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Project Introduction

® Syngenta is a leading science-based agtech e gy o SN
company E ||||
- Data analytics expertise in genetics, °°M"”Ti“'°~
biostatistics, system modelling and -1 Bl s
computer vision for varieties selection. ’i\’i‘
- Need to develop skills on satellites data seEcTioN  Anawsis

and deep learning.

e \Why predict yield in season?
- Help farmers to decide on what to grow

and when to grow
- Stock management

- Optimize human intervention in the fields — _—

1 Remote sensing-based crop yield prediction
demonstrated in papers (You et al., 2017)
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Research plan PhD

® 1 year : Methodology to detect a particular land
cover class with Positive Unlabeled Learning settings.
1 Objective : identify pixels from a given crop to
deploy yield prediction models

® 2" :Yield prediction of maize varieties in seed
production fields from satellites observations

1 Objective : Identify predictors for vegetation
status using Satellite Images Time Series data

® 3“:TBD ~ Sowing date detection at field scale using
unsupervised change detection (PlanetScope data)

1 Objective : Sowing date is a required input for
yield prediction models
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Yield prediction using satellites and
environmental data
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PhD overview : Research plan 2" year

e Objective :

* Yield prediction at the field level using environmental and
multi-source satellites data for a new year
1 Very few papers in such setting

« Focus on recent advances on machine learning for EO instead
of crop modelling

= Experimental settings

« Sentinel-2 (S2) time series data on calendar time, while being
robust to temporal shifts of the growing seasons ...

« S2 time series data on thermal time from the sowing date to
improve generalization

 Multi-source satellites and environnemental data
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Data

e Corn production fields:

- Parent lines to form hybrids between a
variety A (role of male) and B (role of
female)

- In-situ data available (irrigated fields,
varieties, sowing and flowering dates, ...)

- Harvested yleld per female acre Fig.1 : Corn production field with female and male

rows for breeding pipeline

e Sentinel-2 tiles:

- 250 fields per year in average (1200 in
total) and distributed over 11 S2 tiles
since 2017

Veinet

e Environmental:

- Agro-Meteorological using European
Remote Sensing 5 (ERADS) S ) e

= 025 * 025 degrees Spatial resolution Fig.2 : Spatial distribution over S2 tiles from

production fields

,,,,,
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Methodology : Sentinel-2 (optical) data

e Biophysical parameter estimates from PROSAIL RTM (Weiss and Baret, 2016)
I Improve yield prediction (Segarra et al., 2022)
- Leaf Chlorophyll Content (Cab, in mg) ~ red-edge & swir
* Proxy relationship between chlorophyll concentration and leaf nitrogen content
(Dordas, 2017)
- Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) ~ red-edge

» Radiometric quantity (radiation interception) : Fraction of incident solar radiation
that is absorbed by land vegetation for photosynthesis

» Estimation of primary production / photosynthetic activity, especially for
accumulated values (Duveiller et al., 2013)

Ba du(xszo ml |Band 12 (2190 nm) | uz(uso nm)

Fig.3 : Sentinel-2 bands in the VIS and IR regions of the electromagnetic spectrum
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Methodology : Agro-Meteorological data

e European Remote Sensing 5 (ERA5S) satellite-based air temperature data
(0.25° resolution)

= Temperature is the primary climatic driver of US agricultural yields
(Ortiz-Bobea et al., 2019)

- Accumulated mean daily air temperatures at 2 m ag.l above a
crop-specific threshold (McMaster and Wilhelm, 1997) :
* Good proxy for the crop development stage (Duveliller et al., 2013) ~
Growing Degree Days (GDD)

GDD = [MaxTemp+ Min Tempi| — Base Temp
2

- Descriptive statistics (mean, minimum and maximum) daily temperature

at2ma.g
- Number of days where temperature lower and higher than crop-specific
thresholds ~ stress index

===,
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Methodology : time series processing and validation

e Resampling over thermal time = capture temporal anomalies
- Calendar time : temporal anomalies could be related to the shift in a

vegetation season

- Thermal time : derivation to a multiannual average calculated for the

same thermal time, i.e. same development stage

10

Fig.4 : NDVI time series profile with Fig.5 : NDVI time series profile with
weekly periods 10-day periods from planting date
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Fig.6 : NDVI time series profile with
140-GDD periods from planting date

] Thermal time resampled values ensure year-to-year comparability

of vegetation conditions
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Methodology : Features

Sentinel-2 (S2) time series :
- Biophysical parameters and accumulated values

- Standard deviation at the vegetation peak (i.e. NDVI
is maximum) = field variability

Agro-Meteorological (AM) data:
- Averaged values between the vegetation peak and 5
periods before ~ stress at vegetative phase

In-situ data:
- Relative Maturity (RM)
] early maturities require less heat units to
reach physiological maturity

0.55

- lIrrigated fields (dummy)
- Geographical location ~ agricultural practices

o

0.40

= Total : 69 predictors

- S2: 3 time series with 13 timestamps
- AM : 5 time series with 5 timestamps

0.35 1

0.30 -

Fig.7 : Time series profile and
accumulated values

o 1 2 3 4 5 7 8 9 10 11 12 13 14
variable

Fig.8 : Vegetation peak

Bands Vis Vis + bands Bio Bio+AM Bio+AM+IS
Feature

- -situ - Fig.9 : R? w.r.t each feature group by
In-situ = 5 features fitting a RF with 10-folds random CV

11
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Methodology : machine learning models

e Support Vector Regression (Cortes & Vapnik, 1995)

- Finding hyperplane that has the maximum number of
points.

- Map the original feature space to some
higher-dimensional space using kernel tricks.

e Random Forest (Breiman, 2001)

- Combination of multiple individual decision trees to actas - < »
an ensemble AR AN ey

- Random sub-samples of our dataset with replacement
and calculate average prediction from each model.

Multilayer Perceptron (Haykin, 1994)

- Learn a non-linear function approximation between the
input and the output layer, with one or more non-linear
layers (“hidden layers”)

&
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Experimental settings

e Training:
- 90/10% training/validation (X;, V;)
- 4 years as training/validation and 1 year of testing

e Model selection:
- Choice of a model evaluation metric (R-square) \ )
- Model hyperparameters tuning:

» Average the metric from each model
configuration on the validation sets

» Average the validation metrics over all testing
years

- Score the model selected prediction over each
testing year

Model
selection from
validation
metrics over
Vi, .- Vio

Score model
predictions
over the test
set

e Evaluation:

- Compare daily and thermal time (e.g. RF;,;;,, and
RFGDD) 10
- Define an ensemble ~ averaged model predictions Yens = i=1Yi

[ 4
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Results

Year SVI\‘Idm'[y SVl\I(;DD R.de'ly RFG’DD I\‘ILPdm'ly L\'ILP(;DD
2017 028 +0.01 027 £0.01| {0.25£0.01 0.30 £ 0.01 [|0.18 £ 0.08 0.30 £ 0.02
2018 028 +£0.01 0.31 £ 0.01 (0.25 002 031 +£0.01 [{0.29 £0.01 0.29 £ 0.03
2019 027+ 0.02 031003 (0.21 =£0.02 0.32+0.01 [(0.21 £0.05 0.36 = 0.02
2020 037001 042 £002| {040 £0.02 0.44 £0.01 [|0.38 £ 0.03 0.50 = 0.02
2021 012+ 0.02 037x0.01| (0.10£0.02 0.30 £0.01 [[{0.10 £ 0.07 0.38 £+ 0.03
Average | 0.26 = 0.02 0.34 = 0.02| |0.24 £ 0.02 0.33 £ 0.01 [|0.23 = 0.05 0.37 £+ 0.02
Table.1 : Results (R-squared) using calendar time vs thermal time for an unseen
new year
Year SVI\"IGDD SVI\'IGDD,_M R.FGDD RF(‘;DD‘,M I\"ILPGDD I\"ILPGDDM_,
2017 0.27 = 0.01 0.28 0.30 = 0.01 0.30 0.30 £ 0.02 0.32
2018 0.31 = 0.01 0.32 0.31 = 0.01 0.32 0.29 £+ 0.03 0.31
2019 0.31 = 0.03 0.32 0.32 = 0.01 0.33 0.36 = 0.02 0.38
2020 0.42 £+ 0.02 0.43 0.44 £+ 0.01 0.44 0.50 = 0.02 0.51
2021 0.37 = 0.01 0.38 0.30 = 0.01 0.31 0.38 & 0.03 0.40
Average 0.34 = 0.02 0.34 0.33 = 0.01 0.34 0.37 &£ 0.02 0.39

Table.2 : Ensemble the predictions from the 10-folds
CV boost Multilayer Perceptron R-squared
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Conclusion

e Conclusions :

Thermal time (GDD) significantly improved results with a simpler model
Sentinel-2 ~ estimated of Leaf Chlorophyll Content is the best yield predictor

Environmental data ~ refining periods w.r.t the periods before vegetation
peak from S2 time series improved results

Pipeline automatized at the field level in python module
https://github.com/j-desloires/eo-crops

e Perspectives :

- Tackle domain shift using domain adaptation techniques

- Article submission in “Computers and Electronics in Agriculture” in

September

Prepare 3rd year PhD subject

* Proposal ongoing : sowing date detection at field scale using
unsupervised change detection

[ J
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