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1. Executive summary
Inferring land cover from space has a central role in the Remote Sensing field, and its popular-
ity has increased dramatically in the last few years. Latest advances in spaceborne systems
allow for the continuous coverage of the Earth’s surface at periodical intervals and on a global
scale, enabling systematic monitoring of the land-use dynamics. An excellent example is the
Copernicus Programme coordinated by the European Commission in partnership with the
European Space Agency (ESA), which provides thousands of acquisitions per year all around
the globe, covering almost all the electromagnetic spectrum with five dedicated families of
Sentinel satellites. Among them, the Sentinel-1 (S-1) mission is the first free data provider
of Synthetic Aperture Radar (SAR) imagery worldwide and constitutes an unprecedented
monitoring system able to detect a large variety of natural phenomena.

Within the framework of the HI-FIVE project - High-Resolution Forest Coverage with InSAR
& Deforestation Surveillance - awarded through the ESA’s Living Planet Fellowship program,
I investigated novel Machine Learning-based methodologies to timely monitor the world’s
forests from Sentinel-1 interferometric SAR data. In particular, I focused on how to exploit
best the peculiarity of the Sentinel-1 system, such as:

• precise acquisition geometry

• fixed revisit time and broad coverage

• interferometric capabilities

The significant contribution of this project has been to provide scientific evidence about
interferometric coherence being a crucial parameter to classify land cover from SAR data
accurately. Additionally, different frameworks have been proposed to exploit Sentinel-1 time
series. The provided algorithms have been successfully applied to map forest coverage in
Europe and Brazil, specifically over the Amazon rainforest. My investigations have proved
the ability of coherence time series to accurately follow forest coverage changes and therefore
track deforestation phenomena promptly, down to a monthly timescale resolution. I further
developed Deep Learning approaches to increase the temporal and spatial resolution. Spe-
cifically, the Φ-Net has been proposed to estimate the interferometric coherence accurately at
the highest possible resolution, i.e., close to Sentinel-1 Single Look Complex (SLC) original
resolution. Similarly, the temporal resolution has been targeted. An image segmentation
algorithm based on the U-Net architecture has been developed to improve classification per-
formance and to set the groundwork for single image land cover classification, which allows
in the future for change detection down to a monthly scale. The performed work aims to
represent a reference for future research work, which can benefit from the findings coming
from this project.

The present manuscript provides an overview of the HI-FIVE project, from its main objectives
and work-plan to the main findings and recommendations for future research investigations.
Section 2 is dedicated to the description of project objectives and the original schedule.
Section 3 shows all the performed research investigation and its results. Specifically, state-of-
the-art algorithms are presented in Section 3.1, the description of the developed methodologies
is provided in Section 3.2 The exploited data sets are reported in Section 3.3 and the obtained
results in Section 3.4. Eventually, in Section 4 I summarize the main findings of the project and
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give recommendations for future research investigations. Additionally, I provide the scientific
outcome of the project in terms of published journal and conference papers in Section 5.
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2. Objectives and work-plan
Forests are vital for the Earth’s ecosystem since they reduce the concentration of carbon
dioxide in the atmosphere and control climate changes. Studying deforestation, global forest
coverage, and biomass development are fundamental for assessing their impact on the ecosys-
tem. Remote sensing represents a powerful tool for constant monitoring at a global scale of
vegetated areas. In particular, given the daylight independence and the capability to penet-
rate clouds, spaceborne SAR systems represent a unique solution for mapping and monitoring
forests. Sentinel-1, with its broad coverage and short revisit time [1], is a breakthrough tech-
nology, ideal for the generation of a constantly updated forest coverage map product and
the rapid monitoring of large-scale areas, aiming at detecting ongoing deforestation activities
and forest disturbance. Even though the detected SAR backscatter already provides valuable
forest coverage and structure information, SAR interferometry (InSAR) adds valuable and
reliable information to the classification method. In particular, the temporal dynamic of the
interferometric coherence, with a sampling period of 6 or 12 days, is investigated and modeled
for different types of land cover. The accurate estimation of InSAR and backscatter paramet-
ers is of fundamental importance for approaching this analysis. The use of interferometric is
vital to shorten the observation time and provide a time-tagged accurate forest classification.

The HI-FIVE research project aims to investigate the potential of Sentinel-1 InSAR data for
the semantic segmentation of the land cover and its dynamic with time. The main object-
ive has been to develop advanced image processing methods and implement strategies for
generating high-resolution maps of forest coverage and deforestation from Sentinel-1 InSAR
data. In particular, with my research project, I aimed to develop methodologies based on
Earth Observation platforms and Machine Learning (ML) tools for global and systematic
observation of the world’s forests and the accurate measurement of the amount of ongoing
deforestation and its temporal evolution. The project specifically targeted the monitoring of
forested areas, but a general framework for land cover classification has been proposed. In-
deed, all the presented methodologies can be easily generalized to multiple and more complex
classification tasks.

The project proposal has been framed to provide novel and efficient algorithms for forest
mapping with Sentinel-1 data stacks. In the specific, the systematic acquisition with a 6 or
12 days time interval has been an object of analysis. I focused on optimizing the approach to
detect changes in terms of resolution in space (high-resolution maps) and time (quick response
to deforestation activities). The derived features from both multi-temporal backscatter and
interferometry are used as input for different ML-based approaches for land cover classific-
ation, starting from the Random Forests algorithm to more advanced models, such as Deep
Learning ones.

The analysis has been supported with additional experiments at the X band to support the
finding at the C band with Sentinel-1 and further investigate the effect of a large perpendicular
baseline on the estimation of temporal interferometric parameters. Indeed, since both tem-
poral and volume decorrelation phenomena affect the coherence measurement in repeat-pass
systems, the use of repeat-pass coherence may be detrimental, especially in areas with diverse
vegetation cover. For this analysis, I use X band data from the German bistatic TanDEM-X
constellation [2] combined with the Spanish twin satellite, PAZ [3]. This investigation further
provides a practical framework for comparing and using data from different sensors, which
could be applied in the design of future missions.
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Figure 1: HI-FIVE overall work-plan.

The project has been organized on a two-year schedule and organized in two phases as depicted
in Figure 1.

Phase I has been dedicated to creating the Sentinel-1 interferometric processing chain. It
included the processing to obtain coherence stacks, the estimation of the temporal decorrela-
tion, and the actual ML-based classification algorithm. I focused on the general classification
framework during this phase and tested it over Europe. Furthermore, I applied the classifier
to map forest coverage and tested it over the Amazon rainforest. The single tasks as proposed
initially are depicted in the block diagram of Figure 2.

Phase I includes three main work packages:

• WP1010: implementation of the algorithms necessary to the InSAR and backscatter
parameters estimation

• WP1020: data analysis and modeling from Sentinel-1 and TanDEM-X data

• WP1030: classification based on machine learning classifiers

The Parameters Estimation block, in WP1010, implements several types of estimations:

• Nonlocal estimation for stack as proposed in [4]

• Moving average filtering with a selection of different windows shapes and dimensions

• Texture measures as proposed in [5]

• Estimation of temporal and spatial statistics

• Geocoding of the derived quantities to a common posting

All the estimated parameters are related to a given acquisition geometry.
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Figure 2: Block scheme for phase I.

Given the obtained findings in the course of the project, the research investigation has had
slight modifications, such as using DL methodologies to estimate the interferometric paramet-
ers. Indeed, the proposed Φ-Net approach [6] has been shown better estimation performance
and execution time when compared to the nonlocal filters proposed initially.

Phase II has been dedicated to investigating change detection strategies and DL approaches
to improve classification accuracy. Furthermore, I investigated decorrelation phenomena at
the X band by exploiting the synergy between the TanDEM-X and PAZ constellations. In this
way, I exploited time series with a minimum revisit time of 4 days and computed temporal
decorrelation coefficients for several land cover classes.

The block diagram, including all the tasks for this phase, is depicted in Figure 3 and Figure
4 shows the operations computed in the parameter estimation block.

Phase II is organized in the following work packages:

• WP2010: classification using Deep Learning algorithms

• WP2020: implementation of change detection strategies and fusion of Sentinel-1 and
Sentinel-2 (S-2) multi-spectral data

• WP2030: validate the classification result using external reference data
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Figure 3: Block scheme for phase II.

Figure 4: Block scheme for parameter estimation block.
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3. Work performed

3.1 Scientific context

In the last decades, the effective monitoring of forests has been addressed with a large variety
of RS approaches. Different research investigations focused on forest mapping and tackling
the detection of possible degradation caused by either natural events or human activities,
such as selective logging or illegal deforestation.

Optical and laser sensors have been largely applied for mapping forests extent and its changes
[7], [8], [9]. At the same time, the determination of forests biomass has been further addressed
[10] [11] as well as land cover mapping [9]. Given the extended cloud coverage that can hide
large areas from optical sensors during most of the year, spaceborne radar sensors, capable of
acquiring data independently on weather and daylight conditions, represent a necessary tool
for constant monitoring at a global scale. For this purpose, detected SAR backscatter is widely
exploited for land cover characterization and specifically forest mapping [12], [13], [14]. The
analysis of backscatter signature indeed has led to the development of successful techniques
and the release of operational products. An example is the global forest/non-forest map from
L-band ALOS PALSAR data, which was generated by properly thresholding backscatter levels
in the cross-polarization channel HV [15]. Furthermore, to retrieve aboveground biomass
indicators, backscatter statistics and texture have been analyzed for tropical rainforests in
[16] and for boreal forests in [17]. More recently, the joint use of data at different operative
bands has been investigated as well, showing encouraging results [18].

The advantage of exploiting coherence information over forested areas was firstly investigated
in [19]. Alternatively, single-pass interferometry has been exploited by using the TanDEM-X
bistatic coherence. Specifically, the volume decorrelation component has been computed and
used to generate the global TanDEM-X Forest/Non-Forest Map [20] [21]. The combined use
of interferometric coherence and backscatter has shown promising results, as shown in [22],
where Cosmo-SkyMED data was considered. More extensive studies on multi-temporal data
were carried out at C band, using ERS-1/2 data acquired during the tandem mission phase,
for forested areas [23], for wheat fileds [24], and for general land cover classification [25]
[26] [27] [28] [29]. Accordingly, the first automatic classification strategies based on machine-
learning classifiers exploit long time series with an observation interval that varies from several
months up to years and classify the target on the base of its backscatter temporal dynamic
and coherence parameters [30],[31].

More recently, the large availability of repeat-pass data with exact orbit definition has allowed
for the reliable use of SAR interferometry (InSAR) for many different applications, such as
deformation and natural hazards monitoring or topography reconstruction. In this framework,
the Sentinel-1 mission opened new avenues for land cover classification using time series data.
It comprises two satellites (S-1A and S-1B), which allow for a short revisit time of 12 or 6
days if one single or both satellites are employed. It operates at the C band and acquires
large swaths of about 250 km in range using the Interferometric Wide (IW) swath mode
[32]. The advance brought by this system is the fixed revisit time, which allows for modeling
temporal parameters that can be linked to land cover classes. It is precisely these criteria
that I investigated in this project, as it will be shown in the next section.

HI-FIVE: High-Resolution Forest Coverage with InSAR & Deforestation Surveillance 15



3.2 Methods

Unlike state-of-the-art methodologies, the proposed research investigation focuses explicitly
on the use of interferometric temporal decorrelation from InSAR time series. The HI-FIVE
project focuses on using Sentinel-1 stacks to retrieve land cover information from the temporal
dynamic of the SAR amplitude and InSAR coherence parameters. Nevertheless, other sensors,
such as the TerraSAR-X/TanDEM-X and PAZ satellites, are also considered a matter of
comparison and support the findings. In the following, I will present the main developed
methodologies, including the general framework for the land cover classification from Sentinel-
1 time series, the approach to forest coverage mapping, and its changes over time. The latter
can detect changes down to a monthly scale, allowing for forest protection policies. DL
methodologies have been further investigated to improve classification accuracy and spatial
and temporal resolution. The Φ-Net, for example, is dedicated to improving the estimation
of the coherence maps and their spatial resolution. The classification accuracy is targeted
instead by using a U-Net model.

3.2.1 Temporal decorrelation retrieval in InSAR time series

The degree of similarity between two SAR images composing an interferometric pair is meas-
ured through the interferometric coherence, i.e., the modulus of their complex correlation.
By assuming wide-sense stationarity of all the involved processes, i.e., amplitude, phase, and
intensities, the coherence can be estimated as follows [33]:

ρ̂[p] =
|
∑

i∈Ω(p) xiy
∗
i |√∑

i∈Ω(p)|xi|2
∑

i∈Ω(p)|yi|2
. (3.1)

Note that for Sentinel-1 data, the coherence estimation is performed through a moving average
filter. The kernel size is set to 5×19 or 7×27 depending on the desired end-product resolution
of 50×50 or 100×100 meters, respectively. I additionally remove the possible bias occurring
for low coherence values by applying the equation in [34], which relates coherence, number of
looks, and bias.

Given a stack of SLCs of size M and a revisit time T , I generate all the interferograms within a
given temporal baseline of N ·T days, with max(N) = M−1. All the available interferograms
have hence a temporal baseline given by δt = n · T with n ∈ [1, N ]. Before the coherence
estimation, I apply the common-band filter in azimuth and range [35] to avoid decorrelation
due to spectral shift and baseline.

According to [36], the measured coherence ρtot can be factorized as the product of different
components that are ascribed to a single decorrelation phenomenon:

ρtot = ρtemp ρvol ρamb ρaz ρrg ρquant ρSNR, (3.2)

where the different terms stand for the coherence contribution due to (from left to right):

• temporal decorrelation (ρtemp)
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• volume decorrelation (ρvol)

• SAR ambiguities (ρamb)

• relative shift of the Doppler spectra (ρaz)

• baseline decorrelation (ρrg)

• quantization noise (ρquant)

• limited SNR (ρSNR)

As I will show in the following, the first two terms can be ascribed to specific scattering
mechanisms if correctly separated from the rest. Therefore it is possible to associate a given
decorrelation value to a specific observed target, e.g., the land cover. In this project, I focus
on extracting the interferometric temporal decorrelation for land cover purposes.

The Sentinel-1 InSAR constellation

Sentinel-1 is the ESA SAR satellite system developed within the Copernicus Earth Obser-
vation program. It comprises two twin SAR satellites, Sentinel-1A (S-1A) and Sentinel-1B
(S-1B), operating at C band in single and dual polarization and flying along the same nominal
orbit, shifted by 180 degrees. Sentinel-1 combines wide swath imaging at medium resolution
with a significant amount of routine daily acquisitions to form a powerful land cover map-
ping and monitoring instrument. Among the four different acquisition modes, in this work, I
considered the products provided in the IW mode, which guarantees a frequent operational
interferometric capability (6 days repeat-pass), covering large areas of 250 kilometers swath
with 5×20 meters nominal resolution [37].

The decorrelation factors for the Sentinel-1 constellation can be described as follows:

• ρSNR: once computed the signal-to-noise ratios of the primary SNR1 and secondary
SNR2 images by considering the derived gamma naught from the different images and
the corresponding annotated noise profiles [38], the factor associated to the limited
signal-to-noise ratio equals [39]:

ρ̂SNR =
1√

(1 + SNR−1
1 )(1 + SNR−1

2 )
, (3.3)

• ρquant: the used FDBAQ quantization scheme adapts the number of quantization bits to
the local backscatter level to minimize the signal-to-quantization noise ratio [40]. Given
the high performance of the algorithm, a contribution close to 1 is considered.

• ρamb: the coherence loss corresponding to SAR ambiguities can be approximated by
[39]:

ρamb =
1

(1 + AASR)

1

(1 + RASR)
, (3.4)
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where AASR and RASR are the azimuth and range ambiguity to signal ratios, re-
spectively. For Sentinel-1 I refer to the quantities az−DTAR and rg −DTAR presen-
ted in [41]. The worst case shows az−DTAR = −25.29 dB (IW1 subswath) and
rg −DTAR = −26.10 dB (IW3 subswath) for the IW mode. This values, when applied
to eq.(3.4), lead to ρamb = 0.99, which is therefore neglected.

• ρaz and ρrg: these two decorrelation factors are automatically compensated when apply-
ing common-band azimuth and range filter during the generation of the interferogram.

• ρvol: given Sentinel-1 small orbital tube of only 50 m radius [32], the volume decorrel-
ation factor can be neglected [42]. This assumption is also sustained by experimental
observations from the analysis of X band bistatic TanDEM-X data in [43], where it was
observed that, for such small baselines, no significant decorrelation is detected.

Therefore, the Sentinel-1 interferometric system is by nature suitable for the separation
between volume and temporal decorrelation ρ̂temp. The latter is therefore obtained by per-
forming the simple ratio:

ρ̂temp =
ρ̂

ρ̂SNR
. (3.5)

Note that values of coherence ρ̂ that lay within the bias level cannot be corrected, and therefore
the corresponding pixels are associated to the maximum possible decorrelation.

The TanDEM-X/PAZ InSAR constellation

TerraSAR-X (TSX) and TanDEM-X (TDX) are two Earth observation SAR satellites belong-
ing to the same constellation, launched in 2007 and 2010, respectively, within a public-private
partnership, between the German Aerospace Center (DLR) and Airbus Defence and Space.
This bistatic interferometric system can perform high-resolution single-pass interferometric
acquisitions with a maximum resolution of 1 meter. Both spacecraft fly in a close formation
with flexible interferometric baseline selection, building a highly re-configurable constellation
[39]. In February 2018, a third satellite was added to this constellation: the Spanish PAZ. It
is an X band SAR mission from the Spanish national Earth observation program (PNOTS)
for security and defense needs and is owned and operated by Hisdesat. It is an almost twin
version of the TerraSAR-X satellite and flies on the same nominal orbit [3].

The whole constellation constituted by these three satellites allows for the acquisition of dense
time series, obtained by combining the monostatic channel of the TanDEM-X constellation
(TDM) with PAZ, allowing for a highly flexible constellation with an improved acquisition
capability and reduced revisit time. Indeed, the satellites have a revisit time of 11 days and
are displaced over the same orbit with a 4 days separation, forming a 4+7 days constellation.
As an example, Figure 5 shows all possible interferometric pairs with corresponding temporal
baselines for a TDM-PAZ time series composed by 5 acquisitions.

The TDM-PAZ constellation presents both large spatial and temporal baselines. After the
compensation of system-dependent decorrelations as already explained for the Sentinel-1 sys-
tem, the coherence results in the following η parameter:

18 HI-FIVE: High-Resolution Forest Coverage with InSAR & Deforestation Surveillance



Figure 5: Acquisition timeline of the TDM-PAZ constellation showing the available temporal
baselines.

η = ρvolρtemp (3.6)

Therefore, the correct retrieval of the temporal decorrelation is subject to a prior estimation of
the volume decorrelation. This correction is done in two steps. First, the volume decorrelation
is computed for a specific class. Second, it is compensated to the η parameter. This procedure
is suitable only for analyzing a known observed land cover class and not for classification
purposes. The implementation details for this technique can be found in [44].

The first step towards the separation of volume and temporal decorrelation consists of re-
trieving the amount of volume decorrelation ρvol at different spatial baselines and for each
considered land cover class. For this purpose, I exploit TanDEM-X bistatic acquisitions,
which are characterized by the absence of temporal decorrelation (ρtemp = 1) and isolate the
ρvol factor by compensating for all other decorrelation sources, as done in [43]. Afterward, I
compute the mean ρvol per image and fit the dependency of such volume decorrelation factors
with respect to the height of ambiguity hamb with an exponential function:

ρvol(hamb) = 1− αe
−hamb

β . (3.7)

The estimated parameters α̂ and β̂ are the optimal ones in the least-square sense. Once ρvol is
correctly modeled from bistatic data, it can be used to compensate the η factor in eq.(3.2.1)
and isolate the temporal contribution. In this way, I can accurately retrieve the temporal
decorrelation factor ρtemp at a given temporal baseline δt. Finally one can fit ρtemp(δt)
for the considered land cover class by iterating this process for each of the multi-temporal
interferometric pairs and then fitting the exponential model in [45].
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3.2.2 Framework for land cover classification from Sentinel-1 time series

As the first step for the classification of the land cover, I focused on three fundamental aspects:

1. Processing of Sentinel-1 data

2. Modeling of the temporal decorrelation in Sentinel-1 time series

3. Analysis of the correlation between interferometric parameters and land cover classes

In the following, I recap the main aspects of the proposed methodology and remand to the
full paper in [46] for details. The proposed methodology considers the combined use of
SAR backscatter and interferometric parameters. The block diagram in Figure 6 shows the
implemented processing chain. For simplicity and when not strictly necessary, only one index
indicates bi-dimensional image coordinates.

Figure 6: Sentinel-1 processing chain. Left branch: backscatter processing. Right branch:
interferometric processing.
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Figure 7: Exponential model of ρtemp as in eq.(3.8), derived for ρLT = 0 and different values
of τ (from 3 to 36 days).

Temporal decorrelation model

The temporal decorrelation in InSAR time series is often modeled as a decaying exponential.
Motivated by experimental evidence [45], [47], in this work, I modeled the C band InSAR
decorrelation of Sentinel-1 time series as an exponential decaying according to the square of
the time, with unitary starting value at time zero.

The model of the evolution in time of the temporal decorrelation factor ρtemp(δt) is set to:

ρtemp (δt) = (1− ρLT) e
−( δt

τ )
2

+ ρLT, (3.8)

with τ the target decorrelation factor and ρLT the long-term coherence. The latter term
considers that some targets may not completely decorrelate even after a long time and that
low coherence values present a considerable estimation bias. Figure 7 shows the behavior of
such a model for different values of τ and assuming ρLT = 0.

As it can be observed from eq.(3.8), ρtemp equals 1 for δt = 0 and tends to ρLT for δt → ∞,
while its decay velocity is regulated by the target decorrelation constant: a lower τ means a
faster decay and viceversa. After a time interval τ , the exponential function decreases from a
value of 1 to 1/e (where e is the Neper constant). The sampling of the temporal decorrelation
factor model is δt = nT , where T represents the satellite revisit time and n ∈ [0,∞[.

Sentinel-1 interferometric processing chain

In the following, I describe the processing needed to obtain the required interferometric para-
meters from Sentinel-1 stacks starting from the focused SAR data. Given a stack of M
focused Sentinel-1 IW mode acquisitions, these need first to be coregistered with respect to a
common primary geometry. The latter is chosen as the one closest to the central acquisition
date of the entire stack. The coregistration of each S-1 TOPS data has been done accurately
following the processing steps described in [48] by exploiting DLR’s interferometric processor
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TAXI [49]. After a preliminary geometrical coregistration, the enhanced spectral diversity
(ESD) technique is applied to the overlapping areas between subsequent bursts. This proced-
ure allows for achieving an azimuth coregistration accuracy in the order of thousands of the
azimuth pixel size.

Following the block diagram of Figure 6, after the coregistration of the entire stack, the main
branch is split into two sub-processing chains: the SLC processing, for the estimation of the
multi-temporal backscatter γ0, and the InSAR processing, for the estimation of the temporal
decorrelation factor. In this case, the retrieved ρtemp is then projected over a 100×100 meters
geocoded grid, which matches with the resolution of the external reference map. Eventually,
the exponential fitting is performed along the time dimension to retrieve the τ and ρLT
parameters.

SLC processing

Land classification applications require an almost exclusive dependence of backscatter on the
physical properties of the observed target [50], [51]. For this purpose, I apply radiometric
correction to the Sentinel-1 digital number and compute the gamma-naught coefficient γ0.
Furthermore, the system noise floor is removed using the designated Look-Up-Table (LUT)
provided within Sentinel-1 data to retrieve a single value for the time series. The amplitude is
eventually estimated Am for the mth SLC (m ∈ [0,M [) by assuming local spatial stationarity
and applying a 7×27 pixels moving average filter:

Âm[p] =

√ ∑
i∈Ω(p)

Am
2[i], (3.9)

where p is the current estimated pixel, and Ω(p) a 7×27 boxcar window around p.

Hence the γ0 is computed using the local incidence angle θinc and the calibration factor K as:

γ̂0m = KÂm tan (θinc) , (3.10)

where γ̂0m represents the derived γ0 for the mth image within the stack. Eventually, to obtain
a single gamma-naught for the whole stack, all the computed γ̂0 are averaged together as:

γ̂0 =

M∑
m=1

γ̂0m. (3.11)

InSAR processing

Given the stack of M SLCs, all the interferograms within a given temporal baseline of N · T
days are generated, with max(N) = M − 1. All the available interferograms have hence a
temporal baseline given by δt = n · T with n ∈ [1, N ]. Before the coherence estimation, the
common-band filter in azimuth and range [35] is applied to avoid decorrelation due to spectral
shift and baseline. For the sake of clarity, I indicate with the i-subscript the i − th pixel of
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the image. Assuming now the local stationarity of the interferometric signal, I estimate the
coherence with a 7×27 pixels moving average as:

ρ̂[p] =
|
∑

i∈Ω(p) xiy
∗
i |√∑

i∈Ω(p)|xi|2
∑

i∈Ω(p)|yi|2
. (3.12)

Using the relation between coherence, the number of looks and bias [34], I further compensate
for the bias within the coherence estimation. The temporal decorrelation factor ρtemp is
therefore isolated from the interferometric coherence by inverting eq.(3.2). As formerly shown,
for Sentinel-1 data this corresponds to eq.(3.5).

Exponential model fitting

At this stage, the complete set of temporal decorrelation factors for the entire stack is com-
puted and mapped to a 100×100 meters geo-referenced grid. I exploit all the available in-
terferometric pairs by setting N = NMAX = 5. Therefore the maximal temporal baseline
will result in N · T = 30 days. For every pixel on ground p the tensor of all computed tem-
poral decorrelation values ρ̂temp[n, i, j] is defined, where n ∈ [1, N ] spans the temporal axis,
i ∈ [1, N − n] spans all the available values for a given temporal baseline n · T , and j ∈ Ω (p)
spans the spatial axis in a square neighborhood Ω (p) of size L around the current estimated
pixel.

Before applying the model fitting, I identify those pixels that lose the monotonic decreasing
trend along time and show a boisterous behavior because of decorrelation phenomena and
residual coherence noise. To overcome this limitation, for these pixels, I consider a larger
spatial neighborhood (L = 5), while for all the others, L = 1. Subsequently, the model fitting
is performed with a least-square approach by numerically solving the following functional:

(τ̂ , ρ̂LT) = argmin
τ , ρLT


N∑

n=1

N−n∑
i=1

∑
j∈Ω(p)

(
(1− ρLT) e

−(nT
τ )

2

+ ρLT − ρ̂temp[n, i, j]
)2

 , (3.13)

where τ̂ and ρ̂LT are the estimated target decorrelation constant and long term coherence,
respectively.

Classification approach

All previously computed parameters can be jointly exploited in ML-based classifiers. In this
project, I considered the Random Forests (RF) classifier, a robust algorithm that provides
high classification accuracy while requiring the setting of few hyperparameters [52]. The RF
algorithm is non-parametric, i.e., no assumption has to be made on the mapping function,
allowing for high flexibility of the algorithm when generalized to unseen data. In applications
related to land cover classification, the use of the RF algorithm is relatively recent and has
been proven to be a very effective tool for optical, multi/hyper-spectral, and SAR data [53],
[54], [55], [56], [57].
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Moreover, I aim to quantify the impact that multi-temporal interferometric parameters have
on classification performance. For this purpose, I apply the RF algorithm with different input
features:

• case 1 : γ̂0, and θinc,

• case 2 : τ̂ , ρ̂LT, and θinc,

• case 3 : γ̂0, τ̂ , ρ̂LT, and θinc.

The local incidence angle θinc is a significant feature since it carries information on the SAR
acquisition geometry. Indeed, it merges the topography information and the satellite pos-
ition at the moment of the acquisition. By adding this parameter, the typical backscatter
dependency from the side-looking nature of SAR sensors can be correctly taken into account
by the RF algorithm. In all cases, given the relatively small number of input features, I let
the RF algorithm use them all for each of the created trees. I further use the Gini index [58]
to minimize the probability of misclassification and set the number of trees in the forest (i.e.
the number of estimators, nest) as well as the minimum number of samples in a leaf node
(i.e. the leaf size, leafsize) to 50. These last parameters have been experimentally chosen
after a preliminary performance analysis. In this work, I classify K = 3 different land cover
classes. A more diversified classification with a larger number of classes can also be achieved
by exploiting the same proposed framework.

Performance evaluation

The comparison between the results is based on evaluating the average accuracy (AA) and
the overall accuracy (OA) for all the test areas, considering all the valid pixels in the image
under test. Given K classes, the associated confusion matrix C assumes the following form:

C =


c1,1 . . . c1,j . . . c1,K
...

. . .
...

...
ci,1 . . . ci,j . . . ci,K
...

...
. . .

...
cK,1 . . . cK,j . . . cK,K

 , (3.14)

where the elements along the main diagonal, ci,j (i = j), represent the correctly predicted
pixels for each class j = 1, ...,K, i.e. they are called class accuracy, and the sum of the
elements along each column j corresponds to the number of pixels belonging to each class
j = 1, ...,K. The average accuracy defines the mean of each accuracy per single class, i.e.,
the sum of class accuracy divided by the number of classes. In contrast, the overall accuracy
corresponds to the number of correctly predicted pixels divided by the total number of pixels
to predict, i.e., the sum of all elements in C. In particular, the respective formulas associated
with the two metrics are:

AA =

∑K
j=1 cj,j

K
(3.15)
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and

OA =

∑K
j=1 cj,j∑K

i=1

∑K
j=1 ci,j

. (3.16)

While the overall accuracy assesses the global performance of the classifier, the average ac-
curacy further accounts for accuracy unbalancing between the different classes.

3.2.3 Forest Mapping

The methodology adopted for the forest mapping exploits the same processing scheme de-
picted in Section 3.2.2, but adds additional parameters as the textures, derived from the
computed backscatter, and increases the output resolution, specifically from 100 meters to
50 meters grid. In the following, I will highlight the main methodological differences with
respect to the framework already presented in Section 3.2.2 and refer to the publication in
[59] for the complete description of the developed algorithms.

To improve the product resolution, a boxcar filter with a fixed-size window of 5 × 19 pixels
was chosen. Given the Sentinel-1 IW mode along azimuth and ground range, 14 m × 3.7 m
respectively, the output resolution is an almost square cell of 70 m× 70.3 m. Furthermore, a
window centered on the current estimated pixel is favorable for preserving spatial geometries.

Texture Features

In the proposed framework, I further consider the texture as an additional feature, providing
important information about the spatial dependency among neighboring pixels. Among the
several methods and techniques based on statistical models, I use the Sum And Difference
Histograms (SADH) textures described in [60].

A discrete image can be interpreted as the realization of a bidimensional stationery and ergodic
process, which means that each pixel of the image, ux,y, can be seen as the observation of a
random variable. One of the most used statistical approaches to evaluate this relationship is
counting the occurrence of the same pixels inside a defined domain D, after quantizing the
original image dynamically using a grey level scale with a fixed number of levels Ng. This
assumption allows for the generation of a matrix of Ng×Ng co-occurrence elements, known in
literature as Gray Level Co-occurrence Matrix (GLCM) [61], [62]. One of the main properties
of the GLCM is its dependency on the relative position of the pixels in the image, δ = (δx, δy).
Indeed, a spatial configuration of the displacement vector defines a precise direction in the
co-occurrence counting; in particular, setting the relative position δ = (δx, δy), the GLCM
elements are the results of a comparison between two random variables:

{
ux,y

ux+δx,y+δy

(3.17)

A much lighter approach for the extraction of the textures is presented in [61]. It makes
use of the SADH method, which suggests the measurement of directional sum and difference
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matrices associated with the displacement vector δ = (δx, δy). Each element of such matrices,
sx,y and dx,y, respectively, is given by:

{
sx,y = ux,y + ux+δx,y+δy

dx,y = ux,y − ux+δx,y+δy

(3.18)

This strategy facilitates the computation of spatial textures since determining the co-occurrence
matrix is no longer needed. Indeed, the second-order joint probability function associated to
the ux,y and ux+δx,y+δy can be approximated as the product of the first-order probability func-
tions of the sum and difference defined in (3.18), which, by definition, are uncorrelated random
variables [60]. Therefore, the probability density functions P̂s(i) and P̂d(j), (i, j = 1, ..., Ng),
of sum and difference, is estimated by normalizing the relative histograms for the total number
of counts. Using the SADH approach, I extract nine informative textures [61]:

• Average (AVE): describes the mean co-occurrence frequencies

• Cluster prominence (CLP): expresses the tailedness of the image in terms of kurtosis

• Cluster shade (CLS): observes the asymmetry of the image in terms of skewness

• Contrast (CON): corresponds to a statistical image stretching

• Correlation (COR): explains the linear dependency of gray level values

• Energy (ENE): describes the uniformity of a texture

• Entropy (ENT): characterizes the degree of disorder in the image

• Homogeneity (HOM): represents the degree of similarity among gray tones within an
image

• Variance (VAR): defines the dispersion of shades of gray around the mean value µ

For the application of this method, I set the domain D to 5 × 19 pixels and the number of
gray levels Ng = 20, to obtain a final output resolution that is consistent with one of the
other estimated parameters γ0, τ , and ρLT.

The feature extraction using the SADH method is repeated twice, considering the most sig-
nificant displacement vectors along both the azimuth d = (1, 0) and the slant-range d = (0, 1)
directions. In Figure 8 I named these two set of textures as SADH(1,0) and SADH(0,1),
respectively.

Classification approach

After geocoding, all the previously described feature maps are posted to the final resolution of
50×50 meters and serve as input to a RF classifier. As in [46], I considered the Gini index as
impurity measurement for the classifier, and I set the number of estimators, i.e., the number
of decision trees and the minimum number of samples in a leaf node to 50.
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Following the branches of the block diagram in Figure 8, a set of Sentinel-1 time series can
be downloaded and processed, deriving a total of 22 feature maps, 18 textures plus the 4
parameters proposed in [46]. Table 1 summarizes the complete set of features considered in
this work.

Table 1: List of the 22 features considered. Column ORIG shows the parameters used in
Section 3.2.2, while columns SADH(1,0) and SADH(0,1) show the textures extracted along
both azimuth d = (1, 0) and slant-range d = (0, 1).

ORIG SADH(1,0) SADH(0,1)

γ̂0 AV E(1,0) AV E(0,1)

τ̂ CLP(1,0) CLP(0,1)

ρ̂LT CLS(1,0) CLS(0,1)

θinc CON(1,0) CON(0,1)

COR(1,0) COR(0,1)

ENE(1,0) ENE(0,1)

ENT(1,0) ENT(0,1)

HOM(1,0) HOM(0,1)

V AR(1,0) V AR(0,1)

The experiments on the RF classifier in two different cases, characterized by a different set
of input features:

• case (ORIG): γ̂0, τ̂ , ρ̂LT, and θinc,

• case (SADH): γ̂0, τ̂ , ρ̂LT, θinc, SADH(1,0), and SADH(0,1).

The (ORIG) test case is equivalent to the settings used for the land cover classification,
which represents my baseline. The (SADH) test case instead additionally uses the 18 textures
extracted from γ0 by using the SADH method.
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3.2.4 Monthly deforestation monitoring

The presented methodology for forest mapping can be successfully applied for the timely
detection of deforestation phenomena. As previously shown, the mapping algorithm can
achieve a temporal resolution of a single month. It means that the generated maps could
also be used to track coverage changes on a monthly scale. For this application I use the
methodology presented in Section 3.2.3 and refer to the paper in [63] for all implementation
details. The processing scheme for the generation of the monthly forest maps is depicted in
Figure 8.

Figure 8: Sentinel-1 processing chain with the integration of Sum and Difference Histograms
(SADH) textures proposed.

Change detection may be applied at a variety of different conceptual levels. The simplest
form would be to differentiate between subsequent pixel values in time as already done in
[64]. In this work, I use a slightly more complex algorithm, which foresees a segmentation
procedure before the actual change detection. Specifically, an area is detected as a change if
a whole segment is missing and not a single pixel. On the one hand, this strategy guarantees
higher accuracy by reducing false positives. On the other hand, the minimum detectable area
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increases, and minimal changes are not detected.

Figure 9: Processing scheme of the automatic change detection strategy for evaluating the
deforestation on the n-th month. The block δ(t − 1) represents the 1-month delay that has
to be considered for generating the new deforestation map.

The algorithm is summarized in Figure 9. Since it is expected that changes will happen on
adjacent pixels, the algorithm aims to detect a whole area by performing pixel clustering.
I apply an image segmentation based on morphological watershed transformation [65] that
regards the image intensity as a topographic map and is very useful to this purpose.

Using a segmentation algorithm to identify clear-cut polygons has two main advantages. It
first identifies groups of pixels likely to be associated with the same physical object on the
ground. Moreover, this also allows for a certain tolerance to image misalignments, which might
arise from minor image distortions. Using the watershed segmentation, one can guarantee
the detection of clear-cuts not smaller than 75ha.

Performance evaluation

By discarding the invalid pixels, I evaluate four metrics: the overall accuracy (OA) for all
the classes and precision (P), recall (R), and F1-score (F1) for the forest class (FOR). In the
latter case, I refer to a binary problem by considering as reference the NDVI mask and the
classes forest (FOR) and others (OTH). On the one hand, the overall accuracy of eq.(3.16)
measures the performance of the classification model. On the other hand, the remaining three
metrics refer to the model’s effectiveness in recognizing a specific class, in this case, the FOR
class. Precision (P) and recall (R) are respectively defined as:

P =
TP

TP + FP
, (3.19)

and

R =
TP

TP + FN
. (3.20)

The precision and recall determine the cost of a false alarm and the classifier’s capability to
detect a forest pixel correctly, respectively. The F1-Score, eventually, aggregates the latter
two measures to give a summary score and is defined as follows:

F1 =
2 · P ·R
P +R

. (3.21)

HI-FIVE: High-Resolution Forest Coverage with InSAR & Deforestation Surveillance 29



The F1-Score reaches its maximum at 1 when precision and recall are 1. It can be interpreted
as a weighted average of precision and recall and considers both false positives and false
negatives.

Sentinel-2 for monthly validation

Sentinel-2 images are used as an external reference for validating the monthly forest/non-
forest classification over specific regions of interest. In particular, I consider two aspects of
the vegetation, which can be translated into vegetation indexes derived from multispectral
data: plant health and water stress. Indeed, vegetation absorbs solar radiation in different
bands and scatters backward a different percentage of it. The percentage of reflected radiation
in specific bands, such as near-infrared (NIR), red (RED), and short-wave infrared (SWIR),
concurs to the definition of the following two different vegetation indices: (1) the NDVI, i.e.,
the Normalized Difference Vegetation Index, and (2) the NDMI, which stands for Normalized
Difference Moisture Index.

The former describes the vigor level of a vegetated area, and it is calculated as the ratio
between the difference and the sum of the reflected radiations in the near-infrared and the
red channels:

NDVI =
NIR− RED

NIR + RED
=

B08− B04

B08 + B04
. (3.22)

NIR stands for the near-infrared band and falls roughly between 760 and 900 nanometers, and
RED is the visible red channel from 650 to 680 nanometers, corresponding using Sentinel-
2 to band 8 (B08) and band 4 (B04), respectively. The NDVI varies between -1 and 1.
Considering that the rainforest may be explained as an area with high canopy cover and high
vigor, I created a forest/non-forest map by setting all those pixels with NDVI higher than
0.7 as forest. Differently, the NDMI is an informative index used to determine vegetation
water content. It is calculated as the ratio between the difference and the sum of the reflected
radiations in the near-infrared and short-wave infrared bands:

NDMI =
NIR− SWIR

NIR + SWIR
=

B08− B11

B08− B11
. (3.23)

SWIR is the Short-Wave Infrared band, which typically ranges from 1550 to 1750 nanometers.
Although the NDMI was initially developed for use with Landsat Thematic Mapper (TM)
bands 4 (NIR) and 5 (SWIR), I replicate it using Sentinel-2 bands 8 (B08) and 11 (B11)
[66]. In this work, the NDMI is used together with the RGB image to evaluate the results
visually. Furthermore, because of the strong dependency of Sentinel-2 data on clouds and
cloud shadows, I generate a different mask, that I call Unclassified mask, valid for the measure
of the cloud cover percentage of each acquisition. In particular, this mask is obtained by
merging the cloud, and the cloud shadow layers inside the Scene Classification (SCL) map, a
thematic map freely available in the Sentinel-2 Level-2A products [67]. In particular, I define
for this mask three different classes: the missing data pixels (MDA), the valid pixels (VAL)
and the unclassified data (UNC), i.e. clouds (dense and medium cirrus) and cloud shadows.
Given a set of Unclassified masks, I select the mostly cloudless Sentinel-2 acquisition, i.e., the
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optical image whose cloud cover percentage is the minimum one within the Sentinel-1 stack
observation time. The presented methodology can be schematized as in Figure 10.

Figure 10: Block processing scheme for the automatic generation of Sentinel-2 mosaicked
images over the region of interest.

During the downloading of the Sentinel-2 tiles, a first selection is applied to consider only
those Sentinel-2 acquisitions whose footprint falls within the test site region, previously fixed
in the Sentinel-1 processing chain of Figure 6. Then a for loop loads in a buffer all the
available tiles and merges them using a mosaicking algorithm. Finally, it stores the result,
i.e., the strip associated with the acquisition date. The loop continues until the complete
span of all Sentinel-2 acquisition dates within the Sentinel-1 observation time. The result is a
stack of Sentinel-2 mosaicked images covering the Sentinel-1 test site. The main benefit of this
approach is the possibility to automatically select the most cloudless Sentinel-2 acquisition,
i.e., the one with the lowest cloud cover percentage, given the coordinates of a smaller region
of interest in the test site. Figure 11 shows an example of the results generated by the above-
mentioned automatic system over a dedicated patch. In this specific case, the algorithm
estimates a cloud cover percentage of 22.40% over the patch.
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Figure 11: Examplary results for the pre-processing of Sentinel-2 data. From left to right:
(S-2, RGB) is the True Color map; (S-2, UNC) is the Unclassified mask ; (S-2, NDVI) is the
NDVI mask; (S-2, NDMI) is the NDMI index.

3.2.5 Deep Learning approaches

The above methodologies have concentrated on exploiting Sentinel-1 time series by focusing
on processing aspects and modeling the temporal decorrelation for specific land cover classes.
This project has further committed to improving the performance of previously presented
methodologies. In particular, the one related to the spatial and temporal resolution of the
end-product. To do so, I investigated DL methodologies to better process the data. On the
one hand, I focused on improving the interferometric phase and coherence estimation. Deep
residual models, as the Φ-Net [6], can generate accurate coherence maps without resolution
degradation.

On the other hand, classification improvement has been targeted. A U-Net model has been
used in place of the RF classifier. The same framework can be used for single coherence
image classification. In this way it will be possible to generate one forest map from a single
coherence image and shorten the mapping interval to 6 days. The coherence in place of the
temporal decorrelation is less reliable, and one can recoup the performance by using DL-based
semantic segmentation approaches.

Interferometric parameters estimation with the Φ-Net

The proposed Φ-Net is a DL residual model to estimate InSAR parameters. This approach
allows obtaining a coherence map with almost no degradation of the input data resolution.
The Φ-Net is trained using synthetic data obtained by an innovative strategy based on the
theoretical modeling of the physics behind the SAR acquisition principle. The peculiarity
of the employed strategy is that it allows the network to generalize the estimation problem
with respect to different noise levels, the nature of the imaged target on the ground, and the
acquisition geometry. Figure 12 shows the network architecture. For a detailed description
of the Φ-Net I refer to [6].

As an example, in the following, I show the comparison between the data filtered with the
proposed initially moving average for a 50×50 meters posting and the new result obtained
with the Φ-Net.
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Figure 12: Φ-Net network architecture. The structure of the residual blocks is depicted in
Figure 13.

The coherence estimated with this method can allow the production of forest maps at 10×10
meters posting grid. Further evaluations and comparisons are left for future research invest-
igations.

Forest mapping with DL-based semantic segmentation

As seen so far, the retrieval of the temporal decorrelation can primarily improve the classific-
ation performance since it is less subject to noise and temporal non-stationarity in the scene.
As a drawback, such an approach is computationally demanding since it requires the compu-
tation of the full coherence map for each pixel on the ground. Furthermore, it also implies
that the acquisition with the largest temporal baseline is acquired, which for the proposed
methodology is one month.

In this project, I further investigated using a DL model for semantic segmentation to improve
classification performance. The used model is the one already proposed in [68] and depicted
in Figure 15. For this analysis, I used as input features the multi-temporal backscatter γ0,
the incidence angle θinc, the decorrelation constant τ , and the long-term coherence ρLT. The
training and test dataset are the same used for the forest mapping presented in Section 3.2.3.
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Figure 13: Φ-Net residual block operations.

Figure 14: Comparison between coherence maps at 10×10 meters posting resulting from
the Φ-Net (left) and the classical moving average (right).
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Figure 15: U-Net semantic segmentation model for forest mapping.
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3.3 Data

In the following, I describe all the used Sentinel-1 datasets for the performed analysis. In
addition, I also indicate the reference data sets and third-party data.

3.3.1 Europe dataset

The first data set that I considered for the analysis and test of the land cover classification
methodology proposed in [46] has been over Europe, where both Sentinel-1a and -1b acquisi-
tions are present. Indeed, for a more precise estimation of the temporal decorrelation, a revisit
time of 6 days is favorable. The selected area covers about 700×500 km and is depicted in
Figure 16.

Specifically, the data set is composed of seven stacks of Sentinel-1 IW scenes (VV polarization
channel), each of those comprising 6 acquisitions characterized by a revisit time of 6 days and
covering an overall period of one month (August 2018). The acquisition orbits, dates, and
geographical coordinates of the utilized stacks are summarized in Table 2. Each input IW
image, composed of three sub-swaths, covers a swath of 250 km length at a resolution of
14×3.7 meters in the azimuth and ground range dimensions.

Table 2: Sentinel-1 data set over central Europe (Germany). Data download has been
performed through https://scihub.copernicus.eu/. For each stack, the symbol * indicates
the primary image.

Stack 1 Stack 2 Stack 3 Stack 4 Stack 5 Stack 6 Stack 7

orbit 139 139 139 168 168 168 168
region Baden-Württemberg Rheinland-Palatinate Nord Rhein-Westphalen Bayern Thüringen Sachsen Mecklenburg-Vorp.
Abbrev. BW RP NW BY TH SN MV

Image Acquisition dates

1 2018.08.01 2018.08.01 2018.08.01 2018.07.28 2018.07.28 2018.07.28 2018.07.28
2 2018.08.07 2018.08.07 2018.08.07 2018.08.03 2018.08.03 2018.08.03 2018.08.03
3 2018.08.13* 2018.08.13* 2018.08.13* 2018.08.09 2018.08.09 2018.08.09 2018.08.09
4 2018.08.19 2018.08.19 2018.08.19 2018.08.15* 2018.08.15* 2018.08.15* 2018.08.15*
5 2018.08.25 2018.08.25 2018.08.25 2018.08.21 2018.08.21 2018.08.21 2018.08.21
6 2018.08.31 2018.08.31 2018.08.31 2018.08.27 2018.08.27 2018.08.27 2018.08.27

Corner Coordinates [deg]

lat min 47.9676283 49.4508966 50.9358976 47.9499978 49.4358306 50.9199976 52.4016654
lat max 49.4748923 50.9608575 52.4458574 49.9545851 51.4413178 52.9263836 54.4098489
lon min 5.238333 5.5870266 5.9489214 9.3441662 9.6941661 10.0491661 10.4188564
lon max 8.9128063 9.3759577 9.8550366 13.1737098 13.6414315 14.1314738 14.6397917

External reference: the CORINE land cover map

As a ground truth reference for land cover, I exploited the CORINE Land Cover (CLC)
map, updated to the year 2012 [69]. It consists of 44 land cover classes generated by visual
inspection from IRS P6 LISS III and RapidEye satellite data. The product has a pixel
spacing of 100×100 meters and an accuracy higher than 85%. For the purposes of the present
investigation, I grouped such classes into four higher-level classes, as shown in the last column
of Table 3: artificial surfaces (ART), forests (FOR), non-forested areas (NFR), and water
bodies and invalid or no data (INV). I used the first three higher-level classes to perform the
classification, while the last one, which includes water and invalid pixels, has been masked
out.
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Table 3: Class grouping from CLC (ART: artificial surfaces, FOR: forests, NFR: non-forested
areas, INV: water bodies and invalid or no data).

CLC Labels

Label 1 Label 2 Label 3 Higher-level class

Artificial surfaces Urban fabric Continuous urban fabric

ART

Artificial surfaces Urban fabric Discontinuous urban fabric
Artificial surfaces Industrial, commercial and transport units Industrial or commercial units
Artificial surfaces Industrial, commercial and transport units Road and rail networks and associated land
Artificial surfaces Industrial, commercial and transport units Port areas
Artificial surfaces Industrial, commercial and transport units Airports
Artificial surfaces Mine, dump and construction sites Mineral extraction sites
Artificial surfaces Mine, dump and construction sites Dump sites
Artificial surfaces Mine, dump and construction sites Construction sites
Artificial surfaces Artificial, non-agricultural vegetated areas Green urban areas
Artificial surfaces Artificial, non-agricultural vegetated areas Sport and leisure facilities

Forest and semi natural areas Forests Agro-forestry areas
FORForest and semi natural areas Forests Agro-forestry areas

Forest and semi natural areas Forests Coniferous forest

Agricultural areas Arable land Non-irrigated arable land

NFR

Agricultural areas Arable land Permanently irrigated land
Agricultural areas Arable land Rice fields
Agricultural areas Permanent crops Vineyards
Agricultural areas Permanent crops Fruit trees and berry plantations
Agricultural areas Permanent crops Olive groves
Agricultural areas Pastures Pastures
Agricultural areas Heterogeneous agricultural areas Annual crops associated with permanent crops
Agricultural areas Heterogeneous agricultural areas Complex cultivation patterns
Agricultural areas Heterogeneous agricultural areas Land principally occupied by agriculture...
Agricultural areas Heterogeneous agricultural areas Agro-forestry areas
Forest and semi natural areas Scrub and/or herbaceous veg. associations Natural grassland
Forest and semi natural areas Scrub and/or herbaceous veg. associations Moors and heathland
Forest and semi natural areas Scrub and/or herbaceous veg. associations Sclerophyllous vegetation
Forest and semi natural areas Scrub and/or herbaceous veg. associations Transitional woodland-shrub
Forest and semi natural areas Open spaces with little or no vegetation Beaches, dunes, sands
Forest and semi natural areas Open spaces with little or no vegetation Bare rocks
Forest and semi natural areas Open spaces with little or no vegetation Sparsely vegetated areas
Forest and semi natural areas Open spaces with little or no vegetation Burnt areas
Forest and semi natural areas Open spaces with little or no vegetation Glaciers and perpetual snow
Wetlands Inland wetlands Inland marshes
Wetlands Inland wetlands Inland marshes
Wetlands Inland wetlands Peat bogs
Wetlands Maritime wetlands Salt marshes
Wetlands Maritime wetlands Salines
Wetlands Maritime wetlands Intertidal flats

Water bodies Inland waters Water courses

INV

Water bodies Inland waters Water bodies
Water bodies Marine waters Coastal lagoons
Water bodies Marine waters Estuaries
Water bodies Marine waters Sea and ocean
NODATA NODATA NODATA
UNCLASSIFIED UNCLASSIFIED LAND SURFACE UNCLASSIFIED LAND SURFACE
UNCLASSIFIED UNCLASSIFIED WATER BODIES UNCLASSIFIED WATER BODIES
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
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Figure 16: Reference CLC land cover map for the considered European sites, with classes
grouped according to Table 2.

3.3.2 Amazon rainforest dataset

For the forest mapping application, I selected a study area over the Rondonia state, Brazil,
approximately 238 thousand km2 large. The area is positioned between 7◦50′ and 13◦50′

latitude South and 59◦50′ and 67◦10′ longitude West. This area, situated along the Amazon’s
deforestation arch, has become of primary interest during recent years since most deforested
events occurred. For this reason, since April 2019, the European Space Agency (ESA) has
planned an experimental 6-days repeat-pass coverage obtained with the combined operation
of Sentinel-1a and Sentinel-1b satellites. The employed data set comprises 12 Sentinel-1 time
series. The corresponding FROM-GLC reference map is shown superimposed to Google Earth
in Figure 18.

Figure 17: Sentinel-1 time series description: acquisition dates. A dot represents the primary
image, while the arrows indicates the secondary images.
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Table 4: Sentinel-1 time series description: locations. From left to right: stack number,
relative orbit number, name of the time series associated with the orbit number, corner
coordinates in latitude and longitude. The asterisks mark the test dataset.

Corner Coordinates [deg]

Stack Orbit Name Lat. min Lat. max Lon. min Lon. max

1 010 TS0 9◦40′58.34”S 7◦42′53.99”S 59◦52′18.71”W 61◦44′43.20”W
2 010 TS1 11◦16′36.74”S 9◦15′31.41”S 60◦12′59.94”W 62◦5′1.52”W
3 010 TS2 12◦45′21.09”S 10◦43′21.81”S 60◦33′23.20”W 62◦26′23.22”W
4 010 TS3 14◦10′32.67”S 12◦12′43.74”S 60◦53′48.14”W 62◦46′54.92”W
5 054 TS0 10◦12′15.96”S 8◦4′40.60”S 66◦8′34.73”W 67◦59′40.25”W
6* 083 TS0 8◦51′9.51”S 6◦50′56.20”S 61◦42′32.10”W 63◦36′0.35”W
7* 083 TS1 10◦22′8.36”S 8◦32′54.94”S 62◦4′44.36”W 63◦37′30.02”W
8* 083 TS2 11◦51′16.77”S 10◦2′26.15”S 62◦25′15.09”W 64◦19′5.05”W
9* 083 TS3 13◦24′3.87”S 11◦32′42.18”S 62◦44′38.52”W 64◦40′34.71”W
10 156 TS0 9◦24′34.67”S 8◦4′15.76”S 63◦53′30.37”W 65◦56′1.88”W
11 156 TS1 10◦15′7.76”S 8◦48′35.78”S 64◦5′7.05”W 66◦8′22.17”W
12 156 TS2 10◦36′21.14”S 9◦46′22.31”S 64◦9′39.68”W 66◦19′6.56”W

Test area for deforestation monitoring: southern Brazilian Amazon

For change detection purposes, a large region of about 44 million hectares highlighted in red
in Figure 19 and located in the southern Brazilian Amazon has been considered. The test
area comprises the state of Rondonia, the eastern side of Acre, and a small area close to Boca
do Acre, a municipality in the state of Amazonas, where recurrent deforestation activity is
present. Indeed, this region is of general interest since it is part of the Amazonian arc of
deforestation, a belt of rapidly disappearing tropical forest that follows the southern margin
of the Amazon and bends northeastward toward the bank of the Amazon River mouth.

Figure 19: Google Earth image over the Amazon basin with in red the test site location.
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Figure 18: Finer Resolution Observation and Monitoring of Global Land Cover (FROM-
GLC, 2017) map chosen as ground truth.

To monitor the state of the rainforest in the southern Amazon, the European Space Agency
(ESA) planned, between the end of April 2019 and the end of December 2019, a denser SAR
coverage using Sentinel-1A and Sentinel-1B satellites over such an area, reaching a constant
repeat cycle of 6 days. Accordingly, for testing the change detection algorithm, I use 3
Sentinel-1 time series over footprint number 5, acquired in three consecutive months: May,
June, and July 2019, respectively. Figure 20 shows the acquisitions dates of the complete
dataset of Sentinel-1 data considered.

The square and circular markers identify which sensor, between S-1A and S-1B, acquires
on a specific date. Each relative orbit number within a given month is highlighted with a
different color and contains a different number of footprints. Furthermore, the footprints
associated with a relative orbit number and analyzed on a precise observation time have the
same reference acquisition (primary image) for performing the multi-temporal coregistration.

FROM-GLC and PRODES reference maps

As done for the Europe data set, the FROM-GLC map, which comprises an inventory of 10
land cover classes, has been grouped into four macro-classes with higher semantic: artificial
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Table 5: FROM-GLC classes aggregation. (ART) artificial surfaces. (FOR) forests. (NFR)
non-forested areas. (INV) invalids.

FROM-GLC Higher-level class

Unclassified
INVWater

Snow/Ice

Impervious surface ART

Forest FOR

Cropland

NFR

Grassland
Shrubland
Wetland
Tundra
Bareland

surfaces (ART), forests (FOR), non-forested areas (NFR), and water bodies and unclassified
or no data as invalids (INV), as shown in Table 5. Furthermore, all the possible temporal
inconsistencies in the FROM-GLC reference map due to temporal changes have been discarded
by relying on the PRODES (Programa de Cálculo do Desflorestamento da Amazônia) digital
map [70]. PRODES consists of a ground polygon inventory over the Amazon rainforest,
updated yearly with the latest detected deforestation areas. It is a medium-resolution (30m)
product derived from visual inspection of optical data and does not identify changes within
areas that are smaller than 6.25ha [71].

I extract the polygons corresponding to new clear-cuts between 2017 and 2019 by using
different updates of the PRODES map. These sets are used in [59] and [63] to evaluate
the classification performance of the forest maps and to extract the yearly clear-cuts as the
difference between clearing areas detected by PRODES in 2018 and 2019 separately.

3.3.3 Third-part data: TanDEM-X/PAZ acquisitions

For the analysis of volume and temporal decorrelation at X band, I considered five test sites,
each one characterized by the presence of different land cover classes and located over:

• Demmin (Germany)

• Salar de Uyuni (Bolivia)

• Amazonas (Brazil)

• Skövde (Sweden)

• Greenland

For each test site, I utilized TDM-PAZ interferometric time series in horizontal (HH) po-
larization, acquired in an overall period that goes from May 2019 up to December 2020. A
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Figure 20: Sentinel-1 acquisition description. A star represents the primary image, while
squares and circles indicate Sentinel-1A and -1B secondary images. The colors identify dif-
ferent months.

summary of the used time series, together with their main acquisition parameters and land
cover classes per test site, is presented in Table 6.

Moreover, to retrieve the long-term coherence, I use additional TDM acquisitions with a very
long temporal baseline, which are marked with an asterisk in Table 6.
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Table 6: TDM-PAZ time series description. LC - land cover. θinc - mean incidence angle.
Platform - TDM or PAZ. AIID - Acquisition Item ID. Date - acquisition date. ∗ - TDM
acquisitions with long temporal baselines.

Demmin Salar de Uyuni Amazonas Skövde Greenland

LC: Crops (CRP), Grasses (GRS), Urban (URB) LC: Soil and rocks (SOL) LC: Rainforest (RFR) LC: Boreal forest (BRF) LC: Ice and snow (ICE)

θinc = 38◦ θinc = 48◦ θinc = 41◦ θinc = 34◦ θinc = 42◦

Platform AIID Date Platform AIID Date Platform AIID Date Platform AIID Date Platform AIID Date

PAZ 15481 2019.09.10 PAZ 18316 2019.11.23 TDM 1600801 2019.05.17 PAZ 12123 2019.05.17 PAZ 14368 2019.08.10
TDM∗ 1641717 2019.09.17 TDM 1654786 2019.11.30 PAZ 12185 2019.05.21 TDM∗ 1600791 2019.05.24 TDM 1634742 2019.08.17
PAZ 15895 2019.09.21 PAZ 18754 2019.12.04 TDM 1600800 2019.05.28 PAZ 12394 2019.05.28 PAZ 14749 2019.08.21
TDM 1641657 2019.09.28 TDM 1654718 2019.12.11 PAZ 12444 2019.06.01 PAZ 15861 2019.09.15 TDM 1634656 2019.08.28
TDM∗ 1600895 2019.05.19 PAZ 19243 2019.12.15 TDM∗ 1600799 2019.06.08 TDM∗ 1641694 2019.09.22 PAZ 15129 2019.09.01

TDM∗ 1416699 2017.03.26 PAZ 12776 2019.06.12 PAZ 16297 2019.09.26 TDM∗ 1638751 2019.09.08
PAZ∗ 12186 2019.05.20 TDM 1600798 2019.06.19 PAZ 15490 2019.09.12

PAZ 13054 2019.06.23 TDM 1640676 2019.09.19
PAZ 15524 2019.09.08 PAZ 15906 2019.09.23
TDM∗ 1641721 2019.09.15 TDM 1640756 2019.09.30
PAZ 15921 2019.09.19 TDM∗ 1599773 2019.05.10

3.4 Results

This section summarizes the results obtained from all the proposed methodologies. The
results are presented in the same order used in the methodological part. While I provide some
sample results in the following, I refer to the published articles and provide the corresponding
references.

3.4.1 Land cover classification in Europe

This section shows the results obtained by applying the framework for Sentinel-1 time series
explained in Section 3.2.2 over the Europe dataset described in Section 3.3.1. I will first ex-
hibit preliminary analysis results on the estimated multi-temporal interferometric parameters.
Consequently, I show the results obtained from the classification and assess the performance
with respect to the modified CLC external reference shown in Section 3.3.1.

I present the analysis and the classification results obtained by applying the algorithm to
the Sentinel-1 stacks 1-6 in Table 2. While here I summarize the performed experiments, a
complete description of the performed work is to be found in [46].

Analysis on the estimated parameters

The normalized histograms of the estimated quantities γ̂0, ρ̂LT, and τ̂ are depicted in Figure 21
(a) to (c) for each land cover class, separately. One can observe from these histograms that the
distributions of γ̂0 and τ̂ can be approximated by mono-modal Gaussian-like distributions with
well separable mean values but with a significant overlapping. Differently, the distributions
of ρ̂LT for the classes forests (FOR) and non-forested areas (NFR) are largely superimposed,
while a high degree of separation is visible between artificial surfaces (ART) and all other
classes.

Figure 21 (d) shows the derived models of the temporal decorrelation factor ρ̂temp in eq.(3.8),
obtained by applying the mean values of the distributions of ρ̂LT and τ̂ . As expected, the
artificial surfaces (ART) class decorrelates much less than the other two classes. It is due
to the intrinsic nature of artificial scatterers, whose radar cross-section and phase are more
stable in time with respect to distributed ones.

It has to be noted that meaningful use of multiple features as input to a generic classifier
requires a low degree of correlation. I compute the bi-dimensional histograms of all possible
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Figure 21: Normalized histograms for the different estimated quantities and classes. (a)
temporal multi-looked backscatter γ̂0. (b) long-term coherence ρ̂LT (c) decorrelation constant
τ̂ (d) Exponential model of the volume decorrelation factor, derived using the mean values of
ρ̂LT and τ̂ distributions.

parameter combinations for each land cover class to verify this aspect. The results are depicted
in Figure 22, and from the histogram’s orientation, no relevant correlation between features
is observed.

Classification results and performance analysis

In the following, I show the results obtained by applying the algorithm described in Section
3.2.2 and analyze its performance in the proposed three different cases, characterized by
different features as input to the RF classifier:

• case 1 : γ̂0 and θinc,

• case 2 : τ̂ , ρ̂LT, and θinc,

• case 3 : γ̂0, τ̂ , ρ̂LT, and θinc.
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Figure 22: Normalized two-dimensional histograms of γ̂0, τ̂ , and ρ̂LT, for the three con-
sidered land cover classes.

Figure 23 shows the derived classification map from stack 1 for case 3, where both backscatter
and interferometric parameters are used as input features.

It is worth mentioning that a significant improvement in terms of classification accuracy has
been observed by increasing the nest and leafsize in the RF algorithm, up to a saturation level
after which its performance stabilizes. The chosen values of nest and leafsize equal to 50 are,
on the one hand, close to such a saturation level, and on the other hand, a good compromise
in terms of computational costs.

In the following, I show the results for three different patches highlighted in Figure 23 (yellow),
which are depicted in details in Figure 24. The corresponding Google Earth optical images
and the CLC reference are depicted in rows (i) and (ii), respectively. The crops in rows (iii)
to (v) correspond to the three different cases introduced in Section 3.2.2, which differ from
each other on the input features to the RF classifier (case 1, case 2, and case 3 ).

By using only the backscatter case 1 (iii) the classifier tends to underestimate the artificial
surfaces (ART) and the forests (FOR) classes in favor of the non-forested areas (NFR). This
effect is prevalent in crop (a), but it can be observed in all the selected crops. Differently,
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Figure 23: Derived classification map for the test set superimposed to Google Earth. Yellow
polygons identify three selected patches displayed in detail in Figure 24.

Table 7: Classification overall accuracy OA for the three selected test patches and for 2 mln
pixels randomly selected within the image (overall). Performance comparison between the
three considered test cases.

input case patch (a) patch (b) patch (c) overall

case 1 76.02% 79.93% 76.86% 88.73%
case 2 79.30% 77.98% 71.43% 78.77%
case 3 83.28% 86.84% 82.9% 91.85%

by using the estimated interferometric parameters exclusively in case 2 (iv), a more reliable
behavior is observed for all the classes. It is observed for the crop (a) and (b), while the third
crop shows some misclassification errors for the non-forested areas (NFR) class in favor of the
forests (FOR) one. Finally, as expected, the combined use of backscatter and interferometric
parameters (case 3 (v)) performs better overall. Specifically, all classification errors are better
solved in all crops.

Eventually, the performance is assessed as overall accuracy OA over the whole test dataset and
selected patches in all considered cases. The results are summarized in Table 7 and confirm
the considerations derived from the visual inspection of the classified patches. The results
are presented in Table 7. As expected, the combined use of backscatter and interferometric
parameters (case 3 ) shows the best performance by confirming the observations made with
map visual inspection.
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Figure 24: Sample patches (512×512 pixels) of three different locations from Figure 23.
(row (i)) Google Earth optical image, (row (ii)) CLC reference Map, (rows (iii), (iv), and (v))
classification maps derived from Sentinel-1 stacks for case 1 (iii), case 2 (iv), and case 3 (v).
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3.4.2 Forest mapping

The experiments were conducted by splitting the twelve stacks of Table 4 into test and training
swaths. The test set covers a strip of about 250 km× 1000 km crossing the Rondonia state,
as shown in Figure 25, and corresponds to the stacks of the relative orbit 83, marked with
asterisks in Table 4. The remaining swaths were chosen for training the RF algorithm.

The first analysis is performed on a large-scale area, which is shown in Figure 25, where a
comparison between the REF reference map and case (SADH) for the four swaths acquired
with orbit number 83 is presented. The performance is evaluated in terms of overall accuracy
(OA) and average accuracy (AA). Table 8 summarizes the two metrics for each of the four
stacks, considering the set of inputs in case (ORIG) and in case (SADH).

Figure 25: Comparison between the obtained classification result and the reference map.

All considered swaths are characterized by an overall accuracy above 82.50% and 84.26% for
the (ORIG) and (SADH) cases, respectively, by considering all valid pixels within the images.
Again, the additional information of the SADH textures increases both the OA and the AA
by at least 1.5% in all four swaths. In particular, the RF improve its detection performance
using the SADH textures. It is observed especially for the ART and NFR classes, depicted
in blue and red, respectively, in Figure 25 and better visible with the analysis of the global
confusion matrices in Figure 26.
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Table 8: Overall accuracy (OA) and Average accuracy (AA) for the four swaths in Figure
25. Each swath is associated with a stack, according to the enumeration in Table 4.

class stack 6 stack 7 stack 8 stack 9

pixels
ART 10060 34890 6009 1054
FOR 14626324 7846234 9822268 10087671
NFR 1655335 6194973 4193972 4280135

case metric stack 6 stack 7 stack 8 stack 9

ORIG
OA 88.48% 82.50% 85.03% 84.84%
AA 61.05% 81.64% 80.50% 71.95%

SADH
OA 91.90% 84.26% 86.49% 87.66%
AA 65.11% 85.59% 85.06% 82.46%

Figure 26: Confusion matrices for the whole test dataset, considering the two analyzed
cases, (a) ORIG and (b) SADH. Colors correspond to the normalized number of pixels.

In the following, I consider the Sentinel-1 swath corresponding to stack 7 in Table 4 and
provide the performance over a selection of patches. I select four small patches of 512×512
pixels, extending by about 25×25 kilometers on the ground. Referring to Figure 27, patches
(a) and (b) are characterized by the presence of urban areas, i.e., the municipalities of Porto
Velho and Ariquemes, respectively, while patches (c) and (d) identify stable regions of cropland
mixed with remaining rainforest areas.

The results are summarized in Figure 28 and Table 9, which describes the OA and AA for
each patch, in both the input configurations, case (ORIG) and case (SADH).
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Figure 27: Classification map of the stack number 7 summarized in Tab. 4.

Table 9: Overall accuracy (OA) and Average accuracy (AA) for the four patches in Figure
28. ∆OA and ∆AA represent the increment in (OA) and (AA), respectively, when including
textures within the classification.

class patch (a) patch (b) patch (c) patch (d)

pixels
ART 20419 7706 0 0
FOR 118922 86290 216741 141669
NFR 100506 155408 42073 117044

case metric patch (a) patch (b) patch (c) patch (d)

ORIG
OA 72.31% 80.71% 94.63% 85.88%
AA 75.94% 79.96% 93.04% 85.79%

SADH
OA 73.60% 82.49% 95.75% 87.98%
AA 78.15% 85.98% 94.28% 87.88%

∆OA 1.29% 1.78% 1.12% 2.10%
∆AA 2.21% 6.02% 1.24% 2.09%
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Figure 28: Forest mapping on selected test patches. (REF) modified reference map: FROM-
GLC, 2017. (S-1, ORIG) RF classification map using the input parameters from Section 3.2.2.
(S-1, SADH) RF result adding the SADH textures to the original parameters. (S-2, RGB) and
(S-2, NDVI) optical True Color and NDVI maps of Sentinel-2 acquisitions from the considered
month.

By observing the reference (REF) and the results of the case (ORIG) and case (SADH) in
Figure 28, it can be seen how the introduction of the texture information in case (SADH)
helps improve the classification with respect to case (ORIG), by better isolating urban areas
and closing gaps over forested areas. The corresponding accuracy values confirm this in
Table 9, where a positive increment of both the overall and average accuracy, ∆OA and ∆AA,
respectively, is noticed. In particular, in patches (a) and (b), textures are helpful to better
classify small details in man-made structures with a consequent increment of accuracy. In
patch (c), the inclusion of SADH textures provides a better segmentation of the class forests
(FOR) with respect to the sole use of interferometric and backscattering parameters. The
random noise-like misclassification occurrences are reduced, increasing both OA and AA.
Finally, in the patch (d), the introduction of textures also allows for correctly classifying bare
soil areas as non-forested areas (NFR), which would otherwise result in misclassified artificial
surfaces (ART).
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3.4.3 Monthly deforestation monitoring

In this section, I show and discuss the experimental results obtained by applying the algorithm
presented in Section 3.2.4. For the complete analysis I refer to the article in [63]. Table 10
reports the performance of the different Sentinel-1 forest maps, extracted from the time series
of May 2019, June 2019, and July 2019, respectively. Figure 29 shows the reference map over
footprint 5, used for the performance evaluation: I updated the FROM-GLC map of 2017
with the PRODES polygons (in white) referring to the deforestation that occurred between
the 1st of August 2017 and the 31st of July 2019. All forest maps exceed an overall agreement
(OA) of 88% and guarantee a well-balance in the classification among the three considered
classes, with average accuracies (AA) higher than 83%. Therefore, one can apply the change
detection chain presented in Figure 9.

Figure 29: Finer Resolution Observation and Monitoring of Global Land Cover (FROM-
GLC, 2017) reference map with in white the clear-cuts (CUT) detected by PRODES between
2017 and 2019. Black: invalid pixels (INV), blue: artificial surfaces (ART), green: forests
(FOR), red: non-forested areas (NFR), white: clear-cuts (CUT).

Figure 30 shows two FROM-GLC maps in grayscale with superimposed colored polygons
indicating the detected clear-cuts. The reference map (REF) depicts the annual deforestation
hand-marked by PRODES in 2018 (yellow) and 2019 (red). Together, they correspond to the
white polygons in Figure 29. The (S-1, DEF) shows in 3 different colored sets of polygons
the Sentinel-1 results obtained by processing three different months. The obtained results
show great consistency among the polygons detected by the proposed algorithm and those
identified by PRODES.

Within the selected test area of footprint 5, I now concentrate on the analysis of three different
patches of 1024×1024 pixels size, indicated as (a), (b), (c), and highlighted in blue in Figure
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Figure 30: Comparison between the reference map (REF) and the Sentinel-1 deforestation
map (S1, DEF).

Table 10: Overall accuracy (OA) and average accuracy (AA) of the forest maps extracted
from the three consecutive months over the footprint number 5 in Table 4 and drawn in Figure
29.

Metric May 2019 June 2019 July 2019

OA 92.82% 91.04% 88.65%
AA 85.21% 83.7% 83.02%

30. In this case, the analysis is carried out by comparing the monthly Sentinel-1 forest map
with three vegetation parameters derived from Sentinel-2 acquisitions: the NDVI mask, the
NDMI map, and the RGB map, all masked with the invalid pixels of the Unclassified mask.

The comparison between the Sentinel-1 forest maps and the Sentinel-2 vegetation parameters
for patches (a), (b), and (c) are reported in detail in Figure 31, Figure 32, and Figure 33,
respectively.

Figure 31 shows an area affected by deforestation activities taking place in the Summer
of 2019. One can identify at least two deforestation hot spots, indicated as (i) and (ii)
and delimited by yellow circles in Figure 31. Furthermore, the results show an additional
deforestation area located at the bottom of the image, indicated as (iii) in Figure 31. By
observing the Sentinel-1 forest map of June 2019, some small-scale activities are visually
perceived over the hot spot (iii).

Figure 32 depicts a large plantation area on the eastern side of the municipality of Boca do
Acre, state of Amazonas. One can spot some deforestation activities occurring between May
2019 and July 2019 in the left and top-right of the patch. These areas are correctly detected
by the Sentinel-1 forest map if compared with the RGB and NDMI from Sentinel-2. In this
case, the NDMI index highlights the new cuts as dry pixels, i.e., areas with low water content,
not visible within the NDVI image.

Figure 33 presents the southern side of the municipality of Boca do Acre. In this patch, one
can identify deforestation activities occurring at the top of the area, marked with a yellow
circle.
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Figure 31: Monthly forest mapping for patch (a). (S-1, RF) Sentinel-1 forest map. (S2,
NDVI), (S2, NDMI), and (S2, RGB) Sentinel-2 parameters. The columns indicate the three
consecutive months. The yellow circles in (S-1, RF) identify three detected deforestation hot
spots, indicated with (i), (ii) and (iii).
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Figure 32: Monthly forest mapping for patch (b) organized as in Figure 31.
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Figure 33: Monthly forest mapping for patch (c) organized as in Figure 31. A deforestation
hot spot is detected and indicated with a yellow circle.

The NDVI is here used as a reference mask for evaluating the classification performance
of patches (a), (b), and (c) since it represents the best available independent data. Since
this mask is binary, the classes non-forested areas (NFR) and artificial surfaces (ART) are
aggregated together in the Sentinel-1 forest maps. I measured the overall accuracy (OA) and,
for the forest class (FOR), the precision(P), recall(R), and F1-score (F1). All the numerical
results are summarized in Table 11.

The overall accuracy of the Sentinel-1 forest maps consistently exceeds the 80%. As expected,
the accuracy values measured for the patch (b) are lower than those computed for the other
patches. This behavior is not surprising since the quality of the NDVI mask is much lower
for this patch due to cloud cover. Furthermore, one can observe that the classifier can detect
the forest class (FOR) with precision consistently higher than 90% and recall not lower than
80%. The F1-Score also shows a similar result, and it consistently exceeds the 86%.
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Table 11: Overall accuracy (OA), and, for the FOR class, the precision (P), recall (R),
F1-score (F1) of patches (a), (b), and (c).

May 2019 June 2019 July 2019

Patch (a)

Date 2019.05.09 2019.06.18 2019.07.08
OA 96.11 % 94.78 % 93.89 %
P 98.82 % 98.70 % 99.30 %
R 97.13 % 95.75 % 94.23 %
F1 97.97 % 97.20 % 96.70 %

Patch (b)

Date 2019.04.27 2019.06.06 2019.07.01
OA 83.11 % 81.38 % 84.05 %
P 96.70 % 93.85 % 97.74 %
R 80.85 % 80.84 % 80.53 %
F1 88.07 % 86.86 % 88.30 %

Patch (c)

Date 2019.05.17 2019.06.11 2019.07.11
OA 87.22 % 86.94 % 89.78 %
P 98.42 % 98.16 % 97.67 %
R 87.43 % 87.58 % 89.98 %
F1 92.60 % 92.57 % 93.66 %

The final results of this work are depicted in the last row of Figure 34, Figure 35, and Figure
36, which show the evolution in time of deforestation activities in patch (a), patch (b), and
patch (c). All figures are organized into two rows. The first comprises the references: the
FROM-GLC 2017 and the two deforestation masks provided by PRODES in 2018 and 2019.
The second row displays the results: the forest maps retrieved on the consecutive months of
May, June, and July 2019 and the deforestation maps obtained by applying the processing
chain of Figure 9 to the four consecutive forest maps.

Figure 34 shows the polygons retrieved every month by applying the chain presented in
Figure 9 on patch (a). According to the results shown in Figure 31, I can draw the following
considerations:

• By analyzing patch (a) in May 2019, I can identify a set of polygons, colored from
purple to cyan, and highlighted with a white circle, the changes between the FROM-
GLC 2017 and the Sentinel-1 forest map generated on that month. The segmentation
allows for dividing this cluster of polygons in clear-cuts marked by PRODES in 2018
and 2019. In particular, the cyan polygons, indicated as (i), appear related to activities
in 2018, while the bigger one, depicted in purple and marked as (ii), is associated with
deforestation recorded in 2019. The purple polygon is a clear-cut created after the 1st
of August 2018 but before the end of May 2019. Therefore, the algorithm can increase
deforestation maps’ temporal resolution by reducing the observation period from one
year (as guaranteed by PRODES) to one month.

• Some areas in the bottom-left of the image are classified in PRODES 2018 as clear-cuts,
while the algorithm recognized some of them only in July 2019. The Sentinel-2 images
of vegetation parameters in Figure 31 confirm the accuracy of the results.

• On the upper-right corner of the image, one can observe the evolution of a clear-cut,
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firstly detected in June 2019, that expanded towards the east during July 2019. This
cut is registered on the PRODES 2019 map only according to the references.

• On the right side of the image, one can identify a deforestation activity starting after
June 2019 and correctly detected in PRODES 2019.

Figure 35 reports the results of the monthly deforestation over patch (b). As expected, more
changes are detected during May 2019. By comparing the results of May 2019 with the two
deforestation maps of PRODES, one can observe that: those polygons in blue (i), light green
(ii), dark green (iii) are marked by PRODES analysts in the year 2018, while the remaining
four clusters (white (iv), orange (v), yellow (vi) and purple (vii)) are identified in 2019. From
May to July 2019, small-scale deforestation activities are detected. This result can also be
explained by the fact that plantations mostly dominate the area under test, as shown in the
Sentinel-2 RGB maps of Figure 32.

Finally, Figure 36 presents the results of the monthly deforestation over patch (c). According
to PRODES maps, this area is not particularly involved in deforestation activities. One can
observe two main aspects:

• On the upper side of the image, deforestation activities were detected by PRODES in
2019. Our result suggests that the activity over this area is mainly occurring during July
2019. However, the algorithm detects a little polygon in May 2019, which is confirmed
by the Sentinel-1 forest map and Sentinel-2 parameters of Figure 33.

• Some other discrepancies between the results and the PRODES reference are noticed.
The PRODES deforestation maps of 2018 and 2019 identify an area of deforestation
activities in the middle of the image. By observing Figure 33, though, I can assume
that this is a problem of sensor sensitivity since neither the Sentinel-2 NDVI index nor
the Sentinel-2 NDMI one recognizes this hotspot.
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Figure 34: Monthly deforestation monitoring for patch (a). (REF) three used references
FROM-GLC 2017 and PRODES deforestation (yellow) of 2018 and 2019. (S-1, RF) Sentinel-
1 monthly forest maps. (S-1, DEF) Sentinel-1 monthly deforestation map.
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Figure 35: Monthly deforestation monitoring for patch (b). (REF) three used references
FROM-GLC 2017 and PRODES deforestation (yellow) of 2018 and 2019. (S-1, RF) Sentinel-
1 monthly forest maps. (S-1, DEF) Sentinel-1 monthly deforestation map.
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Figure 36: Monthly deforestation monitoring for patch (c). (REF) three used references
FROM-GLC 2017 and PRODES deforestation (yellow) of 2018 and 2019. (S-1, RF) Sentinel-
1 monthly forest maps. (S-1, DEF) Sentinel-1 monthly deforestation map.
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3.4.4 Temporal decorrelation analysis at X band

In this section, I report the analysis on temporal decorrelation at X band, introduced in
Section 3.2.1. For all considered land cover classes, I first fitted the ρvol trends as a function
of hamb from archived TDM acquisitions, by fitting the exponential model in eq.(3.7). The
results are shown in Figure 37 and the fitting parameters, together with the fitting root mean
square error (RMSE), are summarized in Table 12.

Figure 37: Exponential fittings of ρvol as a function of hamb for all the considered land cover
classes.

I show the fitted ρtemp trends in Figure 38 for each considered land cover class:

• URB: Urban areas

• SOL: Soil and rocks

• ICE: Snow and ice

• CRP: Crops

• GRS: Grasses

• RFR: Rainforest

• BRF: Boreal forest

The results are split into two different subplots where the corresponding ρtot (triangle symbol),
η (cross symbol), and ρtemp (dot symbol) per image are depicted. The plots are grouped as
follows. The first plot shows the results for the Urban areas (URB), Soil and rocks (SOL),
and Snow and ice (ICE). The first two classes are typically the most stable in time and are
characterized by high temporal coherence. Regarding Snow and ice, the selected test site is
located in the inner part of the Greenland plateau, which is characterized by the presence of
dry snow (no melting phenomena are present) and shows, therefore, a relatively high temporal
coherence. Moreover, over dry snow, radar waves at the X band penetrate the snowpack and
are gradually absorbed with increasing depth, while only a fraction is backscattered toward
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(a)

(b)

Figure 38: Mean ρtot, η, and ρtemp with respect to the temporal baseline δt for all the
considered land cover classes. The continuous lines identify the corresponding exponential
fittings of ρtemp.

the radar platform. Therefore, a significant volume decorrelation takes place as well, as clearly
visible in Figure 37.

The second plot groups together all classes characterized by the presence of different sort of
vegetation: Crops (CRP), Grasses (GRS), Rainforest (RFR), and Boreal forest (BFR). In
particular, Crops and Grasses identify areas characterized by the presence of low vegetation.
They can show a certain variability depending on the seasonality, while Rainforest and Boreal
forest correspond to two different kinds of forests. The first type is typically characterized by
a tree density that is higher than the second one, and both classes show significant volume
decorrelation phenomena, as observed in Figure 37. This behavior is normally caused by
multiple scattering from the canopies, trunks, branches, and, in the presence of significant
gaps, from the ground itself.

From the plots in Figure 38 and the RMSE values listed in Table 12, I observe how the
compensation of ρvol leads to a better interpretation of the temporal behavior of the imaged
target. Indeed, when applying the same fitting procedure to η(δt), it systematically shows a
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higher RMSE with respect to the ρtemp(δt). As expected, the most stable land cover classes,
Soil and rocks and Urban areas at Figure 38 (a), maintain higher levels of coherence even at
larger temporal baselines. Considering the Greenland test site in the same subplot, one can
notice how the targets almost completely decorrelate for circa δt = 30 days and show an overall
trend similar to the urban case one. Additional data show that ρtemp has reached the bias for
δt = 44 days. I omit this result in Figure 38 for the sake of the plot’s clarity. Of course, it has
to be pointed out that this case cannot generalize the behavior of all snow-covered regions.
On the contrary, only Greenland or Antarctica presents large dry snow areas. All other snow-
and ice-covered areas are typically affected by significant melting phenomena that can change
the structure of the snow and, therefore, strongly impact the temporal coherence decay.

Crops and Grasses, depicted in Figure 38 (b), decorrelate much faster than pure Soil and
rocks. For example, it is caused by seasonal vegetation on the ground, changing soil moisture,
and harvesting activities. In the specific analysis, all available InSAR pairs were acquired
during September 2019, so it is reasonable to assume substantial stability of the illuminated
scene. Moreover, one can notice that I did not fit any exponential model to both Rainforest
and Boreal forest classes. Such land cover classes completely decorrelate after a δt, shorter
than the minimum available revisit time of 4 days. Indeed, I recorded stable values of ρtot
around 0.2, independently from the considered δt and hamb. For this reason, an exponential
fitting of the temporal decay is not meaningful. The ρtemp fitting parameters for all the
available land cover classes, forests excluded, and the corresponding RMSE are summarized
in Table 12.

Table 12: ρvol(hamb), ρtemp(δt), and η(δt) fitting coefficients. Note that the ρ̂LT is reported
once since it is the same for both temporal decorrelation fittings.

Fitting coefficients and RMSE

ρvol(hamb) ρtemp(δt) η(δt)

Land Cover α̂ β̂ RMSE ρ̂LT τ̂ RMSE τ̂ RMSE

Soil and rocks 0.1 21.4173 0.0111 0.2007 103.9013 0.0125 93.4605 0.0132
Urban areas 0.28 45.0512 0.04 0.3429 8.2674 0.0661 7.7617 0.0826

Crops 0.1499 36.8656 0.0253 0.1658 12.6259 0.0779 12.4581 0.0781
Grasses 0.1461 100.01 0.0315 0.1656 5.3829 0.0326 4.8687 0.0521

Rainforest 0.6777 77.9722 0.0128 - - - - -
Boreal forest 0.5743 55.1436 0.0335 - - - - -
Snow and ice 0.3655 100.3 0.0054 0.1730 11.1726 0.0757 8.6408 0.1077
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3.4.5 Deep Learning semantic segmentation

In the following, I present the results obtained by using the methodology presented in 3.2.5.
The presented network takes as input the multi-temporal backscatter γ0, the incidence angle
θinc, the decorrelation constant τ , and the long-term coherence ρLT. The model is trained
over 20 epochs as depicted in Figure 39, which shows the evolution of training and validation
loss.

Figure 39: Training and validation loss evolution with increasing epoch number.

To assess the methodology performance, I compare with the same reference used for forest
mapping and introduced in Section 3.3.2. As a baseline algorithm, I select the RF one
presented in Section 3.2.3. Both models are trained under the same conditions, such as input
parameters and number of samples. The output map is a binary mask localizing forested
areas. I consider two test images 1000×1000 pixels large and assess the performance through
the overall accuracy and F1-score. Figure 40 and Figure 41 show the two test site.

From a first visual inspection, one can notice that the DL approach guarantees a much more
homogeneous map and reduces granular noise in the result. Still, some areas differ from the
reference for the RF classifier. Since both algorithms behave the same in those areas, it is
convincing that very probably, as already shown in Section 3.4.2 that the reference is not up
to date. Specifically, from Figure 40 related to test case 1, one can notice that the U-Net
allows for a much more stable behavior, especially in areas with varying topography (upper
part of the image), while preserving the edges of the non-forested areas. Similarly, test case
2 in Figure 41 shows that the U-Net can much better follow the forest contour.
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Figure 40: Comparison between the reference map (REF), the proposed U-Net model, and
the RF classifier for test case 1.

66 HI-FIVE: High-Resolution Forest Coverage with InSAR & Deforestation Surveillance



Figure 41: Comparison between the reference map (REF), the proposed U-Net model, and
the RF classifier for test case 2.
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These observations are further confirmed by the numerical results depicted in Table 13 and
Table 14. In all cases, the DL approach improves the overall accuracy and F1-score result.

Table 13: Overall accuracy (OA) and F1-score (F1) of the forest maps generated with the
RF and the proposed U-Net model for test case 1.

Metric RF U-Net

OA 93.04% 97.51%
F1 96.33% 98.73%

Table 14: Overall accuracy (OA) and F1-score (F1) of the forest maps generated with the
RF and the proposed U-Net model for test case 1.

Metric RF U-Net

OA 92.12% 94.73%
F1 93.63% 95.75%

By comparing these results with the one obtained with the methodology presented in Section
3.2.3, one can observe that the use of the U-Net brings improvements that are similar to the
one obtained by considering the texture parameters in the RF algorithm. This behavior can be
explained intuitively by highlighting that convolutional neural networks intrinsically perform
a spatial analysis by internally generating from low-level to high-level features extracted from
the input images. Therefore one can conclude that the use of DL approaches can be beneficial
for this purpose.
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4. Conclusions and recommendations
In the presented research project, I investigated methodologies to infer land cover and land
use classes from interferometric time series using novel ML approaches. The HI-FIVE project
- High-Resolution Forest Coverage with InSAR & Deforestation Surveillance - targeted forest
mapping and deforestation monitoring. Nevertheless, the research investigation has been
conducted in very general terms to classify different land cover/use classes. I focused on
exploiting the Sentinel-1 time series and, specifically, its interferometric capability. Likewise, I
had the opportunity to investigate different ML approaches, from the well-established Random
Forests classifier, to more recent DL approaches.

From the presented results, one can claim that repeat-pass InSAR is a precious tool for land
cover/land use classification. The proposed methodologies have been tested at different aims.
First, a general framework for land cover classification has been proposed and tested with
a dataset covering Europe. This investigation set the groundwork for adequately exploiting
coherence time-series at different temporal baselines. Secondly, this approach has been used
to map forested areas and applied to the Amazon rainforest test case. Additional features
have been considered to improve the classification, such as texture features. Eventually,
a framework for the monthly deforestation monitoring has been proposed and tested over
the Amazon rainforest, where the most intense deforestation phenomena currently occur.
The whole research investigation has been supplied with additional side-studies, such as the
analysis of temporal decorrelation at X band and the use of DL models to improve the end-
product spatial and temporal resolution.

Wrapping up the project findings, I can affirm that interferometric parameters are crucial for
land cover/use classification. It is especially true when a more significant number of inferred
classes is targeted. The exclusive use of the backscatter or the interferometric parameters for
land cover leads to similar overall performance. For the forests class, so as for the artificial
surfaces one, the interferometric parameters show better classification performance. Never-
theless, the use of the interferometric parameters τ̂ and ρ̂LT represents a piece of valuable
additional information with respect to the multi-temporal backscatter γ̂0. When applying
the algorithm to forest mapping, the use of backscatter spatial textures significantly improves
the correct discrimination between non-forested areas and artificial surfaces. The results ob-
tained over an area belonging to the Rondonia State, Brazil, achieved an overall accuracy
above 80%. The proposed forest mapping methodology has set the basis for developing an
operational framework for effectively monitoring forest changes at a monthly rate. This last
aspect is of great interest for developing an early-warning system, which could effectively
support the deputy authorities in identifying illegal deforestation hot-spots and, therefore,
protect the rainforest resources. By performing change detection between subsequent multi-
temporal stacks, the methodology developed in this project can monitor deforestation activity
on a monthly scale. The experiments reported in this paper confirm the high potential of
multi-temporal interferometric time series for forest mapping and deforestation monitoring.
Indeed, by systematically iterating the proposed processing chain, a change detection al-
gorithm can be applied by comparing the forest map results from subsequent multi-temporal
stacks. The newly provided result obtained by the presented change detection methodology
of Section 3.2.4 provides additional value to the already available change maps by improving
end-product accuracy and temporal resolution.

The research investigation pointed out possible sources of uncertainty coming from the three
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reference maps considered in the analysis and could be the object of future investigations:

• The FROM-GLC map is older than the exploited Sentinel-1 time series, causing a
mismatch due to temporal changes. Furthermore, this map is more sensitive to sparse
vegetation with respect to Sentinel-1, minimizing the areas covered by bare soil and
rocky surfaces.

• The PRODES map has a lower temporal and spatial resolution. New clear-cuts are
provided once per year. Due to possible human errors and a minimum mapping area of
6,25 hectares, the map accuracy is reduced.

• The S-2 NDVI map is impaired from cloud coverage, which is common in areas like the
Amazon rainforest. Therefore, it cannot guarantee temporal and spatial continuity.

I additionally performed side-investigations within this project. One of these is the analysis
of decorrelation phenomena at the X band by exploiting the TDM-PAZ constellation. I
separated volume and temporal decorrelation components for different land cover classes and
analyzed their behavior over five test sites. The proposed methodology has been proved by
exploiting all the TDM-PAZ time series that were available at the time of the analysis. The
results highlighted different behaviors at C and X bands. Indeed, no analysis on the forest
class is possible at X band, whose data reach the maximum decorrelation already after four
days. Differently, the behavior of other classes reflects the analysis findings on Sentinel-1 data.
Furthermore, the proposed work highlighted the importance of combined bistatic and repeat-
pass systems in view of future SAR constellations designed to monitor Earth’s dynamics. It is
worth mentioning that this kind of analysis on temporal decorrelation can be a valuable input
for missions design, e.g., selecting appropriate revisit time and assessing the interferometric
performance.

Eventually, DL approaches have been investigated. The Φ-Net has been beneficial to spatial
resolution for forest mapping purposes. An example of a coherence map has been provided.
This methodology can achieve an unprecedented trade-off between estimation accuracy and
resolution preservation. In addition to that, the temporal resolution has been further ad-
dressed with DL-based semantic segmentation. The U-Net model can be exploited to per-
form single coherence image classification and reduce deforestation monitoring to a 6 (or 12)
day scale. Though the investigation needs to be completed, the first obtained results using
temporal decorrelation parameters encourage and justify additional investigations.

Given the obtained results, my recommendations for future research concern the investigation
of similar methodologies to increase the number of input and output parameters and improve
the interferometric parameters’ estimation. The former may concern different input features,
such as polarimetric SAR (PolSAR) parameters and an increased number of inferred classes.
The latter may aim to improve the estimation of the temporal interferometric parameters after
temporal decorrelation retrieval in place of the already proposed least-square optimization
problem.

Additionally, one can find a way to consider seasonal variations by taking into account:

• monthly scale maps: needs to recognize the season to increase the robustness of the
algorithm;

70 HI-FIVE: High-Resolution Forest Coverage with InSAR & Deforestation Surveillance



• yearly scale mapping: seasonality can itself bring information about the class, e.g., it is
expected to observe a seasonal variability for non-forested areas with respect to artificial
surfaces classes.

Eventually, DL methodologies can be further developed. While the interferometric phase
and coherence estimation have already been largely investigated in this project, semantic
segmentation could still be improved. Indeed, it will be needed to assess the best classification
accuracy among input parameters, network model, and classification strategy. Alternatively,
one could use a DL approach to classify the single coherence map and generate forest maps
every six days or perform change detection by directly processing coherence time series.

HI-FIVE: High-Resolution Forest Coverage with InSAR & Deforestation Surveillance 71



5. Publications

Journal papers

1. Sica, F., Bretzke, S., Pulella, A., Bueso-Bello, J. L., Martone, M., Prats-Iraola, P.,
González-Bonilla, M. J., Schmitt, M., Rizzoli, P. (2020). InSAR decorrelation at X-band
from the joint TanDEM-X/PAZ constellation. IEEE Geoscience and Remote Sensing
Letters.

2. Pulella, A., Sica, F., Rizzoli, P. (2020). Monthly Deforestation Monitoring with
Sentinel-1 Multi-temporal Signatures and InSAR Coherences. Revista de Teledetección,
(56), 1-22.

3. Sica, F., Gobbi, G., Rizzoli, P., Bruzzone, L. (2020). Φ-Net: Deep Residual Learning for
InSAR Parameters Estimation. IEEE Transactions on Geoscience and Remote Sensing,
59(5), 3917-3941.

4. Pulella, A., Aragão Santos, R., Sica, F., Posovszky, P., Rizzoli, P. (2020). Multi-
temporal sentinel-1 backscatter and coherence for rainforest mapping. Remote Sensing,
12(5), 847.

5. Sica, F., Pulella, A., Nannini, M., Pinheiro, M., Rizzoli, P. (2019). Repeat-pass SAR
interferometry for land cover classification: A methodology using Sentinel-1 Short-Time-
Series. Remote Sensing of Environment, 232, 111277.

Selected conference papers

1. Bueso-Bello, J. L., Pulella, A., Sica, F., Rizzoli, P. (2021, July). Deep Learning for Map-
ping the Amazon Rainforest with TanDEM-X. In 2021 IEEE International Geoscience
and Remote Sensing Symposium IGARSS (pp. 1549-1552). IEEE

2. Pulella, A., Sica, F., Rizzoli, P. (2021, March). Amazon Rainforest Mapping using
Sentinel-1 Short Time Series. In EUSAR 2021; 13th European Conference on Synthetic
Aperture Radar (pp. 1-4). VDE.

3. Sica, F., Pulella, A., Rizzoli, P. (2019, July). Forest Classification and Deforestation
Mapping by Means of Sentinel-1 InSAR Stacks. In IGARSS 2019-2019 IEEE Interna-
tional Geoscience and Remote Sensing Symposium (pp. 2635-2638). IEEE.

4. Bueso Bello, J. L., Rizzoli, P., Sica, F. (2019). Estimating the Deforestation Rate
in the Amazon Rainforest from Sentinel-1 and TanDEM-X Multi-Temporal Stacks. In
International Geoscience and Remote Sensing Symposium (IGARSS). ESA.

72 HI-FIVE: High-Resolution Forest Coverage with InSAR & Deforestation Surveillance



6. Acknowledgments
In conclusion of this project report, I could not forget mentioning the people and institutions
that made the project possible in the first place and that actively contributed to its success.
It has been a long way, and I could carry out my work with enthusiasm thanks to the
support of ESA’s staff members. I am incredibly grateful to my ESA supervisor, Dr. Frank
Martin Seifert, who helped me steer my research investigation and facilitate contact with
Brazilian stakeholders interested in applying my findings to their case studies. I would also
like to thank Dr. Anca Anghelea and Dr. Diego Fernández Prieto for coordinating the
ESA Living Planet Fellowship’s activities, assisting with suggestions, and putting additional
resources at my disposal for the successful fulfillment of my research investigation. I want to
express my deepest thanks to Dr. Henri Laur, Dr. Pierre Potin, and Luca Martino for the
fruitful discussions about the Sentinel-1 acquisition scenarios and further planning of Sentinel-
1 acquisitions over the Amazon rainforest. I also wish to thank Maŕıa José González Bonilla
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