

7th Advanced Training Course on Radar **Polarimetry** Toulouse, 2023

SAR BASICS & SAR TOMOGRAPHY THEORY

Stefano Tebaldini Politecnico di Milano

RADAR (*Radio Detection And Ranging*) is a technology to detect and study far off targets by transmitting EM pulses at radiofrequency and observing the backscattered echoes

Some relevant features:

- **1.** Active instrument: \Leftrightarrow *no need for external illumination source*
- 2. Delay-based measurement ⇔ *target distance is obtained based on pulse two-way travel time*
- 3. Microwaves penetrate through rain and clouds \Leftrightarrow visibility in all weather conditions
- 4. Microwaves can penetrate into some natural media, like forests, snow, ice, sand ⇔ sensitivity to the 3D structure of illuminated media

SAR Imaging

SAR systems employ a RADAR sensor flown onboard a satellite platform to synthesize an antenna aperture as long as several kilometers

- Accurate measurement of Radar echoes backscattered from the targets as the system is flown along the satellite trajectory
- Image formation by Digital Processing techniques
- \Rightarrow The result is a high resolution **two-dimensional** map of the imaged scene

7th Advanced Training Course on Radar Polarimetry | SAR basics & SAR Tomography theory |Toulouse 2023

SAR Imaging

Key features:

- Microwaves penetrate through rain and clouds *visibility in all weather conditions*
- Aperture Synthesis ⇔ *fine spatial resolution*
- Phase preserving \Leftrightarrow *millimeter accuracy about distance variations*

Topographic mapping

DEM of Mount Etna, Sicily, derived from ERS-1 (ESA)

Spaceborne SARs provide *accurate* and *continuous* information about the Earth's surface and its evolution over time

Change detection

Post-earthquake change detection map in Amatrice, Italy, derived from Sentinel-1A (PoliMi)

7th Advanced Training Course on Radar Polarimetry | SAR basics & SAR Tomography theory | 1001005e 2025

SAR Imaging

Another key feature:

- Microwaves penetrate into natural media, like forests, snow, ice, sand *sensitivity to the three-dimensional structure of illuminated media*
- ⇒ A single pixel within a SAR image is actually a mixture of different scattering mechanisms distributed over height

Tomographic SAR Imaging

POLITE CALCO MILANO

TomoSAR systems employ a RADAR sensor flown along **multiple** trajectories

- Image formation by Digital Processing techniques
- ⇒ *Three dimensional representation* of Radar intensity at a given wavelength

Tomographic SAR Imaging

TomoSAR systems employ a RADAR sensor flown along **multiple** trajectories

- Image formation by Digital Processing techniques
- ⇒ *Three dimensional representation* of Radar intensity at a given wavelength

7th Advanced Training Course on Radar Polarimetry | SAR basics & SAR Tomography theory |Toulouse 2023

2000: First airborne demonstration (Reigber & Moreira, TGRS)

Bottom: Schematic representation of the imaged slice

TomoSAR is today an emerging remote sensing technology for imaging the interior structure of natural media from above by using electromagnetic (EM) waves

Timeline

- Mid 90's: principle formulated (Knaell and Cardillo) & first experiment (Pasquali et al, Fortuny et al)
- 2000: First airborne demonstration (Reigber and Moreira, TGRS)
- 2007 today: experimentation by Space Agencies (ESA, DLR, JPL) in the context of airborne and ground based campaigns, in view of future spaceborne applications on:
 - ✓ Forests
 - ✓ Agriculture
 - ✓ Ice sheets/glaciers
 - ✓ Snow
- 2024: launch date of the ESA P-Band Mission BIOMASS global tomographic coverage of forested areas
- *near future* (?): spaceborne L-, C-, X-Band Tomography by future bistatic SAR systems

Forest scenarios: separation of backscatter from different heights within the vegetation

- \Rightarrow Forest height
- \Rightarrow Sub-canopy terrain topography
- \Rightarrow Classification of forest structure
- \Rightarrow Improved forest biomass retrieval

Tomographic data from AfriSAR 2016 (ESA)

Site: Gabon

Acquisition by DLR & ONERA

Forest scenarios: separation of backscatter from different heights within the vegetation

- \Rightarrow Forest height
- \Rightarrow Sub-canopy terrain topography
- \Rightarrow Classification of forest structure
- \Rightarrow Improved forest biomass retrieval

Sub-canopy terrain topography

Site: Mondah, Gabon Data-set: AfriSAR (ESA) Frequency: P-Band $\sigma_{SAR-LIDAR} \approx 2.8 m$ @ 15 m

Mariotti et al., 2019 Pardini et al., 2018 Wasik et al., 2018

Lidar Terrain Model

Classification of forest structure

Site: Traunstein, Germany Frequency: L-Band Data-set by DLR

Tello et al., Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018

7th Advanced Training Course on Radar Polarimetry

Horizontal structure

0.6

0.8

0.4

0.2

Vertical structure

Correlation between Radar intensity and Above Ground Biomass (AGB)

- 2D SAR intensity is poorly correlated to AGB
- TomoSAR intensity at 0 m is poorly and negatively correlated to AGB
- TomoSAR intensity at main canopy height is highly correlated to AGB (≈ 50 Mg/ha per dB)

(French Guiana) Frequency: P-Band Data-set: TropiSAR (ESA)

Sites: Paracou, Nourages

Data-set by ONERA

Ho Tong Minh et al., TGRS, 2014

Ho Tong Minh et al., Remote Sensing of Environment, 2016

7th Advanced Training Course on Radar Polarimetry | SAR basics & SAR Tomography theory |Toulouse 2023

Results were confirmed for three African forest sites.....

Sites: Paracou, Nourages (French Guiana) Lopé, Rabi, Mondah (Gabon) Frequency: P-Band Data-sets: TropiSAR and AfriSAR (ESA) Data-set by ONERA

Tebaldini et al., Geophysical Surveys, accepted

.... and for a boreal site at L-Band

Site: Krycklan (Sweden) Frequency: L-Band Data-set: BioSAR 2 (ESA) Data-set by DLR

Blomberg et al., GRSL, 2018

AGB : Training/Validation [t/ha]

AGB : Training/Validation [t/ha]

7th Advanced Training Course on Radar Polarimetry | SAR

TomoSAR & Glaciers/ Ice sheets

Glaciers: inside view of the ice body

- \Rightarrow Bedrock detection below the ice surface
- \Rightarrow Imaging of internal structures

Mittelbergferner, Austrian Alps, March 2014

TomoSAR & Glaciers/ Ice sheets

TomoSAR Image - 25 m below the Ice surface

TomoSAR Image - 50 m below the Ice surface

The Mittelbergferner @ L-Band

TomoSAR & Snow

Snow: fine structure of snowpack layering

- \Rightarrow Total Snow depth
- \Rightarrow Refractive index
- \Rightarrow Internal layering

Data from AlpSAR 2013 (Rennes 1, ESA)

Rekioua et al., Comptes Rendus Physique, 2017

Carrying a novel P-band synthetic aperture radar, the Biomass mission is designed to deliver crucial information about the state of our forests and how they are changing, and to further our knowledge of the role forests play in the carbon cycle.

Dedicated to mographic acquisitions to image forests in 3D at fine resolution

To be launched in summer 2024 Site: Kourou, French Guiana Rocket: Vega

BIOMASS

A step back...

RADAR (*Radio Detection And Ranging*) is a technology to detect and study far off targets by transmitting EM pulses at radiofrequency and observing the backscattered echoes

Some relevant features:

- 1. Active instrument: \Leftrightarrow no need for external illumination source
- Delay-based measurement target distance is obtained based on pulse two-way travel time
- 3. Microwaves penetrate through rain and clouds \Leftrightarrow visibility in all weather conditions
- Microwaves can penetrate into some natural media, like forests, snow, ice, sand ⇔ sensitivity to the 3D structure of illuminated media

A step back...

RADAR (*Radio Detection And Ranging*) is a technology to detect and study far off targets by transmitting EM pulses at radiofrequency and observing the backscattered echoes

Some relevant features:

- 1. Active instrument: \Leftrightarrow no need for external illumination source
- Delay-based measurement <> target distance is obtained based on pulse two-way travel time
- 3. Microwaves penetrate through rain and clouds ⇔ visibility in all weather conditions
- Microwaves can penetrate into some natural media, like forests, snow, ice, sand ⇔ sensitivity to the 3D structure of illuminated media

Answer: Yes (@), with some efforts concerning

Waves

7th Advanced Training Course on Radar Polarimetry | SAR basics & SAR Tomography theory |Toulouse 2023

Stefano Tebaldini

7th Advanced Training Course on Radar Polarimetry | SAR basics & SAR Tomography theory |Toulouse 2023

Must knows about waves (at least for today)

Electromagnetic waves

- EM wave = perturbation in the intensity of the static EM field
- Effect of the universal speed limit
- Triggered by charges in non-uniform motion
- Propagation velocity in free space: $c \approx 3 \cdot 10^8$ m/s

Representation

We can describe waves as signals that vary over **time** and **space** as:

$$s\left(t-\frac{z}{c}\right)$$

with s(t) some waveform

Must knows about waves (at least for today)

When we express a signal as a function of time, we are implicitly assuming that the signal is measured at a **fixed point in space**

7th Advanced Training Course on Radar Polarimetry | SAR basics & SAR Tomography theory |Toulouse 2023

Must knows about waves (at least for today)

Equivalently, we can express a signal as a function of space by imaging that we can freeze the time at a **fixed instant** and take a snapshot of the signal distribution over space

Must knows about waves (at least for today)

For the case of a monochromatic wave we have $s(t) = cos(2\pi f_o t)$

Geometric principles of target localization

Stefano Tebaldini

RADAR (*Radio Detection And Ranging*) is a technology to detect and study far off targets by transmitting EM pulses at radiofrequency and observing the backscattered echoes

Simplified description

 The transmitted signal propagates away from the RADAR sensors in all directions^(*) in the form of a spherical wave

^(*)Note: real antennas actually radiate over an angular sector, depending on size and wavelength

 $s_{Tx}(t) = s(t) =$ transmitted signal

 $s_1(t)$ = signal received at point P₁

$$s_1(t) = s\left(t - \frac{R}{c}\right)$$

R = distance between P₁ and the RADAR c = speed of light

The received signal depends on distance only

 \Rightarrow Any antenna at distance **R** from the RADAR receives the same signal $s_1(t)$

<u>Simplified</u> description

The signal interacts with surrounding objects (targets) ⇔ backscattered echoes II)

> As a first approximation the backscattered echo can be represented by imaging the target as a new source of spherical waves

 $s_1(t)$ = signal received at point P₁

 $s_1(t) = s\left(t - \frac{R}{c}\right)$ $R = \text{distance between P}_1 \text{ and the RADAR}$ c = speed of light

$s_2(t)$ = backscattered signal received at point P₂

$$s_2(t) = A \cdot s_1\left(t - \frac{R'}{c}\right) = A \cdot s\left(t - \frac{R' + R}{c}\right) \qquad \begin{array}{l} R' = distance from \\ P_1 \ to \ P_2 \end{array}$$

A = constant accounting for the interaction of the impinging signal with the target

<u>Simplified</u> description:

III) The backscattered echo is received by the RADAR sensor

 $s_{Rx}(t)$ = backscattered signal received by the RADAR

Delay measurement

Localization in 1D

Delay measurement \Leftrightarrow Localization on the surface of a sphere

The target is bound to lie on a sphere

- Centered on the RADAR
- \circ Of radius R
- \Rightarrow 1D Localization

Localization in 2D (SAR)

Flying a RADAR along a straight line = measuring the distance from the target to each point on the line

The target is bound to lie on the intersection of all the spheres:

- Centered in $S(\tau)$
- Of radius $R(\tau)$

 \Rightarrow The target is bound to lie on the circle:

- Centered on the trajectory
- Perpendicular to the trajectory (yz plane)
- Of radius **R**_{min}
- \Rightarrow 2D Localization

Localization in 3D (TomoSAR)

Flying a RADAR along multiple lines = measuring the distance from the target to multiple lines

The target is bound to lie on the circles:

- Centered on each trajectory
- Perpendicular to the trajectory ,
- Of radius **R**₁ ... **R**_n **R**_N

\Rightarrow Only 1 solution in the 3D space !	
\Rightarrow 3D localization	

Geometry unveils the principle why flying multiple trajectories results in the capability to localize a target in the 3D space

Geometry unveils the principle why flying multiple trajectories results in the capability to localize a target in the 3D space

Missing elements:

- **Resolution**
- What if there are many targets ?!!!

RADAR signals

7th Advanced Training Course on Radar Polarimetry | SAR basics & SAR Tomography theory |Toulouse 2023

Stefano Tebaldini

RADARs transmit and receive Radiofrequency (RF) pulses

RADARs transmit and receive Radiofrequency (RF) pulses

$$s_{Tx,RF}(t) = g(t) \cdot \cos(2\pi f_0 t)$$

g(t) = short EM pulse f₀ = carrier frequency

The carrier frequency (or wavelength $\lambda = \frac{c}{f_o}$) is perhaps the most important parameter in the design of a Radar sensor, as it determines:

- The antenna to be used
- The RF hardware to be used
- The features of the observed targets which the signal is sensitive to

On a mathematical ground, the signal backscattered by a target is represented as a delayed version of the transmitted signal

Following basic trigonometry, the received signal is expressed as:

Where we define the in-phase and quadrature signals as:

- $\circ \quad I(t) = A \cdot g(t-d) \cdot \cos(2\pi f_0 d)$
- $\circ \quad Q(t) = -A \cdot g(t-d) \cdot \cos(2\pi f_0 d)$

The **information** about the target is carried by the amplitude and delay parameters A and d, which are embedded in the in-phase and quadrature signals I(t) and Q(t) (we already know the value of the carrier, so no new info in it)

The I(t) and Q(t) of RF signals are extracted by RF circuitry, stored as numerical signals...

10011001100100100100001

00011100011101010101010101

The I(t) and Q(t) of RF signals are extracted by RF circuitry, stored as numerical signals...

10011001100100100100001

00011100011101010101010101

... and represented as a single **complex** signal, simply referred to as the (complex envelope of the) received signal

$$s_{Rx}(t) = I(t) + jQ(t)$$
 j = imaginary unit

The complex representation is ubiquitous in the study of all wave phenomena

One good reason why it is used: it allows to make large use of the properties of complex exponentials (easy!)

 \Rightarrow noticeable simplification!

Going back to the case of the received signal, we have:

$$s_{Rx,RF}(t) = A \cdot g(t-d) \cdot \cos(2\pi f_0 d) \cdot \cos(2\pi f_0 t) - A \cdot g(t-d) \cdot \sin(2\pi f_0 d) \cdot \sin(2\pi f_0 t)$$

In phase component $I(t)$
Quadrature component $-Q(t)$

$$s_{Rx}(t) = I(t) + jQ(t) = A \cdot g(t-d) \cdot e^{-j2\pi f_0 d}$$

Finally, recalling that:

- The delay is obtained as $d = \frac{2R}{c}$
- The wavelength is obtained is $\lambda = \frac{c}{f_0}$

we obtain the usual expression of the received signal used in large part of the Radar literature:

$$s_{Rx}(t) = A \cdot g\left(t - \frac{2R}{c}\right) \cdot e^{-j\frac{4\pi}{\lambda}R}$$

Finally, recalling that:

- The delay is obtained as $d = \frac{2R}{c}$
- The wavelength is obtained is $\lambda = \frac{c}{f_0}$

we obtain the usual expression of the received signal used in large part of the Radar literature:

Amplitude:

this term is related to the strength of the wave backscattered by the target

Delayed pulse:

this term allows for the determination of a target's distance from the Radar

Phase:

this is where the magic starts...

The frequency domain

7th Advanced Training Course on Radar Polarimetry | SAR basics & SAR Tomography theory |Toulouse 2023

Stefano Tebaldini

The signals presented in the last section were represented by drawing their variation over time, or by writing equations where the signal amplitude depends on the time like g(t)This particular representation is referred to as **time domain**

An alternative representation is built by representing a signal as a collection of **sinusoids** (either real or complex), i.e.:

$$g(t) = G_1 e^{j2\pi f_1 t} + G_2 e^{j2\pi f_2 t} + G_3 e^{j2\pi f_3 t} + \cdots$$

we say that the signal g(t) "contains" the sinusoids at frequency f_1 , f_2 , f_3 ... and the amplitudes G_1 , G_2 , G_3 represent the "strength" of each of those sinusoids.

Question: can we represent any signal in the frequency domain? In other terms, can we always represent a signal as a collection of sinusoids?

Frequency domain

We answer with the help of Richard Feynman:

In what circumstances can a curve be represented as a sum of a lot of cosines?

Answer:

In all ordinary circumstances, except for certain cases the mathematicians can dream up. Of course, the curve must have only one value at a given point, and it must not be a crazy curve which jumps an infinite number of times in an infinitesimal distance, or something like that. But aside from such restrictions any reasonable curve (one that a singer is going to be able to make by shaking her vocal cords) can always be compounded by adding cosine waves together.

Practically, this means we can **always** represent a signal in terms of a sum of sinusoids, as long as we consider a sufficient number of sinusoids

7th Advanced Training Course on Radar Polarimetry | SAR basics & SAR Tomography theory |Toulouse 2023

Frequency domain

Practically, this means we can **always** represent a signal in terms of a sum of sinusoids, as long as we consider a sufficient number of sinusoids

In this way, we can represent the signal g by drawing (or writing) the series of the amplitudes as a function of the frequency of the associated sinusoid, i.e.: G(f)

$$g(t) = G_1 e^{j2\pi f_1 t} + G_2 e^{j2\pi f_2 t} + G_3 e^{j2\pi f_3 t} + \cdots$$

This particular representation is referred to as *frequency domain*

Bandwidth

The **bandwidth** of a signal is defined as the "length" of the interval where we find the frequencies that are contained in it

Bandwidth B

Stefano Tebaldini

Bandwidth

For Radar pulses we can state the rule that (with some exceptions we will not discuss):

signal bandwidth is inversely proportional to signal duration

Question: how do we get to know which frequencies contribute to a signal? How do we compute their amplitudes G(f)?

Answer: we calculate the *Fourier Transform* of the signal

For a signal represented as a sequence of time samples in our computer, the Fourier Transform is expressed as:

$$G(f) = \sum_{n} g(t_n) \cdot e^{-j2\pi f t_n}$$

Which states a simple recipe:

- \circ Choose (at will) a particular frequency f
- Take the original signal $g(t_n)$ and multiply its time samples times $e^{-j2\pi f t_n}$
- Sum over all samples
- Repeat for any frequency f we want to evaluate

Range resolution

Stefano Tebaldini

The concept of bandwidth leads us to directly to the important concept of **range resolution**, intended as the capability to distinguish (resolve) two targets found at slightly different distances from the Radar

The received signal is now expressed as the sum of two signals associated with the two targets

$$s_{Rx}(t) = A_1 \cdot g\left(t - \frac{2R_1}{c}\right) \cdot e^{-j\frac{4\pi}{\lambda}R_1} + A_2 \cdot g\left(t - \frac{2R_2}{c}\right) \cdot e^{-j\frac{4\pi}{\lambda}R_2}$$

If we plot signal magnitude, we obtain the following graph

 \Rightarrow We can tell there are two targets as long as the received signal exhibits **two distinct peaks** This occurs upon the condition that:

$$\frac{2|R_2 - R_1|}{c} \ge T \quad \Longrightarrow \quad |R_2 - R_1| \ge \frac{c}{2B} = \Delta R$$

Where $\Delta R = \frac{c}{2R}$ is referred to as the **range resolution** of the Radar

В	ΔR	Typical SAR case
6 MHz	25 m	P-Band (≈ 400 MHz carrier) spaceborne SAR (due to ITU regulations)
40 MHz	3.75 m	L-Band (≈ 1300 MHz carrier) spaceborne SAR
150 MHz _ 500 MHz	1 m _ 0.3 m	Low frequency airborne SAR (hundreds of MHz to few GHz) X-band (≈ 10 GHz carrier) spaceborne SAR
1 GHz – 5 GHz	0.15 m _ 0.03 m	 Higher frequency (≥ 10 GHz carrier) airborne SAR (some cases) Higher frequency (≥ 70 GHz carrier) automotive Radar

Moving a RADAR along a straight line = measuring the distance from the target to each point on the line ⇔ 2D Localization

How?

Let's take a step back....

Consider an array of N antennas, sequentially emitting a *monochromatic wave* Note: Monochromatic wave $\Leftrightarrow 0$ bandwidth $\Leftrightarrow g(t) = 1 \Leftrightarrow$ no range resolution

Transmitted signal

$$s_{Tx}(t) = exp(j2\pi f_0 t)$$

Received signal $s_{Rx}(n) = A_{car} \cdot e^{-j\frac{4\pi}{\lambda}R_n}$

Consider an array of N antennas, sequentially emitting a *monochromatic wave* Note: Monochromatic wave $\Leftrightarrow 0$ bandwidth $\Leftrightarrow g(t) = 1 \Leftrightarrow$ no range resolution

Received signal

$$s_{Rx}(n) = A_{car} \cdot e^{-j\frac{4\pi}{\lambda}R_n}$$

$$R_{n} = \sqrt{(x_{n} - x_{car})^{2} + (y_{car})^{2}}$$

Consider an array of N antennas, sequentially emitting a *monochromatic wave* Note: Monochromatic wave $\Leftrightarrow 0$ bandwidth $\Leftrightarrow g(t) = 1 \Leftrightarrow$ no range resolution

Received signal

$$s_{Rx}(n) = A_{car} \cdot e^{-j\frac{4\pi}{\lambda}R_n}$$

$$R_n \cong R_{car} + sin(\psi_{car}) \cdot (x_n - x_0)$$

Valid for $R_{car} >> A$

Consider an array of *N* antennas, sequentially emitting a *monochromatic wave Note: Monochromatic wave \Leftrightarrow 0 bandwidth \Leftrightarrow g(t) = 1 \Leftrightarrow no range resolution*

Received signal

$$s_{Rx}(n) = A_{car} \cdot e^{-j\frac{4\pi}{\lambda}R_n}$$

$$R_n \cong R_{car} + \sin(\psi_{car}) \cdot (x_n - x_0)$$

Valid for $R_{car} >> A$

Equivalent to a planar wavefront from the car to the antenna array

Signal along the array

$$s_{Rx}(n) \cong A_{car} e^{-j\frac{4\pi}{\lambda}R_{car}} \cdot e^{-j2\pi f_{car}\cdot x_n}$$

 $f_{car} = \frac{2}{\lambda} sin(\psi_{car})$

Fourier Transform

The signal to be transformed contains a single sinusoid at frequency f_{car}

 \Rightarrow We would expect its Fourier Transform to show a

single peak at frequency $f_x = f_{car}$

Signal along the array

$$s_{Rx}(n) \cong A_{car} e^{-j\frac{4\pi}{\lambda}R_{car}} \cdot e^{-j2\pi f_{car}\cdot x_n}$$

 $f_{car} = \frac{2}{\lambda} sin(\psi_{car})$

Fourier Transform

The signal to be transformed contains a single sinusoid at frequency f_{car}

However, we find something quite different

- A peak is present at the right position ($f_x = f_{car}$)...
- o ... but is spread across an interval of frequencies

Signal along the array

$$s_{Rx}(n) \cong A_{car} e^{-j\frac{4\pi}{\lambda}R_{car}} \cdot e^{-j2\pi f_{car}\cdot x_{rar}}$$

 $f_{car} = \frac{2}{\lambda} sin(\psi_{car})$

Fourier Transform

The signal to be transformed contains a single sinusoid at frequency f_{car}

However, we find something quite different

- A peak is present at the right position ($f_x = f_{car}$)...
- \circ ... but is spread across an interval of frequencies

The reason for the spread is the inverse proportionality between signal duration and bandwidth

The signal along the array has a "duration" of A meters hence its FT has a bandwidth $\Delta f \approx \frac{1}{4}$

The link between array aperture and spatial bandwidth leads us directly to the important concept of **angular resolution**, intended as the capability to distinguish (resolve) two targets found at slightly different angles w.r.t. the Radar

Signal along the array

Fourier Transform

The link between array aperture and spatial bandwidth leads us to directly to the important concept of **angular resolution**, intended as the capability to distinguish (resolve) two targets found at slightly different angles w.r.t. the Radar

Signal along the array

Fourier Transform

 \Rightarrow We can tell there are two targets as long as the received signal exhibits **two distinct peaks** This occurs upon the condition that:

$$|f_{car} - f_{tree}| \ge \Delta f \approx \frac{1}{A} \implies |\psi_{car} - \psi_{tree}| \ge \Delta \psi \approx \frac{\lambda}{2A}$$

Where $\Delta \psi = \frac{\lambda}{2A}$ is referred to as the **angular resolution** of the array

с

Antenna array emitting RF pulses

- τ = flight time (or *slow time*, in jargon)
- *t* = time w.r.t. transmission (or *fast time*, in jargon)

- τ = flight time (or *slow time*, in jargon)
- *t* = time w.r.t. transmission (or *fast time*, in jargon)

$$s_{Rx}(t,\tau) = A_{car}g\left(t - \frac{2R(\tau)}{c}\right) \cdot e^{-j\frac{4\pi}{\lambda}R(\tau)}$$

- τ = flight time (or *slow time*, in jargon)
- *t* = time w.r.t. transmission (or *fast time*, in jargon)

- τ = flight time (or *slow time*, in jargon)
- *t* = time w.r.t. transmission (or *fast time*, in jargon)

- τ = flight time (or *slow time*, in jargon)
- *t* = time w.r.t. transmission (or *fast time*, in jargon)

Hp1: range migration is negligible \Leftrightarrow we can tell the range from the delay (along t)

Hp2: plane wavefront approximation \Leftrightarrow we can tell the angular position from the frequency (along τ)

Slow time

Practically, we compute a FT for any value of the fast time

$$S_{Rx}(R,\psi) = \sum_{\tau} s_{Rx}\left(t = \frac{2R}{c},\tau\right) \cdot e^{-j\frac{4\pi}{\lambda}sin(\psi)x(\tau)}$$

Focused data matrix

Fast time

range

Practically, we compute a FT for any value of the fast time

$$S_{Rx}(R,\psi) = \sum_{\tau} s_{Rx}\left(t = \frac{2R}{c}, \tau\right) \cdot e^{-j\frac{4\pi}{\lambda}sin(\psi)x(\tau)}$$

7th Advanced Training Course on Radar Polarimetry | SAR basics & SAR Tomography theory |Toulouse 2023

Stefano Tebaldini

SAR imaging – geometrical interpretation

Synthetic Aperture Radars (SAR) employ a moving RADAR sensor, flown onboard a satellite or an aircraft, in order to synthesize an antenna as long as several kilometers

Flying a RADAR along a straight line = measuring the distance from the target to each point on the line

The target is bound to lie on the intersection of all the spheres:

- Centered in $S(\tau)$
- Of radius $\boldsymbol{R}(\tau)$
- \Rightarrow The target is bound to lie on the circle:
- Centered on the trajectory
- Perpendicular to the trajectory (yz plane)
- Of radius **R**_{min}
- \Rightarrow 2D Localization

ography theory |Toulouse 2023

Synthetic Aperture Radars (SAR) employ a moving RADAR sensor, flown onboard a satellite or an aircraft, in order to synthesize an antenna as long as several kilometers

Flying a RADAR along a straight line = measuring the distance from the target to each point on the line

Start-stop approximation:

the platform is assumed to be completely still in air (or in space) during pulse transmission and reception

How long is the synthetic aperture ?

Target illumination is limited to an angular sector, depending on wavelength and antenna size

How long is the synthetic aperture ?

Target illumination is limited to an angular sector, depending on wavelength and antenna size

Length of the synthetic aperture

Horizontal (along-track) resolution = half the antenna length

$$\Delta x \cong \frac{L_x}{2}$$

 \circ $\;$ Independent on target's distance from the trajectory

Synthetic Aperture Radar

- o Synthetic Aperture sliding along the trajectory
- o Angular resolution is obtained by focusing the data at

a fixed angle

Typical choice: $\psi = 0$ (Zero-Doppler)

- Synthetic aperture length depends on target range
- Same **horizontal resolution** for all targets

Antenna array

- Real aperture in a fixed position
- Angular resolution is obtained by focusing the data at **different** angles
- Same **angular resolution** for all targets

SAR imaging – geometrical interpretation

Synthetic Aperture Radars (SAR) employ a moving RADAR sensor, flown onboard a satellite or an aircraft, in order to synthesize an antenna as long as several kilometers

Flying a RADAR along a straight line = measuring the distance from the target to each point on the line

The target is bound to lie on the intersection of all the spheres:

- Centered in $S(\tau)$
- Of radius $\boldsymbol{R}(\tau)$
- \Rightarrow The target is bound to lie on the circle:
- Centered on the trajectory
- Perpendicular to the trajectory (yz plane)
- Of radius **R**_{min}
- \Rightarrow 2D Localization

ography theory |Toulouse 2023

SAR imaging – physical interpretation

Synthetic Aperture Radars (SAR) employ a moving RADAR sensor, flown onboard a satellite or an

aircraft, in order to synthesize an antenna as long as several kilometers

Flying a RADAR along a straight line = measuring the distance from the target to each point on the line

Stefano Tebaldini

Stefano Tebaldini

SAR image

This pixel value is arises from the interference of all trees within the resolution cell

- SAR jargon
- \circ R = (slant) range
- \circ *x* = azimuth

TomoSAR Imaging

Stefano Tebaldini

Multiple baselines \Leftrightarrow Illumination from multiple points of view

Multiple baselines \Leftrightarrow Illumination from multiple points of view

Multiple baselines \Leftrightarrow Illumination from multiple points of view

Multiple baselines \Leftrightarrow Illumination from multiple points of view

An antenna array is formed at each azimuth position

Resolution of targets at different elevation
within each SAR range/azimuth resolution cell

TomoSAR Resolution

TomoSAR Resolution

TomoSAR Resolution Cell

TomoSAR Resolution Cell

TomoSAR Processing

SAR pixel = Sum of all elementary scatterer at different elevations within the same range/azimuth resolution cell

o Each elementary scatterer is phase-rotated according to its distance from the Radar

Distance w.r.t. a reference position

$$R_{M} - R_{M}(ref) \cong sin(\theta_{M}) \cdot (y - y_{ref}) - cos(\theta_{M}) \cdot (z - z_{ref})$$
$$R_{n} - R_{n}(ref) \cong sin(\theta_{n}) \cdot (y - y_{ref}) - cos(\theta_{n}) \cdot (z - z_{ref})$$

The approximations above allow restating the SAR model in a new Cartesian coordinate system defined by

slant range, elevation with respect to a reference point and a reference orbit

- The reference position is typically taken as the (x, y, z) position of the SAR pixel when projected onto a given Digital Terrain Model
- The choice of the reference orbit is largely arbitrary

$$\int_{I_n(r,x)} = exp\left\{-j\frac{4\pi}{\lambda}R_n(ref)\right\} \cdot \sum_{r',v} A(r',v)exp\left\{-j\frac{4\pi}{\lambda}r'\right\} \cdot exp\left\{-j\frac{4\pi}{\lambda}\frac{b_n}{R_M(ref)}v\right\}$$
Summing over r' we get
$$I_n(r,x) = exp\left\{-j\frac{4\pi}{\lambda}R_n(ref)\right\} \cdot \sum_{v} s(v) \cdot exp\left\{-j\frac{4\pi}{\lambda}\frac{b_n}{R_M(ref)}v\right\}$$

$$I_{n}(r,x) = exp\left\{-j\frac{4\pi}{\lambda}R_{n}(ref)\right\} \cdot \sum_{r',v} A(r',v)exp\left\{-j\frac{4\pi}{\lambda}r'\right\} \cdot exp\left\{-j\frac{4\pi}{\lambda}\frac{b_{n}}{R_{M}(ref)}v\right\}$$
Summing over r' we get
$$I_{n}(r,x) = exp\left\{-j\frac{4\pi}{\lambda}R_{n}(ref)\right\} \cdot \sum_{v}s(v) \cdot exp\left\{-j\frac{4\pi}{\lambda}\frac{b_{n}}{R_{M}(ref)}v\right\}$$

Phase offset to be removed based on knowledge

of the acquisition geometry (terrain flattening)

The SAR pixel in the *n*-th image can finally be expressed in a simple form as follows:

The SAR pixel in the *n*-th image can finally be expressed in a simple form as follows:

$$I_n(r,x) = \sum_{v} s(v) \cdot exp\{-j2\pi f_v b_n\} \quad \text{with } f_v = \frac{2}{\lambda} \frac{v}{R_M(ref)}$$

The signal obtained by taking the pixels at the same (r, x) location in a stack of SAR images is contributed by a sum of complex sinusoids

- The frequencies of the sinusoids correspond to the elevations v at which the targets are found
- The complex amplitude of the sinusoids are obtained by projecting the scatterers within the SAR resolution cell along elevation

TomoSAR focusing algorithm

Tomographic focusing consists in retrieving the amplitudes s(v) from the signal $I_n(r, x)$

 \Rightarrow As always, this is done by computing a Fourier Transform

$$T(r, x, v) = \sum_{n} I_{n}(r, x) \cdot exp\left\{j\frac{2}{\lambda}\frac{v}{R_{M}(ref)}\right\}$$

Acquisition

Stack of SAR images

Tomographic voxels

Case 1: a single point target

s(v) = projection of the scatterers

along elevation

$$T(r, x, v) = \sum_{n} I_{n}(r, x) \cdot exp\left\{j\frac{2}{\lambda}\frac{v}{R_{M}(ref)}\right\}$$

T(v) = reconstruction by SAR

Tomography

Elevation resolution is $\Delta \nu = \frac{\lambda R_{\scriptscriptstyle M}(ref)}{2b_{ap}}$

Case 2: two point targets

s(v) = projection of the scatterers

along elevation

$$T(r, x, v) = \sum_{n} I_{n}(r, x) \cdot exp\left\{j\frac{2}{\lambda}\frac{v}{R_{M}(ref)}\right\}$$

T(v) = reconstruction by SAR

Tomography

Elevation resolution is $\Delta \nu = \frac{\lambda R_{\scriptscriptstyle M}(ref)}{2b_{ap}}$

Case 3: terrain

POLITE CARGO MILANO

s(v) = projection of the scatterers along elevation

Terrain = extended target

- \Leftrightarrow It does not project into a peak
- ⇔ Spread along elevation

Case 3: terrain

s(v) = projection of the scatterers along elevation

Terrain = extended target

- ⇔ It does not project into a peak
- \Leftrightarrow Spread along elevation

(depending on terrain slope)

Case 3: terrain

s(v) = projection of the scatterers along elevation

Terrain = extended target

- ⇔ It does not project into a peak
- ⇔ Spread along elevation

(depending on terrain slope)

Case 3: terrain

T(v) = reconstruction by SAR

Tomography

Elevation resolution is $\Delta \nu = \frac{\lambda R_{\scriptscriptstyle M}(ref)}{2b_{ap}}$

Case 4: terrain + forest

s(v) = projection of the scatterers

along elevation

Case 4: terrain + forest

T(v) = reconstruction by SAR

Tomography

Elevation resolution is $\Delta \upsilon = \frac{\lambda R_{\rm M}(ref)}{2b_{ap}}$

TomoSAR forward model

$$I_n(r,x) = \sum_{v} s(v) \cdot exp\left\{-j\frac{4\pi}{\lambda}\frac{b_n}{R_M(ref)}v\right\}$$

 $I_n(r,x)$: SLC pixel in the *n*-th image s(r,x,v): projection of the scatterers along elevation b_n : normal baseline for the *n*-th image

 λ : carrier wavelength

Terrain flattening

Terrain flattening

Warning! The algorithm we have just seen produces periodic results

- ⇒ Ghost targets appearing at known position w.r.t. the real one
- > Also referred to as ambiguous targets, or replicas
- Same range as the real target
- Displaced along elevation

Let's now consider another elevation v_a such that $v_a = \frac{\lambda R_M(ref)}{2\Delta b}$

Then
$$\frac{4\pi\Delta b}{\lambda r}n\cdot(v_0+v_a) = \frac{4\pi\Delta b}{\lambda r}n\cdot v_0 + 2\pi n \equiv \frac{4\pi\Delta b}{\lambda r}n\cdot v_0$$

 \Rightarrow The two elevations v_0 and v_a produce the same phase in all SAR images

Stefano Tebaldini

POLITE CIVICO MILANO

Case 1: a single point target

s(v) = projection of the scatterers

along elevation

= reference position

TomoSAR – examples (II)

Baseline design tips

Baseline design tips

- Ambiguity ⇔ baseline spacing
- Resolution ⇔ baseline aperture
- ⇒ Baseline spacing: small enough to ensure that ambiguous targets stay away from the real ones
- ⇒ Baseline aperture: large enough to meet resolution requirement

$$\Rightarrow$$
 How many passes ? $N \ge \frac{b_{ap}}{\Delta b} = \frac{v_a}{\Delta v}$

Advanced TomoSAR

Ο

Ο

Current paradigm for forested areas: retrieve the *vertical distribution of backscattered power*

based on the observed InSAR coherences

Advanced TomoSAR

Current paradigm for forested areas: retrieve the vertical distribution of backscattered power

based on the observed InSAR coherences

W

Later on today

- Equivalent to DFT if inversion is carried out using linear methods
- Non-linear methods can be used to achieve:
 - Super-resolution (super = finer than the limit from baseline aperture)
 - **Rejection of ambiguous targets** (using irregular baseline spacing)

TomoSense

The airborne campaign took place in 2020/21 at the Kermeter site in the Eifel National Park in North-Rine Westphalia in Germany. The campaign includes:

- Bistatic airborne SAR surveys at Land C-Band collected by flying two aircraft in close formation, with one following the other at a nominal distance of approximately 20/30 m.
- The flights were programmed in synergy with the P-Band campaign BelSAR-P.
- In-situ collection of relevant forest parameters at approximately 80 plots.
- Collection of TLS data at a scale of 1 ha at 10 plots.
- Installation of 5 m trihedral reflectors for P-Band calibration

TomoSense

The TomoSense data-set is intended to serve as an important basis for studies on microwave scattering from forested areas in the context of future studies on Earth Observation missions.

The data-set includes:

- Calibrated SAR images and tomographic cubes at different levels of processing
- ALS-derived maps of forest height and AGB
- Forest census
- TLS profiles.

Complex SAR images are already finely coregistered, phase calibrated, and ground steered, in such a way as to enable future researchers to directly implement any kind of interferometric or tomographic processing without having to deal with the subtleties of airborne SAR data.

In addition to that, the data-base comprises tomographic cubes representing forest scattering in 3D both in Radar and geographical coordinates, which are intended for use by non-Radar experts.

TomoSense

The TomoSense data-set is intended to serve as an important basis for studies on microwave scattering from forested areas in the context of future studies on Earth Observation missions.

The data-set includes:

0 0 0	C A Fe	The whole data-set (Radar+Lidar) is public and free to use for scientific purposes	
0	Т	Just contact me at	
Co suo	mp ch	<u>stefano.tebaldini@polimi.it</u>	eered, in metric or
tor	no	graphic processing without having to dear with the subtleties of all bothe SAN dat	a.

In addition to that, the data-base comprises tomographic cubes representing forest scattering in 3D both in Radar and geographical coordinates, which are intended for use by non-Radar experts.