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NASA Earth Science Division (ESD):

Focus areas
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NASA Earth Science Division (ESD):

Focus areas
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How is the global 
Earth system 

changing?



NASA Earth Science Division (ESD):

Focus areas
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What causes these 
changes in the Earth 

system?



NASA Earth Science Division (ESD):

Focus areas
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How will the Earth 
system change in the 

future?



NASA Earth Science Division (ESD):

Focus areas
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How can Earth system 
science provide 

societal benefit?



NASA Earth Fleet

8https://science.nasa.gov/earth-science

https://science.nasa.gov/earth-science
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ESA-developed Earth observation missions



Big Data: Earth Science

10https://www.pecanstreet.org/2018/10/big-data-anyone/[Courtesy of S. Cauffman, NASA]

https://www.pecanstreet.org/2018/10/big-data-anyone/


Big data challenges in the geoscientific context

11[Reichstein et al., (2019). Nature]



Classification: From Data to Labels

▪ Feature

– an individual measurable property or characteristic of a phenomenon. Choosing informative, 

discriminating and independent features is a crucial element of effective algorithms in classification.

▪ Features in remote sensing: Spectral, spatial, temporal, spatial unit (pixels, objects)
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Land cover / land use mapping and area estimation
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Classification Mapping
Area 

estimation

• Data

• Features

• Algorithms

• Spatial context • Unbiased 

estimates with 

uncertainties



Land cover / land use mapping and area estimation

▪ Pixel counting is a biased estimator
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Reference 
class

Mapped 
class

Agreement
Omission

area

Commission
area

12 px

12 px

4 px8 px

3 px

Reference area:
12 x 12 = 144 px

Mapped area:
8 x 15 = 120 px (bias ~17%)

PA = 8 x 12 / (12 x 12) = 66.7%

UA = 8 x 12 / (8 x 15) = 80%



Land cover / land use mapping and area estimation
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Machine learning

▪ ML is a field of computer science which gives “computers the ability to learn 

without being explicitly programmed” [Arthur Samuel (1959)]

▪ Machine learning explores the study and construction of algorithms that can learn

from and make predictions on data
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Machine learning: most popular in

satellite data processing
▪ Support vector machine (SVM)

– Works well with small amount of data

– Computational cost grows linearly with the number of 
classes

– Several parameters to be optimized

– Require feature engineering

▪ Decision trees (DT) / Random forest (RF)

– Training is fast and simpler with small number of 
parameters to tune

– Require feature engineering

▪ Artificial neural networks (ANN or NN)

– Difficult to train with a lot of parameters to tune

– Require a lot of skills and expertise

– No need for feature engineering: feature are 
learned by the network

– Can learn very complex decision boundaries
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Decision tree

▪ Using the concept of information entropy

– Level of “information”, “surprise”, or “uncertainty”

▪ Splitting data is based on the normalized information gain

18

[Friedl & Brodley, RSE 1997]



Multi-layer perceptron (MLP)
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[Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer
feedforward networks are universal approximators. Neural Networks 2(5), 359–366.]

Universal approximators!

Input x

Weights w

Output y

Activation
functions σ, h



Multi-layer perceptron (MLP)

▪ http://playground.tensorflow.org
▪ http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral&regDataset=reg-

plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=8,8,5&seed=0.53586&showTestData=false&discretize=false&percTra

inData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=fals

e&problem=classification&initZero=false&hideText=false&showTestData_hide=true&activation_hide=true&problem_hide=true&noise_hide=true&

discretize_hide=true&regularization_hide=true&dataset_hide=true&batchSize_hide=true&learningRate_hide=true&regularizationRate_hide=true

&percTrainData_hide=true&numHiddenLayers_hide=false
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http://playground.tensorflow.org/
http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=8,8,5&seed=0.53586&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&showTestData_hide=true&activation_hide=true&problem_hide=true&noise_hide=true&discretize_hide=true&regularization_hide=true&dataset_hide=true&batchSize_hide=true&learningRate_hide=true&regularizationRate_hide=true&percTrainData_hide=true&numHiddenLayers_hide=false


Convolutional neural networks (CNN)

21[Sources: http://cs231n.github.io/convolutional-networks; http://deeplearning.stanford.edu]

Sparse connectivity



Convolutional neural networks (CNN)

22[Sources: http://cs231n.github.io/convolutional-networks; http://deeplearning.stanford.edu]

Convolution



Convolutional neural networks (CNN)

23[Sources: http://cs231n.github.io/convolutional-networks; http://deeplearning.stanford.edu]

Pooling (sub-sampling)



Convolutional neural networks (CNN)

▪ Overall architecture

24[Sources: http://cs231n.github.io/convolutional-networks]



Convolutional neural networks (CNN)

▪ Learned filters (Gabor-like)

25
[Sources: Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural 

information processing systems (pp. 1097-1105)]

96 convolutional kernels of size 11×11×3 learned by the first convolutional 
layer on the 224×224×3 input natural images



Modern neural networks

26
image-net.org

GoogLeNet

▪ Modern architectures, e.g.:
– Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... 

& Rabinovich, A. (2015). Going deeper with convolutions. 

In Proceedings of the IEEE conference on computer vision and 

pattern recognition (pp. 1-9).

– Achieves top-5 accuracy of 93.33% (error 

6.67%) ImageNet Large Scale Visual 

Recognition Competition 2014 (ILSVRC)

– Human performance:

error ~5.1%



A catch #1: Wrong Labels

▪ Label errors in the test sets of 10 of the 

most commonly-used computer vision, 

natural language, and audio datasets

▪ An average of 3.4% errors across the 10 

datasets,

– where for example 2,916 label errors comprise 

6% of the ImageNet validation set

▪ Judging models over correctly labeled test 

sets may be more useful

– models that didn’t perform so well on the 

original incorrect labels were some of the best 

performers after the labels were corrected

27C.G. Northcutt, A. Athalye, J. Mueller. Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks, https://arxiv.org/pdf/2103.14749.pdf

https://arxiv.org/pdf/2103.14749.pdf


A catch #2: Interpretation of results

▪ Those deep learning models very difficult to interpret:

– Fundamental question: why the model makes a particular decision?

– Extremely important for many domains, including Earth observation (EO)

▪ A simple pitfall:

– Application: ML applied to Skin cancer detection

– Task:  Given image of skin lesion, classify whether benign or malignant

– On first try:  Method had amazing success rate - whenever the doctors thought it was 

benign/malignant, the ML method came to the same conclusion!

– Almost too good to be true. 

• Scientists wanted to know:  How did the algorithm figure it out?

• Applied visualization tool to learn about method’s reasoning.

– Scientists found that …

28https://www.star.nesdis.noaa.gov/star/documents/seminardocs/2019/20190718_Kumler_and_Ebert-Uphoff.pdf

https://www.star.nesdis.noaa.gov/star/documents/seminardocs/2019/20190718_Kumler_and_Ebert-Uphoff.pdf


A catch #2: Interpretation of results

▪ Those deep learning models very difficult to interpret:

– Fundamental question: why the model makes a particular decision?

– Extremely important for many domains, including Earth observation (EO)

▪ A simple pitfall:

– Scientists found that … doctors had placed a ruler into the image whenever they thought it was 

malignant.

– The algorithm detected the ruler, then concluded that the growth was malignant.  That’s not 

what folks had intended for the algorithm to do! Found problem early thanks to 

transparency tools.

29https://www.star.nesdis.noaa.gov/star/documents/seminardocs/2019/20190718_Kumler_and_Ebert-Uphoff.pdf

https://www.star.nesdis.noaa.gov/star/documents/seminardocs/2019/20190718_Kumler_and_Ebert-Uphoff.pdf


A catch #3: Fooling the model

30
Xu, Y., & Ghamisi, P. (2022). Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark. IEEE Transactions on 

Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2022.3156392

https://doi.org/10.1109/TGRS.2022.3156392


A catch #3: Fooling the model

31
Xu, Y., & Ghamisi, P. (2022). Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark. IEEE Transactions on 

Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2022.3156392

https://doi.org/10.1109/TGRS.2022.3156392


Case-studies

32



Forest mapping

▪ High-Resolution Global Maps of 
21st-Century Forest Cover Change
– Satellite data

• Landsat 7 data at 30 m

– 654,178 Landsat 7 ETM+ analyzed on 
Google cloud

– Training data

• Image interpretation methods, 
including mapping of crown/no crown 
categories using very high spatial 
resolution data such as Quickbird
imagery 

– Machine learning:

• Decision Trees

33[Source: Hansen et al., Science 2015]

https://www.globalforestwatch.org/map/

https://www.globalforestwatch.org/map/


Tree height mapping

▪ Satellite data

– Landsat + GEDI (Lidar)

– Integration of heterogenous data

▪ Training data

– GEDI-derived three canopy height

▪ Machine leaning

– Decision Tree regression

▪ Performance

– RMSE ~ 6.6 m

34https://doi.org/10.1016/j.rse.2020.112165 https://glad.earthengine.app/view/global-forest-canopy-height-2019

https://doi.org/10.1016/j.rse.2020.112165
https://glad.earthengine.app/view/global-forest-canopy-height-2019


Example: Winter crop mapping

▪ Automatic approach with MODIS data and growing degree days (GDD)

35

As winter crop development is temporally and spatially non-uniform due to the 

presence of different agro-climatic zones, GDD is used to account for such 

discrepancies
[Skakun, S., et al. (2017). Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sensing of Environment, 195, 244-258.]



Example: Winter crop mapping

36

Results for winter crop mapping for Harper County (Kansas, USA) in 

2006 and its comparison to CDL map:

phenological metric (left);

winter crop probability map (center); and

USDA Cropland Data Layer map (right).

Discrimination between 

summer crops (left peak) 

with winter crops (right 

peak)

phenological metric winter crop probability map USDA Cropland Data Layer 

[Skakun, S., et al. (2017). Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sensing of Environment, 195, 244-258.]



Example: Winter crop type mapping (globally)

37

Argentina

Ukraine Russia

France, Spain India, Pakistan

[Skakun, S., et al. (2017). Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sensing of Environment, 195, 244-258.]



Winter crop area increase in Russia

38[Abys, C., et al., in prep]



39https://earthobservatory.nasa.gov/images/150025/measuring-wars-effect-on-a-global-breadbasket

https://earthobservatory.nasa.gov/images/150025/measuring-wars-effect-on-a-global-breadbasket


40https://www.planet.com/pulse/nasa-harvest-tracks-frontline-agriculture-patterns-with-planets-satellite-data/

https://www.planet.com/pulse/nasa-harvest-tracks-frontline-agriculture-patterns-with-planets-satellite-data/
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2022 crop map at 3 meter resolution 
produced by NASA Harvest showing 
planting progress across Ukraine. 
(Data provided by: Planet Labs PBC, 
Institute for the Study of War, NASA) 



42https://www.planet.com/pulse/nasa-harvest-tracks-frontline-agriculture-patterns-with-planets-satellite-data/

https://www.planet.com/pulse/nasa-harvest-tracks-frontline-agriculture-patterns-with-planets-satellite-data/


Deep learning-based

43



Counting trees in the West African Sahara and Sahel

▪ Mapping crown size of each tree more 
than 3m2 in size over a land area that 
spans 1.3 million km2

– detected >1.8 billion individual trees 
(13.4 trees per hectare), with a median 
crown size of 12 m2

▪ Satellite data
– 50,000 DigitalGlobe (Maxar) multispectral 

images from the QuickBird-2, GeoEye-
1, WorldView-2 and WorldView-3
satellites, collected from 2005–2018

– @ 0.5 m resolution

▪ Machine learning
– Deep learning (Unet-style network)

▪ Performance
– # of trees missed 5%

– Area of trees missed 25%

44https://doi.org/10.1038/s41586-020-2824-5

https://doi.org/10.1038/s41586-020-2824-5


Detecting Artillery and Missile Craters

▪ Detecting of craters from rockets, 
bombs and Unexploded 
Ordnance
– Eastern Ukraine, 2014

▪ Satellite data
– WorldView-2 and -3 @0.5 m

▪ Machine learning
– Deep learning (Unet-style network)

▪ Performance
– ~60% (performance depends on 

crater size)

45[Duncan, E., et al., in prep]



Detecting Artillery and Missile Craters

46



Detecting and counting elephants from satellite imagery

▪ Detecting and counting elephants in the 

Addo Elephant National Park in South 

Africa

▪ Satellite data

– WorldView-3 and -4 @0.3-0.5 m

▪ Machine learning

– Deep Learning (convolutional neural 

networks)

▪ Performance

– ~78% accuracy

47https://doi.org/10.1002/rse2.195

https://doi.org/10.1002/rse2.195


Coral reef mapping

▪ Global coral reef probability map

▪ Satellite data

– Planet @ 3 m

▪ Machine learning

– Deep Learning (convolutional neural 

networks)

▪ Performance

– ~88% accuracy

48https://doi.org/10.1007/s00338-020-02005-6

Global coral reef 

field locations

https://doi.org/10.1007/s00338-020-02005-6


Maxar Secure Watch

▪ Enabling AI/ML for GEOINT

▪ Satellite data

– Very high-resolution WorldView-series

49

https://blog.maxar.com/earth-intelligence/2020/earthcube-
leverages-securewatch-to-train-its-ai-models

Automatic detection and identification of the aircraft in this Maxar WorldView-2 
image collected in July 2019.

https://blog.maxar.com/earth-intelligence/2020/earthcube-leverages-securewatch-to-train-its-ai-models


Change detection: construction detection

▪ Onera benchmark dataset

[Daudt et al., IGARSS 2018]

– Includes 24 location over cities

– Changes between 2015 and 2018

– Transitions between land use classes

• Green urban areas → commercial use

• Industrial -> residential use

▪ Machine learning

– Deep learning (Unet)

▪ Performance

– ~50-70%

50

Validation on DC area
2018, April 2019, August Unet

https://doi.org/10.1080/17538947.2022.2094001

https://doi.org/10.1080/17538947.2022.2094001
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Commercial construction (Tysons)

2018/04 2019/08

Detected changes

Residential construction (Roosevelt Place, Arlington)

2018/04 2019/08

Detected changes

Construction of a new school (Lee Montessori-East End, DC)

2018/04 2019/08

Detected changes
2018/04 2019/08 Detected changes

Commercial Residential

Construction of a new school Portables (schools)
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2019

2018 Change detection

Construction permits



SpaceNet Challenges

▪ https://spacenet.ai/

– SpaceNet, launched in August 2016 as an 

open innovation project offering a repository of 

freely available imagery with co-registered 

map features.

53

https://spacenet.ai/
https://aws.amazon.com/public-datasets/spacenet/


Open problems: AI/ML in RS

54

▪ A lot of unlabeled data and few labeled data
– How to better deal with it? Can we build a general framework, which can be fine-tuned for specific problems? (Transfer learning)

– Non-stationarity of labels

– Increasing labeled data through crowdsourcing:
• Perception that it is easy to do --- it’s NOT!!!

• It cannot be done for any classes, e.g. crop specific, biodiversity, etc.

▪ Missing data, non-uniform coverage
– E.g. due to clouds/shadows in optical imagery

▪ Heterogeneous data sources
– Multiple scales (spatial resolutions), temporal (time-series), multiple spectral bands, continuous and point-based coverage

▪ How to incorporate domain knowledge into ML models?
– Fusing physics-based models and ML models

– E.g. meteorology into crop mapping, shape in objects, …

▪ From feature engineering to model engineering
– Complexity of optimizing ML models

– Still need understanding 

▪ Need to provide QA/uncertainty!
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