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Project Introduction

● Syngenta is a leading science-based agtech 
company 

- Data analytics expertise in genetics, 
biostatistics, system modelling and 
computer vision for varieties selection.

- Need to develop skills on satellites data 
and deep learning.

● Why predict yield in season?
- Help farmers to decide on what to grow 

and when to grow
- Stock management
- Optimize human intervention in the fields
 🡺 Remote sensing-based crop yield prediction

  demonstrated in papers (You et al., 2017)
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Research plan PhD

● 1st year : Methodology to detect a particular land 
cover class with Positive Unlabeled Learning settings.

🡺 Objective : identify pixels from a given crop to 
deploy yield prediction models

● 2nd : Yield prediction of maize varieties in seed 
production fields from satellites observations

🡺 Objective : Identify predictors for vegetation 
status using Satellite Images Time Series data

● 3rd : TBD ~ Sowing date detection at field scale using 
unsupervised change detection (PlanetScope data)

🡺 Objective : Sowing date is a required input for 
yield prediction models



Yield prediction using satellites and 
environmental data
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PhD overview : Research plan 2nd year 

● Objective : 
• Yield prediction at the field level using environmental and 

multi-source satellites data for a new year
🡺 Very few papers in such setting

• Focus on recent advances on machine learning for EO instead 
of crop modelling 

▪ Experimental settings : 
• Sentinel-2 (S2) time series data on calendar time, while being 

robust to temporal shifts of the growing seasons …
• S2 time series data on thermal time from the sowing date to 

improve generalization
• Multi-source satellites and environnemental data 



7

Data 

● Corn production fields:
- Parent lines to form hybrids between a 

variety A (role of male) and B (role of 
female) 

- In-situ data available (irrigated fields, 
varieties, sowing and flowering dates, …)

- Harvested yield per female acre

● Sentinel-2 tiles:
- 250 fields per year in average (1200 in 

total) and distributed over 11 S2 tiles 
since 2017 

● Environmental: 
- Agro-Meteorological using European 

Remote Sensing 5 (ERA5) 
⇒ 0.25 * 0.25 degrees spatial resolution

Fig.1 : Corn production field with female and male 
rows for breeding pipeline

Fig.2 : Spatial distribution over S2 tiles from 
production fields 
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● Biophysical parameter estimates from PROSAIL RTM (Weiss and Baret, 2016)  
🡺 Improve yield prediction (Segarra et al., 2022)

- Leaf Chlorophyll Content (Cab, in mg) ~ red-edge & swir 
• Proxy relationship between chlorophyll concentration and leaf nitrogen content 

(Dordas, 2017)
- Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) ~ red-edge

• Radiometric quantity (radiation interception) : Fraction of incident solar radiation 
that is absorbed by land vegetation for photosynthesis

• Estimation of primary production / photosynthetic activity, especially for 
accumulated values (Duveiller et al., 2013)

Methodology : Sentinel-2 (optical) data

Fig.3 : Sentinel-2 bands in the VIS and IR regions of the electromagnetic spectrum
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Methodology : Agro-Meteorological data

● European Remote Sensing 5 (ERA5) satellite-based air temperature data 
(0.25° resolution)
⇒ Temperature is the primary climatic driver of US agricultural yields 
(Ortiz-Bobea et al., 2019)

- Accumulated mean daily air temperatures at 2 m ag.l above a 
crop-specific threshold (McMaster and Wilhelm, 1997) : 
• Good proxy for the crop development stage (Duveiller et al., 2013) ~ 

Growing Degree Days (GDD)

- Descriptive statistics (mean, minimum and maximum) daily temperature 
at 2 m a.g

- Number of days where temperature lower and higher than crop-specific 
thresholds ~ stress index
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Methodology : time series processing and validation

● Resampling over thermal time ⇒ capture temporal anomalies
- Calendar time : temporal anomalies could be related to the shift in a 

vegetation season 
- Thermal time : derivation to a multiannual average calculated for the 

same thermal time, i.e. same development stage

🡺 Thermal time resampled values ensure year-to-year comparability 
of vegetation conditions 

Fig.5 : NDVI time series profile with 
10-day periods from planting date

Fig.6 : NDVI time series profile with 
140-GDD periods from planting date

Fig.4 : NDVI time series profile with 
weekly periods 
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Methodology : Features 
● Sentinel-2 (S2) time series :

- Biophysical parameters and accumulated values
- Standard deviation at the vegetation peak (i.e. NDVI 

is maximum) ⇒ field variability

● Agro-Meteorological (AM) data:
- Averaged values between the vegetation peak and 5 

periods before ~ stress at vegetative phase

● In-situ data:
- Relative Maturity (RM) 

🡺 early maturities require less heat units to 
reach physiological maturity

- Irrigated fields (dummy)
- Geographical location ~ agricultural practices

⇒ Total : 69 predictors
- S2 : 3 time series with 13 timestamps
- AM : 5 time series with 5 timestamps
- In-situ : 5 features

Fig.7 : Time series profile and 
accumulated values

Fig.8 : Vegetation peak
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Methodology : machine learning models

● Support Vector Regression (Cortes & Vapnik, 1995)

- Finding hyperplane that has the maximum number of 
points.

- Map the original feature space to some 
higher-dimensional space using kernel tricks.

● Random Forest (Breiman, 2001)

- Combination of multiple individual decision trees to act as 
an ensemble

- Random sub-samples of our dataset with replacement 
and calculate average prediction from each model.

● Multilayer Perceptron (Haykin, 1994)

- Learn a non-linear function approximation between the 
input and the output layer, with one or more non-linear 
layers (“hidden layers”)
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Experimental settings

●  
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Results 

Table.1 : Results (R-squared) using calendar time vs thermal time for an unseen 
new year

Table.2 : Ensemble the predictions from the 10-folds 
CV boost Multilayer Perceptron R-squared



15

Conclusion 

● Conclusions :
- Thermal time (GDD) significantly improved results with a simpler model 
- Sentinel-2 ~ estimated of Leaf Chlorophyll Content is the best yield predictor
- Environmental data ~ refining periods w.r.t the periods before vegetation 

peak from S2 time series improved results
- Pipeline automatized at the field level in python module 

https://github.com/j-desloires/eo-crops

● Perspectives :
- Tackle domain shift using domain adaptation techniques
- Article submission in “Computers and Electronics in Agriculture” in 

September 
- Prepare 3rd year PhD subject

• Proposal ongoing : sowing date detection at field scale using 
unsupervised change detection 

Classification: INTERNAL USE ONLY
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