https://esa-sen4stat.org/

ESA project "Sentinels for Agricultural Statistics"

NoR sponsorship Final report

ESA Sen4Stat EO to support official agricultural statistics



Engage agricultural National Statistical Offices (NSO) to demonstrate the benefit of EO information within their operational workflows

Provide & demonstrate validated algorithms, open source tools, products and best practices for national agricultural statistics with EO facilitating the uptake of EO

information in the NSO

Algorithms &

Analytics

open source

Wall-to-Wall Coverage National Agricultural Statistics

CREODIAS
Cloud
Technology

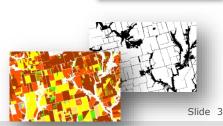
Statistical applications identified by pilot NSOs & relevant EO products

- Pre-processed reflectance / metrics time series
- Biophysical indicators, e.g. NDVI or LAI

STAT. GRANULARITY

- Crop growth condition metrics
- Cloud-free color composites at segment-level

STAT. TIMELINESS

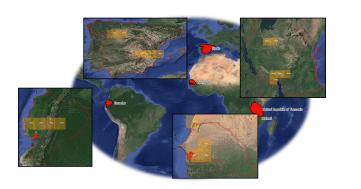

- Wall-to-wall cropland non-cropland map
- Wall-to-wall annual vs permanent cropland map
- SAMPLING DESIGN

SDG's

REPORTING

- Wall-to-wall map of the main crop type groups
- Wall-to-wall crop type map
- Annual and permanent crop type map at segment-level
- National crop distribution probability map at pixel-level
- **Crop yield estimate** at reporting unit

DATA COLLECTION **PROTOCOL**



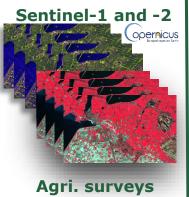
Study area, from local to national scale

Methods development Working on test sites

- Test sites all over the world
 - Run on local servers

System demonstration Up to national scale

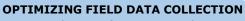
- From 2018 to 2020, depending on the country
- Sentinel-2 L1C & L2A + Sentinel-1 SLC full archive



Results in brief

SENEGAL - NIORO DU RIP Cropland - non cropland map

OA: 88.2 %


F-Score Groundnut: 95.2% F-Score Mil: 83,8 %

F-Score Maize: 54,8%

SPAIN - CASTILLA Y LEON Soft wheat yield estimation

SENEGAL

IMPROVING COST-EFFICIENCY

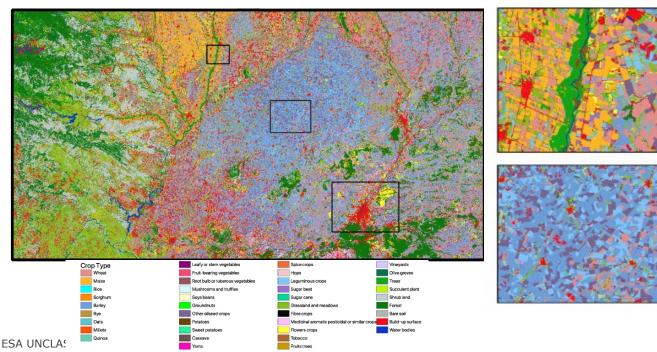
Estimation error reduced with EO for main crops

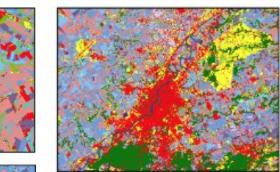
Crop		on error f. var)	EO	
Сгор	In situ only	In situ & EO	efficiency	
Maize	1.37	1.62	0.72	
Mil	3.37	1.73	3.79	
Groundnu	3.34	1.78	3.52	

INCREASING STATS GRANULARITY

Crop area estimates at communes level

Slide 5



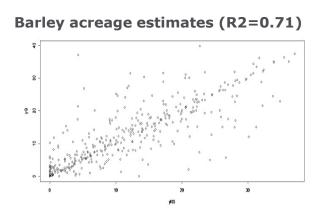


Example of use case in Spain Prerequisite EO-product: 10-m crop map (35 crop types)

Very similar accuracies for Random Forest and Neural Net (Transformer)

Overall Accuracy: 80% for crop types 88% for crop groups

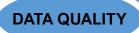
Slide 6


Cost-efficiency on crop acreage (barley in Spain)

Using EO data in the statistical framework to maximize the statistics accuracy (i.e. low variance) at low cost (free data, « simple » methods)

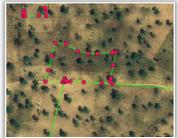
Same level of barley acreage estimation with and without EO data Lower confidence interval with EO -> higher efficiency

		Barley	Uncertainty			
		acreage	95% Confidence Interval		Compling	Relative
Dat	Data	(Hectares) in	(Hectares)			
	Data	the study			Sampling Error (CV%)	efficiency
		area. Spain.	Limits	Amplitude		
		2018				
	Ground	236165.4	Lw: 215951.7	40427.24	4.37	
	(ESYRCE)		Up: 256379			
Gre	Ground+EO	228550.1	Lw: 219699.8	17700.51	1.98	5.2
	Ground+EO		Up: 237400.3			Slide 7

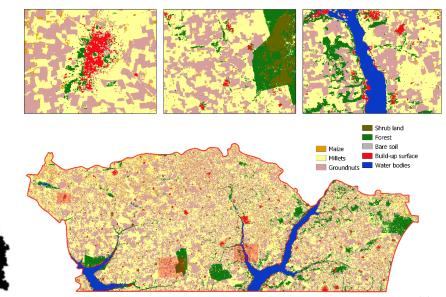


Example of use cases in Senegal: optimization of field protocols to facilitate the EO integration

Improving the quality of the ground database (data collection protocol & quality control procedure)


In-depth analysis of the data collected by National Statistical Offices

Collaborative effort to improve the collection protocols



High impact of in situ data collection on EO crop mapping performance

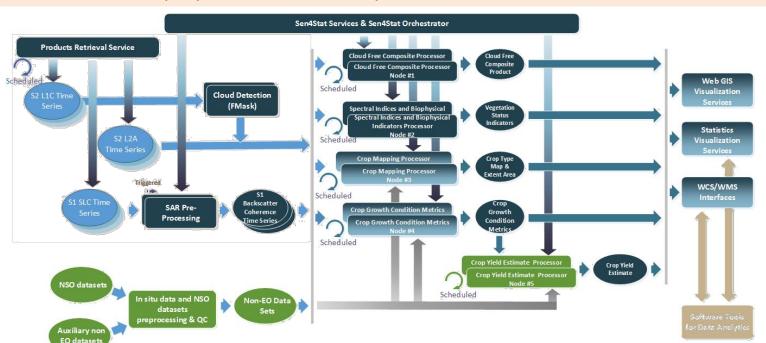
National cropland mask at 10-m resolution Per-pixel Random Forest classification based on S2 L2A time series Pilot in situ collection adjusted for EO

- Random Forest
- Transformer with spatial context (deep learning)

Overall Accuracy: 96%
F-Score cropland: 97%
F-Score non-cropland: 88%

Development of the Sen4Stat open source system

S-1 & S-2 full processing supporting the improvement of ag. Stats at national scale



Data access /download

Pre-processing
In situ quality control

Processors of products

Analytics and visualization

Can be run locally or on the cloud, in NRT or after the season

System operations running according to different modes: NRT with orchestrator (fully automated) or on request

Automated mode through the web graphical user interface (GUI)

- a) based on the Orchestrator with by-default parameterization, automatic data download and processing until the end of the season, on-time delivery
 => operational production in near real time (NRT)
- a) Processor execution on user request, with by-default parameterization

Manual mode: to run processor independently, with custom parameters

- a) through the GUI, with the *Custom job* approach
- b) in command line through a linux terminal

lai_retrieve_processing.py

--input
/mnt/archive/maccs_def/maii/12a/S2A_OPER_PRD_MSIL2A_PDMC_20160718T093045_R008_V2016
0717T104833_20160717T104033.SAFE/S2A_OPER_SSC_L2VALD_30PWW__20160717.HDR --res 10

--outdir /mnt/archive/temp/test_lai --rsrcfg_/usr/share/sen2agri/rsr_cfg.txt -modelsFolder/mnt/archive/temp(test_lai --generatemodel YES --generatemonodate YES -genreprocessedlai MO -genfittedlai MO

Sen4Stat on the cloud

- Sen4Stat open-source system developed to be run locally or on the cloud
- Cloud facilities:
 - Direct access to Sentinel data
 - No need to download (band width might be an issue in many countries)
 - No need to store
 - Direct access to the full archive of Sentinel data (>< SciHub)
 - Optimization of the resources during the production (dynamic allocation of resources, machines created and paid during production peaks only)
- Precautionary measures:
 - Data privacy and security issues: agricultural surveys NSOs are very sensitive data
 => some reluctance to work on the cloud (specific protocol / cryptation would be an asset)
 - o Clouds proposed in the NoR not always well-known in non European countries

Sen4Stat benefits for society

- Need of timely data on agricultural practices and natural resources
 - To support an increase of sustainable agricultural productivity
 - To monitor the Sustainable Development Goals (SDG) at the national level
 - To contribute to the agricultural markets transparency and support food security
- Agricultural monitoring at national scale is a pre-requisite for analyzing the agricultural resources and activities by mandated authorities (NSOs)
 - Most NSOs collect data through agricultural survey costly !!
 - Potential of EO recognized for long but not yet adopted
- Most benefits will come from the mutual adjustment between in situ sampling (quantity, representativeness and quality) and innovative EO products
 - Sen4Stat demonstration phase to convince about EO benefit
 - o Sen4Stat open source system & capacity building to facilitate the EO adoption

Sen4Stat next steps

- Demonstration will continue in 2023
 - Results from cycle 1 analyzed with pilot countries
 - Cycle 2 building on cycle 1 (extending spatial scale and/or focusing on more applications)
- Sen4Stat system will be evolving
 - Yield estimation module will be added crop production is key!
- Strong focus on capacity building
 - Capacity building activities with the 5 pilot countries
 - Distribution of the Sen4Stat open source system to external users
 - o Forum, GitHub, webinars, videos, etc.
- Scientific publications (methods, results and success stories) & conferences

ESA UNCLASSIFIED - For Official Use

Slide 14