Deriving Vertical Total Electron Content Maps from SMOS Full-Polarimetric Data

Ignasi Corbella, Roselena Rubino, Nuria Duffo, Verónica González Gambau

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

November 2022

- Faraday rotation angle and VTEC (Vertical Total Electron Content)
- Faraday rotation angle and brightness temperature
- VTEC retrieval from SMOS radiometric data
- Results: VTEC global maps

Faraday Rotation

K Ferrière, J L West, T R Jaffe, The correct sense of Faraday rotation, *Monthly Notices of the Royal Astronomical Society*, Volume 507, Issue 4, November 2021, Pages 4968–4982, <u>https://doi.org/10.1093/mnras/stab1641</u>

Faraday Rotation Angle

$$\Omega_f = 1.355 * 10^4 * f^{-2} * B_0 * \cos \Theta_B * \sec \theta * VTEC$$

[Yueh, S.H., TGRS 2000]

- *f*: Frequency in GHz (1.4135 in SMOS)
- *B*₀: Geomagnetic field at 450 km of altitude¹ [Tesla]

 Θ_B : Angle between the magnetic field and the wave propagation direction¹

 θ : Incidence angle

VTEC: Vertical Total Electron Content

Consolidated TEC (SMOS DPGS)

- 20,000 km \rightarrow 800 km
- Spatial resolution: 2.5° x 5°
- Temporal resolution: 2 h

DPGS: Data Processing Ground Segment

¹ 13th Generation International Geomagnetic Field from the IAGA (International Association of Geomagnetism and Aeronomy)

Temporal Variability

Brightness Temperature frame rotation

Antenna frame and ground frame

$$\Omega_f = -\varphi_g - \frac{1}{2} \tan^{-1} \left(\frac{2\Re e(T_B^{xy})}{T_B^{xx} - T_B^{yy}} \right)$$

 φ_g : geometrical rotation angle T_B^{pq} : Polarimetric Brightness Temperatures

SMOS Snapshot

Modeled TB for Ocean (Specular): Salinity: 35 psu. SST: 294 K

VTEC=0

Consolidated VTEC (SMOS DPGS)

- Nadir is at about [0, -0.5]
- At nadir $T_B^{\chi\chi} = T_B^{\chi\gamma}$ and $T_B^{\chi\gamma} = 0$
- Geometric rotation is different at each grid point (spatial direction)

Remote Sensing Laboratory Universitat Politècnica de Catalunya

SMOS Brightness temperatures (March 2014)

VTEC from SMOS data

Systematic pattern error

$$\Omega_{f}^{m} = -\varphi_{g} - \frac{1}{2}\arctan\left(\frac{2\Re e(T_{B}^{xy})}{T_{B}^{xx} - T_{B}^{yy}}\right)$$
$$\downarrow$$
$$\Omega_{f}^{m} = \Omega_{f} + \Delta$$

If
$$\Omega_f = 0$$
, then $\Omega_f^m = \Delta$

 Δ : Systematic pattern error

Low Faraday rotation angle:

- Ascending orbits
- 3-consecutive days
- Latitude 30°S to 5°S

TEMPORALLY ESTABLE

VTEC of a day (March 20th, 2014 DES)

VTEC of a day (March 20th, 2014 DES)

Comparing VTEC with other sources (March 20th, 2014 DES)

- 1. Hernández-Pajares, M. IGS Ionosphere WG Status Report: Performance of IGS Ionosphere TEC Maps -Position Paper-. 26
- 2. Bengoa, B. SMOS Level 2 and Auxiliary Data Products Specifications; 2017
- 3. Vergely, J.-L.; Waldteufel, P.; Boutin, J.; Yin, X.; Spurgeon, P.; Delwart, S. New total electron content retrieval improves SMOS sea surface salinity. *J. Geophys. Res. Oceans* **2014**, *119*, 7295–7307

Global VTEC map April 2014 (DES)

Global VTEC map January 2014 (DES)

- SMOS radiometric data allows retrieving the Vertical Total Electron content of the Ionosphere.
 - Filtering data and correcting systematic biases needed.
- The methodology recovers independently of the target
 - Error in the recovery when $\cos \Theta_B \approx 0$ (FRA vanishes)
 - Over land, limitations when $T_x \approx T_y \& T3 \approx 0$ (forest), and in presence of RFIs