.com/multiple_choice_polls/jAEsp8PqF9B60gSarLfGr/respond
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Not fully developed speckle
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v The outer product forces the output
matrix to be convex (which is a
fantastic news when speckle is fully

v If we look at the space of polarimetric
targets, the quadratic forms (i.e. the
power) of the covariance matrix shapes

NOTE: this plot is considering a 3-D real
space for simplicity, in reality we have a 3D
complex space, which we cannot visualise
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Not fully developed speckle
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Maritime applications




Detecting objects
In maritime domain




Why monitoring icebergs?

v’ Icebergs are generated from the calving of glaciers or ice shelves.
v" The are a danger for navigation
v They play a role in ocean circulation.
v' They are indicator of currents.




Scattering from icebergs




Aquaculture

v' Aquaculture are a very valuable asset for many coastal countries
v The industry is worth $150bn in 2017 (Financial Times).
v In the future they will play an important role in food security.

v Satellite remote sensing can improve the temporal and geo-spatial
analysis of such marine facilities.

v Detecting platforms used for fish and shellfish farming provides a way to
monitor assets and check they do not get damaged by storms.

v It also allows to identify illegal placement of structures in areas which
should not host farms.

v As the most of human enterprises aquaculture is not immune to illegal
activities: e.g. the illegal bluefin tuna market is double the legal market
(Europol)
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Aquaculture

In this work we are interested in monitoring
platforms used for shellfish farms (called

s |

We also focus
on the aria of
Vigo, Spain.




Scattering from platforms
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Scattering from platforms
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Surface scattering

www HE-MOTO cam




https://PollEv.com/multiple_choice_polls/gksc6EbPAirjF4Ssn3Xzb/respond

UNIVERSITY of E

STIRLING e BE THE DIFFERENCE

Armando.marino@stir.ac.uk




Detecting objects:
PoISAR algorithms




Radar polarimetric for ship detection

We will see the following detectors, but many more were proposed in the literature

Entropy Quad-pol Detecting depolarised targets
PMF Quad-pol Optimising the contrast ship/sea
Liu et al Quad-pol GLRT for covariance matrix
GP-PNF (quad) Quad-pol Detecting targets orthogonal to sea
Symmetry Dual-pol (co/cross) Detecting non-symmetric targets
GP-PNF (dual) Dual-pol Detecting targets orthogonal to sea
in the dual-pol subset
Dihedral Dual-pol (HH/VV) Detecting horizontal dihedrals
HV intensity Single-pol Detecting high Backscattering in HV
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Red: HH-VV
Green: 2*HV

Sigma nought
1000x1000 pixels
_ Multi-look 1x5
Image size ~ 30x30km.

Circles: vessels
observed in the video
survey and in the RGB

Pauli image.

Rectangles: vessels
visible in the video
survey but NOT in the
RGB Pauli




Polarimetry detections:
quad-pol




Local algorithms

The covariance matrices for sea and target are often taken locally, sometimes
usmg guard wmdows too.




Entropy

It is the Entropy from the Cloude-Pottier eigendecomposition of the coherency matrix.
One of the first physical quad-pol ship detectors. The sea has a small entropy while ships
have high entropy (the collect different polarimetric signatures).

Many other modifications were proposed, with different measurements of
"depolarisation” or degree of polarisation.

[T]=[UT"] Zﬂ,%% = Ahuu, +Au,u, +Ausu;

Volume and
Surface :
H .. :
scattering sea small ship h g h Srgatﬂtel I:ilr?g

Cloude, S. R., Pattier, E., 1996. “A review of target decomposition theorems in radar polarimetry”, IEEE TGRS,
34(2), 498-518.
Touzi, R., “On the use of polarimetric SAR data for ship detection”, IGARSS vol. 2, pp. 812-814, 1999.



Polarimetric Match Filter (PMF)

The detector finds the scattering mechanism that providers the highest contrast
between see clutter and observed target. Then set a threshold on this contrast.

w: projection vector

2) Optimisation with Lagrange method:

*T
Optpczop{Q*T{Tn]]Q} L=o" 711]Q)_/1(Q*T[732]Q)_C) a—l:T:[Tn]Q_ﬂ'[Tzz]Q:O
@
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Novak, L. M., Sechtin, M. B. and Cardullo, M. J., "Studies of target detection algorithms which use polarimetric
radar data," IEEE Trans. Aerospace and Electric Systems, vol. 165, 1989.



Liu et al. detector

It assumes that ocean and target backscatter follow a multi-variate Gaussian
distribution with zero mean. The Neyman-Pearson likelihood ratio test.

Decision role: Lexicographic
. - B scattering vector
A=k |[c]] - [c] |k, k, =[HH,HV,VH,VVT

If the statistics of the expected targets are unknown (as it usually is)

A=k[C] k,>T,

seq — liu

Based on the assumption of Gaussian statistics - not optimal.

Physical meaning (asymptotically): it evaluate a weighted product of the
observed target. The weights are higher where the contributions of the sea are
smaller... therefore they intensify targets that are different from the sea.

If the sea is completely depolarised, the test becomes a simple test on the SPAN.

Liu, C., Vachon, P.W. and Geling, G.W., “Improved ship detection with airborne polarimetric SAR data”, Canadian .
Journal of Remote Sensing, Vol 31, No 1, pp 122-131, 2005.



Polarimetric Notch Filter (PNF)

The algorithm is based on the Geometrical Perturbation - Partial Target Detector,
however here, it is reversed and focused on the complementary space.
The sea is the clutter and we go looking at the complementary space (the rest)
where we expect our target of interest

Partial scattering vector:
ey *T Y *T *T T T
= |:Q1 [C]Q19Q2 [C]Q2,Q3 [C]Q?)’Ql [C]Qz’Ql [C]Q?,)Qz [C]Q3:|

-sea

T2 : target to reject (Null)

=-sea

Marino, A., Cloude, S. R. and Woodhouse, |. H., “Detecting depolarized targets using a new geometrical
perturbation filter,” IEEE TGRS, Vol. 50(10), pp 3787-3799, 2012.

Marino, A., "A Notch Filter for Ship Detection With Polarimetric SAR Data," IEEE JSTARS, early access, pp.1-14



Polarimetry detections:
dual- and single-pol




Symmetry detector

The sea is expected to have reflection symmetry along the vertical axis and
therefore its Lexicographic Covariance matrix can be written as:

(Suf) 0 (Sush) *
[Cou]= 0 <‘SHv‘2> 0 <SHHSHV> >T

<SVVSZ(H> 0 <‘SVV‘2>

A ship is NOT supposed to have such property, we do not expect a vertical axis of
symmetry. Therefore the inner product of co-pol and cross-pol is not supposed to
be zero.

Nunziata, F., Migliaccio, M. and Brown, C.E., “Reflection symmetry for polarimetric observation of man-made
metallic targets at sea,” IEEE Journal of Oceanic Engineering, vol. 37(3), pp. 384-394, 2012.



HV intensity

The sea is expected to have a very low backscattering in the cross-
polarisation channels HV or VH (assuming Bragg model, theoretically zero).
Ships on the other hand should NOT present this property. Also orientations adds
up to the HV return backscattering.

A threshold on the intensity of HV returns a detector.

The pdf of the intensity of a single channel is known, therefore a statistical test
can be devised. The pdf exploited here is the K-distribution.

Crisp, D. J., “The state-of-the-art in ship detection in synthetic aperture radar imagery,” Australian Government
Department of Defence, 2004.



Setting thresholds




Definition of the Problem

v In order to set a statistical test on your observable ¥, we need to derive its
probability density function, pdf.

v" Initially we define the two detection hypotheses:
v H,: only sea clutter
v' H,: target
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Statistical Tests

1. CFAR on pdf: The threshold is set with a Constant False Alarm Rate test

fT foy Ho) dy = P;

The threshold 7' is set in order to have a defined Pf.

2. Likelihood Ratio: LR = Jr(y | H,)
fr(y 1 Hy)

v' The statistics of the sea clutter can be extracted on a ring window around a
guard area.

v' The test area is a window inside the guard area.
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Examples




Dataset: ALOS-PALSAR QUAD-POL

A ground survey was carried out during
the acquisition in front of NDA
(100m.a.s.l):

* Video survey with video camera
* Ground-based X-band radar
* AIS positioning

ALOS-PALSAR QUAD-POL data
over Tokyo Bay (9t of October
2008). Data courtesy of JAXA

(Japanese Aerospace and

Exploration Agency)

M.

\ 7
" Saitamag Saitamal = N b

e There were also a sea weed farm on
the coastline
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Red: HH-VV
Green: 2*HV

Sigma nought
1000x1000 pixels
_ Multi-look 1x5
Image size ~ 30x30km.

Circles: vessels
observed in the video
survey and in the RGB

Pauli image.

Rectangles: vessels
visible in the video
survey but NOT in the
RGB Pauli
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GP-PNF

- - -

Detected: 22
Missed: 8 (15)
False: 0

RedR=2-10""
T=0.9

Average for test:
5x25,

corresponding to
about 50 ENL

d Circles: vessels

gl observed in the survey

¥ and in the RGB Pauli
image.

Rectangles: vessels
visible in the survey but
NOT in the RGB Pauli



Detected: 22
Missed: 8 (15)

Average for test:
5x25,
corresponding to
about 50 ENL

Circles: vessels
observed in the survey
and in the RGB Pauli

image.

Rectangles: vessels
visible in the survey but
NOT in the RGB Pauli




Detected: 22
Missed: 8 (15)
False: 1

—4
P, =10

Average for test:
5x25,
corresponding to
about 50 ENL

| Circles: vessels
. observed in the survey
.. and in the RGB Pauli

image.

Rectangles: vessels
visible in the survey but
NOT in the RGB Pauli
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Pl

. TR Detected: 21
L cie2t" . Missed: 8 (15)

False: several

Average for test:
5x25,
corresponding to
about 50 ENL

Circles: vessels
observed in the survey
and in the RGB Pauli

image.

Rectangles: vessels
visible in the survey but
NOT in the RGB Pauli
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VA

14
14 (21)

False

O
Q
5]
T
= on
VD »n
°s

0

T=0.1

Average for test:

3x3, corresponding

to about 3 ENL

@M observed in the survey

and in the RGB Pauli

Rectangles: vessels
visible in the survey but
NOT in the RGB Pauli




K=-DISI.

Detected: 18
Missed: 10 (17)
False: 0

Average for test:
5x25,
corresponding to
about 50 ENL

. Circles: vessels
N .. Observed in the survey
. and in the RGB Pauli

image.

Rectangles: vessels
visible in the survey but
NOT in the RGB Pauli




Summary table

Single- and
Quad-Pol Dual-Pol

Number/ Liu | Entropy Symmetry | HV-k
Algorithms

Detected 22 21 14 18
Missed 15(8) 15(8) 15(8) 16(9) 21(14) 17(10)

False Alarms 0 17? 1 Several 0 0

The Green indicates the algorithms with best performance.
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Probability of Detection

0_5: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII-

-/0 —-60 -50 —-40 -30 =20 =10 U

Probability of False Alarms (dB)

Green: Quad-pol
Solid: GP-PNF quad
Dot: Entropy

Das: PMF
Dot-Dash: Liu

Red: Dual-pol
Solid: Symmetry

Black: Single-pol
Solid: HV

Only visible targets in
the RGB are
considered (we know
where they are)
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Floodings

v’ Every year floods claim around 20,000 lives and adversely affect at least 20 million
people worldwide, mostly through homelessness (Smith 2009)

v A case study in the UK, in 2014 (The Guardian, 2014)
v" 1,100 homes have been flooded.

v 1/6 property in England are at risk.
v 2.3 billion £ on flood fences (Cameron 2013)

v Also, they have also been associated to Global Warming.

— 2

Wraysbury, January 2014 Flood fences




Why remote sensing?

v" Mapping floods with fieldwork has some issue:

v It may be dangerous
v Itis hard to provide synoptic information if the flood is large
v It is sometime hard to survey floods under some situations: e.g. water under

vegetation
v What is often done is to measure the flood based on its effects, which is not

always possible.

v' Remote sensing can be used for several purposes (besides monitoring the flood
itself) including gaining a better understanding of the flood basin for hydraulic

models.
v What we treat in this lecture is only the pure observation of the flood, not

improving models and predictions.
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How SAR sees floods? (as seen before)

v To study the interaction of
microwaves with water, we need a
scattering model.

v' Water is impenetrable by
microwaves, therefore it is seen as a
pure surface.

v If the surface is smooth, the
radiation will be reflected in the
specular direction

v’ If there is some surface
roughness we can expect some
return.

v In SAR images, we expect floods to
be dark.
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How SAR sees floods? (as seen before)

v To study the interaction of
microwaves with water, we need a
scattering model.

v' Water is impenetrable by
microwaves, therefore it is seen as a
pure surface.

v If the surface is smooth, the
radiation will be reflected in the
specular direction

v’ If there is some s''rfara

REFLECTED
INCIDENT WAVE

N
S

WAVE

OTH SURFACE

Well, NOT really because

the facets may be smaller

than the wavelength... but
hopefully the analogy

roughness we c: ;2_ helps you remember this :)
re F
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be discoball? oty R CRERRRAR
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How SAR sees floods?

Flooding in Central Europe - August 2002, Moldava Flooding

ERS-2's SAR instrument documented the spread of floodwaters from the
Moldava river, a confluent of the Elbe river, after heavy rains during August
flooded the cities along its banks.




How SAR sees floods?

Flood monitoring in the Camargue,
France

Subsection of an ERS-1 SAR scene
at 4 different dates.

The following datas are:
3 January 1994
12 January 1994
18 January 1994
21 January 1994
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How can we detect floods?

Single SAR acquisition and single polarisation channel
We can use the fact that floods appear dark in intensity images

Two SAR acquisitions and single polarisation
We can use the fact that floods change the intensity of the image

Two SAR acquisitions and multiple polarisations
We can use the fact that floods change the polarimetric signature of the
target

gl:]l'lrlEQR]_Sﬂ\\l{g o BE THE DIFFERENCE
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Change detection

v Besides detecting dark areas, the idea is to take an image when the flood was not
there and one with the flood and see the differences (as in the game Spot the
Difference).

v This is more properly called Change Detection.




Change detection with SAR

The satellite pass over a scene periodically (e.g. Sentinel-1 pass every
6 or 12 days. It produces an image every time.

We can see
through clouds
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Two images

If img] is one image acquired before the flood (archive image) and imgz is
acquired after, we can use a “change detector”.

Change detector: an algorithm that detects “changes” between two images
acquired at different moments in time.

Two very easy detectors can be devised considering the difference or the
ratio of the intensities

(limg, ')
S ™

Al :‘<| img, |2>_<| img, |2> > 1,

The difference can also be normalised as

>T,

n

(limg, )~ img, ')
<

| img, |2>+<| img, |2>
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Two images: the role of nhormalisation

v It is interesting to understand the role played by the normalisation (i.e.
difference vs normalised difference).

v If we DO NOT normalise, differences over bright areas appear

stronger.
v' The 1% difference over intensities around 1000 is 10; the 1%

difference over intensities around 10 is 0.1. The same difference in
percentage produces very dissimilar outputs of the “difference

change detector”

v Adv. of normalisation: It treats differences on bright and darker areas more

equally.
v Dis. of normalisation: The noise is enhanced, especially on dark targets
v If the SNR is low, additive noise can produce large changes to the pixel

value: e.g. with SNR=1, noise can easily modify the pixel of 100%

Summary: normalised indexes on the intensities are great, but we need to take
care when applied to noisy images.
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Two images: coregistration

v" One issue in change detection, is that the two images have to overlap
perfectly.
v Each pixel of each image has to be located at the same geographical
point. If this is not true, we may detect changes just because we are
looking at different areas.

v" The process of making two images overlapping is often called Co-registration.
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Two multidimensional acquisitions

SAR
v" Foods change the polarimetric behaviour of the observed targets.

v' Several detectors were proposed:
1. Physically based
2. Statistically based

v Adv.: Better discrimination; Dis.: More data to acquire and process.

ENIJYEREH\\I{EC o BE THE DIFFERENCE

Armando.marino@stir.ac.uk




10N

o

etect

”'}C.hang'e_ d

e

o ]
.

d :
Q
N
©
Yo
ey
=
=
>
c
O




Signal models: 1) additive model

Before | After

M I

Additive model: when a change is produced by adding or subtraction a
target. Change detectors are generally obtained considering differences.
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Additive model

Lagrange Method

L =wT([T,] - [T Dw — A(wTw - ()

dL
dw T = ([T2] = [T1Dw = 0

(T2] = [T} Dw = 1w

v" We can perform an eigenproblem of the difference matrix

v’ Eigenvalues will tell the maximum/minimum amount of change for the
scattering mechanisms

v" The eigenvector will tell which projection vector and in some instances
scattering mechanism is suffering maximally/minimally

— - NS Armando.marino@stir.ac.uk
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Signal models: 2) multiplicative model

Before After

D

IIM—:‘ F——T—;“ J

Multiplicative model: when a change is produced by transforming the target.
If we still assume linearity this transformation is done by multiplying by a
matrix.
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2) Multiplicative model

We already saw a detector based on the power ratio (the Generalised
Rayleigh Quotient):

We can optimize it using a Lagrange constrained optimization:

BZ‘;T = [T ]w — A[T,] L= [Tw - 2@ [T]o - C)

[T.]17' T e = Aw l

Marino, A. and Hajnsek, |. A Change Detector Based on an Optimization With Polarimetric SAR
Imagery,” IEEE Transactions on Geoscience and Remote Sensing, 8(52), 4781-4798, 2014
Alonso-Gonzalez, A. and Jagdhuber, T. and Hajnsek, |. "Exploitation of agricultural Polarimetric

SAR time series with Binary Partition Trees.” POLIinSAR 2015.



Signhal model comparison

v Additive model:
v’ a canopy cover that grows over ground
v' a car that moves away

v" Multiplicative model:
v" a car that rotates (if resolution bigger than the car)
v’ Stems that tilt
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ALOS data

v' The data were acquired by ALOS (JAXA) and are L-band quad-
polarimetric.

v' We use here the L-band quad polarimetric

v" The data were provided by a call of opportunity with project number 1151.

Morecambe Bay (England)

‘Bennington
e Holker

‘Bardsea

ttle Urswick
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Marecombe Bay: RGB Pauli

1 April 2007 17 May 2007
RGB |mage Flrst RGB image: Second

100

200

300

400

0 100 200 300 0 100 200

FFERENCE




Morecambe Bay
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1) Morecambe Bay: additive RGB composite
(IT2] = [T Dw = 1w

RGB DIFFERENCE: Largest RGB DIFFERENCE: Smallest

100 The value of
the RGB is
modulated
by the

200 .
eigenvalue

300

400

500
0 100 200 300 0 100 200 300 JIFFERENCE




Morecambe Bay: Pauli RGB

1 April 2007 17 May 2007
RGB |mage Flrst RGB image: Second

100

200

300

400

0 100 200 300 0 100 200

FFERENCE




2) Morecambe Bay: mult. RGB composite

—1
[Tzz] [Tu ]Q =Aw
RGB RATIO: Smallest RGB RATIO: Largest

The value of
the RGB is
modulated
by the
eigenvalue
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Hypothesis

v" In order to set a statistical test from a known distribution, we need to define the
hypothesis first:

HO:Z]_ — 22
Hl:Zl * 22

2.1 : expected value of covariance matrix for acquisition 1
2.»: expected value of covariance matrix for acquisition 2
C1: sample mean of covariance matrix for acquisition 1

C,: sample mean of covariance matrix for acquisition 2

gl:]l'lrlEQR]_Sﬂ\\l(g e BE THE DIFFERENCE
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v The classifier proposed previously is considering the physical behaviour of scatterers,
but it does not take into account the statistical variation of the image pixels

v In order to do this, we need to know the pdf of the covariance (or coherency) matrix.

v' The simplest case (no texture) consider a Wishart distribution.

/L: number of independent looks \
p: number of polarisation channels Matrix Trace
-
w7 L-p e—LTr [7.] (7] pdf o_f the
f ([T]/[Tm]) = ‘[ ]‘ covariance
matrix

/ 7 T(L).ID(L-p+D|T,]
AN AN

Conditional to a Gamma function Matrix determinant

\ specific class /




Likelihood ratio test

v If [C1] and [C2] are the same, then their sum will still be Wishart
v" We can therefore set a Likelihood Ratio Test to check if both covariance
matrices are Wishart and they have the same variance.
v' The likelihoods product will be equal to the likelihood of the sum

v' The ratio results in the following:

_(n+ m)P+) Det([C; )" Det([C,])™
— nwmmPm Det([Cy] + [GDm

n: number of looks for [C;], first acquisition
m: number of looks for [C,], second acquisition
P: number of polarimetric channels
Det: matrix determinant
K. Conradsen, A. A. Nielsen, J. Schou and H. Skriver, "A test statistic in the complex Wishart distribution and its

application to change detection in polarimetric SAR data," in IEEE Transactions on Geoscience and Remote
Sensing, vol. 41, no. 1, pp. 4-19, Jan. 2003, doi: 10.1109/TGRS.2002.808066.



Complex Hotelling—Lawley Trace

v" The Hotelling—Lawley Trace has a known distribution called the FS.

v’ Setting a threshold on it can be done rigorously.

HLT = Trace([T,]7[T1])

V. Akbari, S. N. Anfinsen, A. P. Doulgeris, T. Eltoft, G. Moser and S. B. Serpico, "Polarimetric SAR Change
Detection With the Complex Hotelling—Lawley Trace Statistic," in IEEE Transactions on Geoscience and Remote
Sensing, vol. 54, no. 7, pp. 3953-3966, July 2016, doi: 10.1109/TGRS.2016.2532320.
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HLT and Power ratio

[T T ]w = Aw
v The term ([T,]~1[T,]) may remind you
the searching space of the power ratio
optimisation.

v Taking the trace of a matrix allow us to
go to its integral over the full domain of
w

Here
comes
again the
spaceship

Note the ratio is not Hermitian
and therefore it may not look
like a regular ellipsoid, but it is
still convex, please read the
paper for more info

A. Marino, "Trace Coherence: A New Operator for Polarimetric and Interferometric SAR images," in IEEE
Transactions on Geoscience and Remote Sensing, vol. 55, no. 4, pp. 2326-2339, April 2017, doi:
10.1109/TGRS.2016.2641742.



BE THE DIFFERENCE

oday"

STIRLING &

UNIVERSITY of 2=




BE THE DIFFERENCE

NOW ¢

STIRLING &

UNIVERSITY of 2=




Thank you for your
attention!



