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ESA-developed Earth observation missions
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Big Data: Earth Science
RN A PETABYTE

¥ i 1S A LOT
O F DATA
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2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 THE ENTIRE WRITTEN WORKS
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[Courtesy of S. Cauffman, NASA] https://www.pecanstreet.orq/2018/10/big-data-anyone/ 10
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Big data challenges in the geoscientific context

Observed and
simulated ‘big data’

N Patterns and
Mowledge from gt knowledge
o —\‘\‘ -

Speed of Real-time critical
ki in some areas, not all

[Reichstein et al., (2019). Nature]
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REFLECTANCE

= [eature

Classification: From Data to Labels

— anindividual measurable property or characteristic of a phenomenon. Choosing informative,
discriminating and independent features is a crucial element of effective algorithms in classification.

= Features in remote sensing: Spectral, spatial, temporal, spatial unit (pixels, objects)
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Land cover / land use mapping and area estimation ’@1}

TRyLM

e . Area
Classification 1 Mapping > . .
estimation
« Data « Spatial context « Unbiased
* Features estimates with

* Algorithms uncertainties



Land cover / land use mapping and area estimation @3}

. Ryu\e

= Pixel counting is a biased estimator
12 px

Reference area:
Reference 12 x 12 = 144 px

Mapped class
class / Mapped area:
Agreement 8 x 15 = 120 px (bias ~17%)
12 px

PA=8x12 /(12 x 12) = 66.7%

UA=8x12 /(8 x15) =80%

Commission
area

14
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Land cover / land use mapping and area estimation @

TRyLN

Remote Sensing of Environment 148 (2014) 42-57

Contents lists available at ScienceDirect

Remote Sensing
tnvmmmml

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Review

Good practices for estimating area and assessing accuracy of land change @Cmssmk

Pontus Olofsson **, Giles M. Foody ”, Martin Herold ¢, Stephen V. Stehman ¢,
Curtis E. Woodcock ¢, Michael A. Wulder ©

15



Machine learning

= ML is a field of computer science which gives “computers the ability to learn
without being explicitly programmed” [Arthur Samuel (1959)]

= Machine learning explores the study and construction of algorithms that can learn

from and make predictions on d ata

The Washington Post

Finally, a Machine That
Can Finish Your Sentence

Oil and gas producers place faith in Al to boost
margins

Advances in digitadsation are helpng drive efficiency gains and redoce costs
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Machine learning: most popular in ,
satellite data processing

= Support vector machine (SVM) I =
— Works well with small amount of data k

— Computational cost grows linearly with the number of
classes

— Several parameters to be optimized
— Require feature engineering

Random Forest Simplified

Instance

B8 /margin
g N\

Random Forest

= Decision trees (DT) / Random forest (RF) X p ' o

— Training is fast and simpler with small number of D N I
parameters tO tune eoe “t odd PO n,“::h R L X N J I:r.ci”c' o0

— Require feature engineering

Class-A C lﬂ\‘\-B Class-B
{ Myjonity-Voting

Fimal-Class |

= Artificial neural networks (ANN or NN) . , NNH N
— Difficult to train with a lot of parameters to tune : ] 7
— Require a lot of skills and expertise i

— No need for feature engineering: feature are RN
learned by the network 2

— Can learn very complex decision boundaries

=l | ™

9 % | 96
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Decision tree

= Using the concept of information entropy

L 11

— Level of “information”, “surprise”, or “uncertainty”
= Splitting data is based on the normalized information gain

Ts('C)
40°C — Grasslands/Shrubs
+ Woodiands
35Cr
30°Cr
25°Ct
[Fried| & Brodley, RSE 1997]

0.2 0.4 06 0.8 NDVi -
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Multi-layer perceptron (MLP)

hi?den units Output y |npUt X

Activation
functions o, h

Weights w

| | | | Universal approximators!
[Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer

feedforward networks are universal approximators. Neural Networks 2(5), 359-366.] 19



Multi-layer perceptron (MLP)

= http://playground.tensorflow.org

http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral&regDataset=reqg-

plane&learningRate=0.03&reqularizationRate=0&noise=0&networkShape=8,8,5&seed=0.53586&showTestData=false&discretize=false&percTra

inData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=fals

e&problem=classification&initZero=false&hideText=false&showTestData hide=true&activation hide=true&problem hide=true&noise hide=true&

discretize hide=true&reqularization hide=true&dataset hide=true&batchSize hide=true&learningRate hide=true&reqularizationRate hide=true

&percTrainData hide=true&numHiddenlLayers hide=false

O4networkShape=8,8, 5seed =0,535868show TestData =fak Q% 0 :

€ C | (@ phyground tensorflow.org/ #activation =relidbatch See =1 0&dataset =sprallregDataset =re

L " Ha & Googe ENg D | 3 LUEDA - Natonal Agia & GoogeEathErgne @ Noce-be nmuas «

3 oapps [§ Gvome @ Irboc-OutiockWeb A % Offio

DATA FEATURES + — 3 HDDEN LAYERS QUTPUT
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Convolutional neural networks (CNN) @»
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Sparse connectivity
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layer m- |

[Sources: http://cs231n.github.io/convolutional-networks; http://deeplearning.stanford.edu] 21
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Convolutional neural networks (CNN) @
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Convolution
1::1 1:-:!‘.] 1:-:1 0 0
Q:El 1:-:1 1HU 1 0 4
Q:l Oxﬂ 1::1 1 1
0|0(1|1/0
011(1/0(0
Image Convolved
Feature

[Sources: http://cs231n.github.io/convolutional-networks; http://deeplearning.stanford.edu]



Convolutional neural networks (CNN)

Pooling (sub-sampling)

Single depth slice

[Sources: http://cs231n.github.io/convolutional-networks; http://deeplearning.stanford.edu]

Jl1]1]2]4
max pool with 2x2 filters
516|7| 8 and stride 2 6 | 8
3 | 2 iEL
112 F314
y

23
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[Sources: http://cs231n.github.io/convolutional-networks]
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Convolutional neural networks (CNN)

‘,\
RyL l\‘l

<

= Learned filters (Gabor-like)

96 convolutional kernels of size 11x11x3 |learned by the first convolutional
layer on the 224x224x%3 input natural images

[Sources: Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural
information processing systems (pp. 1097-1105)] 25



Modern neural networks

=]
. . a
Modern architectures, e.g.: = -
— Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... = A R
& Rabinovich, A. (2015). Going deeper with convolutions. ﬁ!;':aa
In Proceedings of the IEEE conference on computer vision and E AR o
pattern recognition (pp. 1-9). .:: :
- 0 R EA R
— Achieves top-5 accuracy of 93.33% (error = 5 3
6.67%) ImageNet Large Scale Visual some
Recognition Competition 2014 (ILSVRC) -
— Human performance: S -
error ~5.1% T
28% AlexNet, 8 layers =] ﬁjm; =3
26% e
ZF, 8 layers E3
VGG, 19 layers Eﬂwﬂﬂ
GooglLeNet, 22 layers s
bk ResNet, 152 layers gﬁmg =
12% (Ensemble) ﬂaﬂ.E
I 7:3% 200 SENet g
g ey O A Human emor T TTTTTTT B3
o - 3°/°225°’ GoogleNet == 2
shall shallow &= . ; 1
o 2011 012 018 010 2015 200 DT e & Image-net.org

I Deep learning computer vision 26



A catch #1: Wrong Labels

= Label errors in the test sets of 10 of the
most commonly-used computer vision,
natural language, and audio datasets ——

MNIST CIFAR-10 CIFAR-100 Caltech-256 ImageNet QuickDraw

given: 5 given: cat given: lobster given: ewer given: white stork given: tiger
corrected: 3 corrected: frog corrected: crab corrected: teapot corrected: black stork corrected: eye

= An average of 3.4% errors across the 10 e
d atasets y multi-label d

- Where fOI’ example 2,916 Iabel errorS COmp”S( given: hamster given: fried egg gwe: nts given: hat
. . also: cup also: frying pan also: fence also: flying saucer
6% of the ImageNet validation set N 4 '
neither L g ' = &
* Judging models over correctly labeled test N A i

sets may be more useful

— models that didn’t perform so well on the non-agreement ‘ %
Orlglnal IncorreCt Iabels Were Some Of the bes‘ given: 4 IGI.'\: deer given: spider glven..minotaur . gfv: el given: bandage
performers after the labels were corrected e Sthog  atcockvech al:con alt: fatworm  at: olle coaster

C.G. Northcutt, A. Athalye, J. Mueller. Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks, https://arxiv.org/pdf/2103.14749.pdf 27
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A catch #2: Interpretation of results

= Those deep learning models very difficult to interpret:
— Fundamental question: why the model makes a particular decision?
— Extremely important for many domains, including Earth observation (EO)

= Asimple pitfall:
— Application: ML applied to Skin cancer detection
— Task: Given image of skin lesion, classify whether benign or malignant

— On first try: Method had amazing success rate - whenever the doctors thought it was
benign/malignant, the ML method came to the same conclusion!

— Almost too good to be true.
 Scientists wanted to know: How did the algorithm figure it out?
* Applied visualization tool to learn about method’s reasoning.

— Scientists found that ...

https://www.star.nesdis.noaa.gov/star/documents/seminardocs/2019/20190718 Kumler and Ebert-Uphoff.pdf

28
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A catch #2: Interpretation of results

= Those deep learning models very difficult to interpret:
— Fundamental question: why the model makes a particular decision?
— Extremely important for many domains, including Earth observation (EO)

= Asimple pitfall:
— Scientists found that ... doctors had placed a ruler into the image whenever they thought it was

malignant.
0 1m2 3 ¢ S 6 7 8 95 10 M 12 13 14 15 16 17 W@ 19 20 21 22 23 24 25 26 27 28 29 30
2l 1! ot 6 g L Y § v £ 2 | o

— The algorithm detected the ruler, then concluded that the growth was malignant. That’s not
what folks had intended for the algorithm to do! Found problem early thanks to
transparency tools.

https://www.star.nesdis.noaa.gov/star/documents/seminardocs/2019/20190718 Kumler and Ebert-Uphoff.pdf 29
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A catch #3: Fooling the model

AlexNet

VGG16

Inception

ResNet18

DenseNet121

Vv

Forest 90.18%
Forest 99.64%
Forest 95.29%
Forest 99.81%
Forest 99.71%

Xu, Y., & Ghamisi, P. (2022). Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark. IEEE Transactions on

Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2022.3156392

30
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A catch #3: Fooling the model

AlexNet

» Residential 27.97%

VGG16

River 50.31%

Inception

Residential 75.40%

ResNet18

Mountain 22.81%

DenseNet121

Vv

Beach 86.95%

Xu, Y., & Ghamisi, P. (2022). Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark. IEEE Transactions on

Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2022.3156392

31
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Case-studies



Forest mapping

= High-Resolution Global Maps of
21st-Century Forest Cover Change

— Satellite data A
e Landsat 7 data at 30 m

— Training data
* Image interpretation methods,

— Machine learning:

— 654,178 Landsat 7 ETM+ analyzed on ~‘ " .
Google cloud g .

including mapping of crown/no crown Tree cover
categories using very high spatial >80%
resolution data such as Quickbird .
imagery -

i

 Decision Trees

[Source: Hansen et al., Science 2015]

https://www.globalforestwatch.org/map/

33
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Tree height mapping

Sate||lte data s dhid W oW 0° 30°E 90°E 150°E
— Landsat + GEDI (Lidar) o Qe 250
— Integration of heterogenous data

= Training data . )"G v

— GEDI-derived three canopy height J

30 Forest
canopy i
height, 3

0 meters

60°N
i
[
A

30°N

3

Machine leaning
— Decision Tree regression

Performance
— RMSE ~6.6m

https://doi.org/10.1016/j.rse.2020.112165
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https://glad.earthengine.app/view/global-forest-canopy-height-2019

Example: Winter crop mapping

= Automatic approach with MODIS data and growing degree days (GDD)

1.0

q(“{SIT}’
-

S .
5 . 2,
15 } 5
'Z/ ; ~— Y\Q
TRyLN

|11|||||11||1.|| 10 -
|- 2010 @-@ 2011 e 2012] (- 2010 e-® 2011 e-e 2012]
0.8
0.6
; —
8 A
= =2
0.4
0.2
OO 1111111111111111111111111111111 00 |
THONINNOOOIMEHONOTNOROT—HOANIMHOANST NOWOIM 0 500
OO0 FNOHFFNOFNMNOFMNMOANOOANOHA-SMNOSANMNO
CCCCOOO.O b b b b N> ccc=sS=SS oD oaQ
TEOCRBLOIO OB OOCO o020 TOMS S Ss=2=2225555 00
P LL LSS S S AsS s 5 5SS LLTLNW

1000
GDD

1500

2000

As winter crop development is temporally and spatially non-uniform due to the
presence of different agro-climatic zones, GDD is used to account for such

discrepancies

[Skakun, S., et al. (2017). Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sensing of Environment, 195, 244-258.p5
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Example: Winter crop mapping

Year=2006 ASD=30

phenological metric wmter crop probablllty map USDA Cropland Data Layer s &
5 ' X : : Xy 0.00035}
0.00030
0.00025 ‘

0.00020 |

0.00015 {f |||
L
0.00010 h

Probability density function (pdf)

o % 0.00005 } \
Winter crop probability 25 - 75 Pasture/Grass Cormn Alfalfa )
0 2 so [ 100 I Winter Wheat B sorghum [ Cotton ,""" “ » ‘ | HH ™
I Fallowidie Cropiand [l Soybeans [l Developed 00000002000 4000 6000 8000 10000 12000 14000 16000 18000
NDVI_AN, ... ( x10000)
Results for winter crop mapping for Harper County (Kansas, USA) in Discrimination between
2006 and its comparison to CDL map: summer crops (left peak)
phenological metric (left); with winter crops (right
winter crop probability map (center); and peak)

USDA Cropland Data Layer map (right).

[Skakun, S., et al. (2017). Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sensing of Environment, 195, 244-258.56



Example: Winter crop type mapping (globally)

Russia

Ukraine
- P J
v P . =~ & S
5 \ z ',.":_‘J.\l‘ x-_:.'l, 2 ‘\
e NGRSO
B o :
.n.' < ¥
Argentina

Cultivos de Invierno

India, Pakistan

2007

»

"

W

. &: \%
<. ".-iﬂ':'

E o

-/

[Skakun, S., et al. (2017). Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sensing of Environment, 195, 244-258.}




Winter crop area increase In Russia

Southern Russia Expansion & Intensification of Winter Wheat Regimes

Expansion

Mix

Intensification

Interval 1 (2001-2004) Interval 2 (2017-2020)

[Abys, C., et al., in prep] 38



< C @ earthobservatory.nasa.gov/images/150025/measuring-wars-effect-on-a-global-breadbasket Q © w *» 0O e Update

L - —
Images Global Maps Articles Blogs S ' EO Explorer o Topics

Newly
controlled
by Russia

NASA Harvest researchers are using
satellite observations and economic
data to track how the Russia-Ukraine
conflict is disrupting the global food
system.

Image of the Day for July 1, 2022

! Previously

. o Instruments:
A ——"_ by Russia In situ Measurement
Lo 100 km ROMMANIA Landsat 8 — OLI
I \Vinter Planted Crops Photograph
Potential Spring Crops Planet Labs — Cubesat
2022 & JPEG

Appears in this Collection:

Abpplied Scient

https://earthobservatory.nasa.gov/images/150025/measuring-wars-effect-on-a-global-breadbasket 39
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< C @ planet.com/pulse/nasa-harvest-tracks-frontline-agriculture-patterns-with-planets-satellite-data/

Contact Sales LOGIN

vid S orit
,~.1T" Planet image of agricultural fields in Mykolaiv, Ukraine taken May 16, 2022. © 2022,
X Planet Labs PBC. All Rights Reserved.
™ = ‘

NASA Harvest Tracks O
Frontline Agriculture
Patterns With Planet’s S ST

changes visible, accessible

Sate”ite Data and actionable.

Megan Zaroda | September 7, 2022

Pulse Home > Stories > NASA Harvest tracks frontline agriculture patterns with Planet’s satellite data

STORIES

In the midst of the Russo-Ukrainian war, more cropland than was initially expected has
been both harvested and planted along both the Russian-occupied and Ukrainian-held
territories, according to NASA Harvest research.

https://www.planet.com/pulse/nasa-harvest-tracks-frontline-agriculture-patterns-with-planets-satellite-data/ 40



https://www.planet.com/pulse/nasa-harvest-tracks-frontline-agriculture-patterns-with-planets-satellite-data/

2022 crop map at 3 meter resolution
produced by NASA Harvest showing
planting progress across Ukraine.
(Data provided by: Planet Labs PBC,
Institute for the Study of War, NASA)



Harvest’s Rapid Assessment Team based at the University of Maryland and University of

asbura have delineated and mapped all aari o fields acra he coun g
oblasts. Their latest findings from August 2022 show that 29% of winter cereals, 21% of
summer/spring crops, and 13% of rapeseed are now under Russian occupation. However,
across both sides (including the temporarily Russian-occupied territories), most of the
winter crops like wheat and rapeseed, which would have been planted in the fall of 2021,
have still been harvested. As for the spring planting, which includes commodity crops like
corn and sunflower, NASA Harvest’s results also found that while there is a higher
proportion of unplanted areas in the Russian-occupied regions, planting and harvesting is
still occurring on both geographical sides of the conflict. In fact, NASA Harvest is

currently estimating a higher production out of the region than other publicly-sourced

estimates.
Summer crops Winter cereal ; Winter rapeseed
A \ A
= Unoccupied territories = Unoccupied territories = Unoccupied territories
= Occupied territories (Newly) = Occupied territories (Newly) = Occupied territories (Newly)
= Occupied territories (Previously) u QOccupied territories (Previously) = Occupied territories (Previously)

https://www.planet.com/pulse/nasa-harvest-tracks-frontline-agriculture-patterns-with-planets-satellite-data/ 42



https://www.planet.com/pulse/nasa-harvest-tracks-frontline-agriculture-patterns-with-planets-satellite-data/

JERST
é\\l\ \{kr
D" Zo
I8 @ / 36
TRy LNS

Deep learning-based



\\19_\{5!)},

Counting trees in the West African Sahara and Sahel @

IRYLAS

= Mapping crown size of each tree more -,
than 3m< in size over a land area that
spans 1.3 million km?
— detected >1.8 billion individual trees

(13.4 trees per hectare), with a median
crown size of 12 m?
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= Satellite data

— 50,000 DigitalGlobe (Maxar) multispectral
images from the QuickBird-2, GeoEye-
1, WorldView-2 and WorldView-3
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= Machine learning
— Deep learning (Unet-style network)
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= Performance
— #of trees missed 5% e & e
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Detecting Artillery and Missile Craters

Source: Google Earth, Maxar Technologies

= Detecting of craters from rockets,
bombs and Unexploded
Ordnance
— Eastern Ukraine, 2014

= Satellite data
— WorldView-2 and -3 @0.5 m

= Machine learning
— Deep learning (Unet-style network)

= Performance

— ~60% (performance depends on
crater size)

1: BM-21 rocket artillery system 2: Result of rocket artillery shelling 3: Side by side comparison of manually
marked craters and UNet detected craters (blue) 4: A kernel density map showing intensity of artillery and

[Duncan, E., et al., in prep] rocket shelling across a landscape 45



Detecting Artillery and Missile Craters

D ; ’ - <>

Kherson e

-
> . 0 30 40 50-km
o~ _




\;\q E_KSI]'P
%)

Detecting and counting elephants from satellite imagery .=
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= Detecting and counting elephants in the
Addo Elephant National Park in South
Africa

Heterogeneous area

= Satellite data
— WorldView-3 and -4 @0.3-0.5m

= Machine learning

— Deep Learning (convolutional neural
networks)

|
Homogeneous area

Performance
— ~78% accuracy

https://doi.org/10.1002/rse2.195
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Coral reef mapping

Global coral reef probability map
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Machine learning

— Deep Learning (convolutional neural
networks)

Performance
— ~88% accuracy

https://doi.org/10.1007/s00338-020-02005-6
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Maxar Secure Watch

= Enabling AlI/ML for GEOINT
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https://blog.maxar.com/earth-intelligence/2020/earthcube- Automatic detection and identification of the aircraft in this Maxar WorldView-2
leverages-securewatch-to-train-its-ai-models image collected in July 2019. 49
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Change detection: construction detection

Validation on DC area
2018, April 2019, August Unet

= Onera benchmark dataset
[Daudt et al., IGARSS 2018]
— Includes 24 location over cities
— Changes between 2015 and 2018

— Transitions between land use classes
 Green urban areas = commercial use
* Industrial -> residential use

= Machine learning
— Deep learning (Unet)

= Performance
— ~50-70%

https://doi.org/10.1080/17538947.2022.2094001



https://doi.org/10.1080/17538947.2022.2094001

Commercial

2018/04

F. ¥ ’
=

Detected changes

2019/08

Construction of a new school

2018/04

1 I-

Detected changes

2019708

Residential S

2018/04

2019/08

O
-

I8

Detected changes

Portables (schools)

2018/04 | 2

51



Construction permits
. -

]

52



SpaceNet Challenges

https://spacenet.ai/

— SpaceNet, launched in August 2016 as an
open innovation project offering a repository of
freely available imagery with co-registered
map features.

SpaceNet 7:
Multi-Temporal Urban
Development Challenge

# SpaceNet

SpaceNet 4:

Off-Nadir Buildings

Accelerating Geospatial Machine Leaming »

SpaceNet 1:
Building Detection vl

SpaceNet 6:
Multi-Sensor All-Weather

Mapping

SpaceNet 3:
Road Network Detection

SpaceNet 5:
Automated Road
Network Extraction and
Route Travel Time
Estimation from Satellite
Imagery

SpateNet 2:
Building Detection v2

20


https://spacenet.ai/
https://aws.amazon.com/public-datasets/spacenet/

Open problems: Al/ML iIn RS

A lot of unlabeled data and few labeled data
— How to better deal with it? Can we build a general framework, which can be fine-tuned for specific problems? (Transfer learning)
— Non-stationarity of labels
— Increasing labeled data through crowdsourcing:
» Perception that it is easy to do --- it's NOT!!!
* It cannot be done for any classes, e.g. crop specific, biodiversity, etc.

Missing data, non-uniform coverage
— E.g. due to clouds/shadows in optical imagery

Heterogeneous data sources
— Multiple scales (spatial resolutions), temporal (time-series), multiple spectral bands, continuous and point-based coverage

How to incorporate domain knowledge into ML models?
— Fusing physics-based models and ML models
— E.g. meteorology into crop mapping, shape in objects, ...

From feature engineering to model engineering
— Complexity of optimizing ML models
— Still need understanding

Need to provide QA/uncertainty!

54
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