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1 EXECUTIVE SUMMARY 

As the extent of Arctic sea ice has declined at unprecedented speed over the past few 
decades, we have been able to view only limited snapshots of the ice cover’s thickness. 
Pan-Arctic observations of sea ice thickness have been obtained in recent years by 
satellite altimeters such as ICESat and CryoSat-2, but conventionally these data are 
only available during winter months. Standard approaches for processing radar 
altimeter observations cannot distinguish between the response from ocean water and 
meltwater pooling at the sea ice surface during summer.  Our current understanding 
of basin-scale sea ice melting patterns during summer are limited to poorly-
constrained ice-ocean model simulations, at a time when the ice cover is most 
dynamic, not to mention biological productivity and ice-ocean geochemical fluxes are 
most active. Moreover, advanced knowledge of ice conditions – thickness in particular 
– are critical for managing sustainable commercial enterprises, such as shipping and 
oil & gas extraction, in the northern polar seas. 
 
In “Arctic-SummIT” we have taken significant steps towards producing the first record 
of pan-Arctic summer sea ice thickness from CryoSat-2. We have tested multiple 
processing chains for classifying radar waveform data, de-noising observations, 
calculating sea ice freeboard, converting to thickness, and validating against reference 
ice thickness observations. Not all processing options have been successful and 
obtaining valid sea ice thickness data in the Arctic summer from CryoSat-2 remains a 
huge challenge. However, we have been able to implement a machine-learning 
classification algorithm, based on shallow and deep learning strategies, to separate 
CryoSat-2 echoes from leads and melt pond-covered sea ice. The algorithm has been 
trained and tested on Sentinel-1 and RADARSAT-2 imagery coinciding with CryoSat-
2 orbits, and produces classification accuracies of higher than 80%. We have found 
that it is critical to classify ‘noise’ waveforms during summer months too, with noisy 
observations removed by a chain of filtering algorithms. Sea ice freeboards are 
calculated for each valid lead estimate and reflect expected pan-Arctic spatial & 
temporal patterns. 
 
We find that CryoSat-2 sea ice freeboards obtained with our method can reproduce 
the seasonal evolution of ice melt at the Beaufort Gyre Exploration Program upward 
looking sonars (ULS) remarkably well, following a simple density conversion to 
estimate ice draft. However, CryoSat-2 estimates for sea ice thickness typically 
underestimate coincident airborne EM observations collected by AWI partners over 
the thickest Central Arctic sea ice. Numerical waveform modelling experiments 
indicate that CryoSat-2 radar freeboards should be expected to underestimate the true 
ice freeboard in summer, when the radar signal is tied to melt pond surfaces below the 
ice mean level. Whilst we have generated a sea ice freeboard product with 
uncertainties, further work is therefore required to develop a generalized bias 
correction for the ice freeboard-to-thickness conversion. Thereafter we will be in a 
position to evaluate year-round sea ice volume fluxes across key Arctic gateways for 
the period between 2011-2020. Our preliminary work on Arctic-SummIT has 
contributed to the funding of a large UK NERC grant: PRE-MELT (Preconditioning 
the trigger for rapid Arctic ice melt) with partners from UCL and NOC. 
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2 OBJECTIVES AND WORKPLAN 

The Arctic-SummIT project team is: 
• Jack Landy, University of Bristol, PI 
• Geoffrey Dawson, University of Bristol 
• Stephen Howell, Environment Canada 
• Alex Komarov, Environment Canada 
• Thomas Krumpen, AWI 
• Michel Tsamados, UCL 

 
Arctic-SummIT was organized by the following two work packages (WPs), addressing 
Priority Area A of the 2018 Living Planet Fellowship call. 
 
WP1 – A new Arctic summer sea ice thickness product from ESA Cryosat-
2 

Obj a. Develop an innovative algorithm for separating Cryosat-2 echoes from the 
ocean versus those from melt-pond covered sea ice and use this to derive sea 
ice freeboard 

Obj b. Validate the Cryosat-2 sea ice freeboard data against coincident airborne or 
upward-looking sonar ice freeboard/draft observations 

Obj c. Generate a new pan-Arctic summer sea ice thickness data product for July-
September over the full 2011-2018+ Cryosat-2 record 
 

WP2 – Sea ice volume fluxes for key Arctic gateways from ESA Sentinel-1 
and CSA RADARSAT-2 

Obj d. Integrate new sea ice volume estimates with ice drift obtained from 
sequential SAR imagery to monitor the seasonal mass balance of ice through 
important Arctic Ocean gateways 

 
Timeline: 
2018 Q4 Literature review, validation data acquisition, initial testing 
2019 Q1 Identify and classify Sentinel-1A&B, RADARSAT-2, Sentinel-2 imagery 
2019 Q2 Run, import and analyze GPOD CryoSat-2 L1B 20Hz & 80Hz data 
2019 Q3 Manual identification of training ice/ocean samples in imagery 
2019 Q4 Develop classification algorithms, estimate sea ice freeboards 
2020 Q1 Numerical waveform modelling to characterize freeboard biases 
2020 Q2 Test CS2 versus BGEP mooring data and AWI AEM data 
2020 Q3 Final product development and reporting 

 

3 WORK PERFORMED  

3.1 Scientific context 

 
Sea ice in the Arctic has declined at an unprecedented rate in recent decades (Stroeve, 
et al., 2012), affecting polar amplification of global warming trends (Serreze, et al., 
2009), changes in precipitation (Webster, et al., 2014) and Arctic Ocean freshwater 
content (Morison, et al., 2012), as well as mid-latitude weather patterns (Overland, et 
al., 2015). For instance, ice extent in January 2018 was the lowest ever recorded 
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(NSIDC, 2018). These changes have fostered growing stakeholder interest in the Arctic 
Ocean, particularly during summer and autumn months when open water area is 
greatest (Barnhart, et al., 2016), the sea ice is most dynamic (Kwok, et al., 2013) and 
ocean primary productivity (Arrigo, et al., 2012) and biogeochemical processes 
(Barber, et al., 2015), are most active. Accurate forecasts of summer sea ice conditions 
weeks to months in advance would revolutionize polar numerical weather prediction, 
open the possibility of commercial shipping and cruise ecotourism through the 
Northern Sea Routes, and improve planning of resource exploitation, fishing and 
hunting activities in the marginal ice zone (Guemas, et al., 2016). 

Our understanding of and ability to predict changes in the Arctic sea ice cover during 
summer are limited by the availability of remotely-sensed ice observations. Daily 
measurements of basin-wide sea ice concentration at 10-25 km resolution, obtained 
from passive microwave radiometers, have been assimilated into ice-ocean modelling 
systems such as PIOMAS (the Pan-Arctic Ice Ocean Modeling and Assimilation 
System) (Zhang & Rothrock, 2003). Assimilating ice concentration data has 
dramatically improved the accuracy of pan-Arctic ice extent predictions for spring and 
summer (Zhang, et al., 2008) and produced more realistic model distributions of 
winter ice thickness (Schweiger, et al., 2011). State-of-the-art forecasting systems for 
short-term sea ice conditions also demonstrate significantly improved fidelity when 
initialized from winter ice thickness maps (Chen, et al., 2017; Allard, et al., 2018) or 
sub-model grid ice thickness distributions (Schroeder, et al., 2017). Winter ice 
thickness observations have generally been derived from satellite laser altimetry 
(Kwok, et al., 2007), radar altimetry (Laxon, et al., 2013), or L-band radiometry 
(Kaleschke, et al., 2012).  

Despite these promising advances, prognostic models suffer from a complete lack of 
available ice thickness observations during the Arctic summer. For instance, (Allard, 
et al., 2018) obtained projections for ice thickness from the Arctic Cap 
Nowcast/Forecast System (ACNFS) more than twice as close to upward-looking sonar 
observations between October-April than between May-September, when initialized 
with winter Cryosat-2 data. (Chen, et al., 2017) demonstrated that improved ice extent 
forecasts from the NCEP Climate Forecast System, Version 2 (CFSv2), after 
assimilating winter Cryosat-2 ice thickness, deteriorated rapidly after approximately 
3 months. Using a set of idealized model experiments, (Day, et al., 2014) concluded 
that accurate knowledge of the sea ice thickness field is crucially important for monthly 
ice extent forecasts, especially in summer. 

ESA’s SMOS (Soil Moisture and Ocean Salinity) L-band passive microwave radiometer 
has proven quite successful for monitoring daily ice thickness at 12.5 km resolution 
within the Arctic marginal ice zone (Kaleschke, et al., 2012). SMOS ice thickness data 
have been compared with simulated ice thickness from the ECMWF Ocean Reanalysis 
System 5 (ORAS5), with a view to future data assimilation (Tietsche, et al., 2018). 
However, the SMOS ice thickness data has several limitations. Most importantly, the 
penetration depth of the sensor is limited to around 1 m, so that variations in 
brightness temperature above this limit cannot be related to the fundamental 
relationship between ice thickness and its emissivity (Tian-Kunze, et al., 2014). Winter 
ice observations are therefore limited to a maximum thickness of around 1 m, although 
the penetration depth declines rapidly as a function of bulk ice temperature (Tian-
Kunze, et al., 2014), so critically these data are unavailable between April and October. 
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Radar altimeters do not suffer from this same limitation and the most advanced 
altimeter to date – Cryosat-2 – employs a synthetic aperture radar capable of 
measuring centimeter-scale variations in sea ice elevation within kilometer-scale 
footprints on the ground. Cryosat-2 utilizes delay-Doppler processing to narrow the 
footprint along-track to only around 300 m and, by taking multiple ‘looks’ at the 
surface from a range of angles, reduces speckle interference to enhance measurement 
precision (Wingham, et al., 2006). Sea ice thickness can be estimated from altimeter 
observations of the ice freeboard (the portion above sea level) during winter, along 
with parameterizations for snow & sea ice density and snow depth, using the 
hydrostatic equation. The ice freeboard is obtained by ‘retracking’ each altimeter echo 
to identify the mean sea ice or ocean surface scattering the radar pulse, then 
subtracting ocean tie-points (i.e. leads) from neighboring sea ice samples (Laxon, et 
al., 2013). Consequently, accurate separation of radar echoes from leads versus sea ice 
is a crucial step in the ice thickness processing chain. State-of-the-art classification 
techniques are based on discriminating between the geometrical shape of the echoes 
e.g. (Kurtz, et al., 2014; Ricker, et al., 2014; Landy, et al., 2017). For instance, the 
‘width’ or standard deviation of a multilooked waveform stack should be lower from a 
lead, which is close to a specular reflector for the Ku-band radar around nadir, than 
from sea ice (Kwok & Cunningham, 2015). The 300-m pulse-Doppler-limited footprint 
along the track of the satellite increases the probability of a pure reflection from a thin 
lead, rather than from a mix of ice and ocean (Armitage & Davidson, 2013); providing 
acceptably reliable freeboard observations. This method has been used by several 
groups to develop pan-Arctic 5-km maps of sea ice thickness for every winter of the 
Cryosat-2 record: 2011-2017 (Ricker, et al., 2014; Tilling, et al., 2016). 

 
 
Figure 1 | a. Series of Cryosat-2 SAR echoes, in raw linear uncalibrated power [watts], acquired over 
sea ice in the Chukchi Sea on 15th July 2017. Echoes with 𝜎𝜎0 (i.e. calibrated backscattered power) below 
a defined threshold are classified as leads and highlighted in red | b. Cryosat-2 footprints (black boxes) 
along the track of the satellite, with data points at footprint centres illustrating the sea ice freeboard, 
overlaid on a coincident Sentinel-1b HH-polarized SAR image. Both the Cryosat-2 𝜎𝜎0 and surface 
elevation are clearly lower over leads (dark areas) in the Sentinel-1b image. | c. Summer sea ice 

(a) 

(b) 

(c) 
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freeboard derived from the Cryosat-2 echoes in a & b, using the new classification scheme and following 
the technique of (Landy, et al., 2017). 
 
Nevertheless, these conventional techniques cannot reliably be used to separate ice 
from leads during the Arctic summer. At the onset of summer, snow meltwater pools 
at the surface of sea ice floes (Landy, et al., 2015), forming melt ponds which lead to 
strong specular scattering of the radar, just as the leads do (Scharien, et al., 2014). 
Note, for instance, that most of the echoes from melting sea ice in Figure 1a are 
sharply-peaked. In our previous example, the standard deviation of the multilooked 
waveform stack would be low (and indistinguishable) for both leads and melt pond-
covered sea ice. It is equally difficult to contrast other geometrical characteristics of 
ice and lead waveforms, including the commonly-used ‘pulse-peakiness’ parameter 
(Kurtz, et al., 2014). Cryosat-2 data have been acquired in SAR and (interferometric) 
SARIn modes over the Arctic and surrounding oceans during summer months over 
the entire lifetime of the satellite; but conventional approaches have not yet enabled 
the data to be converted to ice thickness. 

One particularly valuable use of sea ice thickness data would be to quantify the volume 
flux of ice through important Arctic waterways. Aside from thermodynamic 
contributions (summer melt and winter growth rates), dynamic fluxes of sea ice 
through the Fram, Nares and Bering Straits regulate total ice mass balance for the 
Arctic Ocean. Past studies have calculated the area flux of sea ice through these 
gateways by integrating remotely sensed observations of ice concentration and drift 
(Kwok, et al., 2004; Howell, et al., 2013), discovering significant interannual 
variations in ice exchange driven primarily by decadal oscillations in climate, such as 
the NAO index. However, ice area fluxes do not offer the complete picture – because a 
year with high area export, but of thin first-year sea ice, may not directly lead to a fall 
in annual Arctic ice mass balance. Estimates for the winter Fram Strait ice volume flux 
have been made using airborne electromagnetic (AEM) induction surveys of ice 
thickness (Krumpen, et al., 2016), but these surveys do not offer anywhere close to the 
spatiotemporal data coverage of altimetry. Thus, altimeter missions such as Cryosat-
2 offer the potential for characterizing long-term interannual sea ice volume export 
with an unprecedented degree of confidence. 

3.2 Methods 

The Synthetic Aperture Interferometric Radar Altimeter (SIRAL) of Cryosat-2 
operates at Ku-band, with a central frequency of 13.6 GHz (Wingham, et al., 2006). In 
theory, at incidence angles close to nadir an electromagnetic wave at this frequency 
should penetrate the snowpack on sea ice and be scattered by the snow-ice interface 
(Kwok, 2014). However, there is considerable uncertainty in the sensitivity of Ku-band 
scattering mechanisms to snowpack properties (i.e. temperature, salinity and density) 
e.g. (Nandan, et al., 2017), so that it is not clear where the mean scattering surface is 
located within snow-covered sea ice. A significant advantage of sensing sea ice in 
summer with SIRAL is that, without snow, we can expect the mean scattering surface 
to always be located at the sea ice surface. The penetration depth of Ku-band into warm 
(>-5 °C) first-year sea ice is less than 2 cm and sub-millimeter into fresh melt pond 
water (Hallikainen & Winebrenner, 1992). This provides the physical basis for Ku-
band altimeter measurements of sea ice freeboard in summer – we expect the radar 
echoes to scatter from the surfaces of sea ice, melt ponds and/or ocean water. So, ice 
freeboard can theoretically be detected, as long as echoes from the ice and ocean 
surfaces can be distinguished. 
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In winter, sea ice and lead returns can be effectively separated through variations in 
the geometrical properties of waveforms, such as the stack standard deviation and 
pulse peakiness, as described above. The theoretical model for an altimeter echo is 
expressed as a double-convolution of the radar transmit pulse, surface height 
probability density function (PDF), and the ‘rough surface’ impulse response 
(Wingham, et al., 2018). Therefore, multilooked SAR echoes from rougher surfaces are 
wider (less ‘peaky’) because the backscattered signal is a product of scattering from a 
range of elevations and incidence angles, covering a larger portion of the effective 
altimeter footprint (Galin, et al., 2013). The echo from a flat dielectric surface is 
sharply peaked because most of the backscattered signal comes from a small area 
around nadir, at the very center of the footprint. Sea ice is relatively rough in 
comparison to a lead, so appears like the former (Kurtz, et al., 2014). However, during 
summer, meltwater at the sea ice surface modifies the impulse response of the ice, 
enhancing the backscattered signal from nadir and producing a quasi-specular return 
comparable to a lead. A series of these peaked echoes from melt pond-covered sea ice 
are illustrated in blue in Figure 1a.  

Our approach in Arctic-SummIT was to investigate the possibility of a machine 
learning algorithm, or set of algorithms, performing the classification to separate 
radar echoes from melt pond covered sea ice and leads. Echoes from leads evidently 
have different backscattering properties to those from melting sea ice (Figure 1a); 
however, the specific characteristics of these waveform shape differences was found to 
vary between regions, ice concentrations and different parts of the summer melting 
season. Provided with the correct, representative training data, a machine learning 
approach could learn these variable waveform parameter differences. The first major 
task of the project was to identify high-resolution imagery from independent satellites, 
coinciding with CryoSat-2 orbits, from which we could obtain sea ice and lead samples 
for training and testing the classifier. A set of 550 RADARSAT-2 SAR images were 
provided by project partners from Environment Canada. Additional SAR imagery was 
obtained from Sentinel-1A&B and optical imagery from Sentinel-2 and Landsat-8. 
Following the launch of Sentinel-1B, we identified around 100 images per month with 
some spatial overlap with CryoSat-2 orbits and coinciding within 15 minutes to 
account for ice drift (below). Usually only around 20 of these provided a full image 
overlap. 

Sensor Coincident Images per Month 

Sentinel-1A/B ~90 

Sentinel-2 ~5 

Landsat-8 ~7 

RADARSAT-2 ~7 
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CryoSat-2 observations were acquired from the ESA GPOD SARvatore altimetric 
toolbox service. Most of the observations used were from 2011-2019 pan-Arctic SAR 
and SARIn processing jobs, now stored on the SARvatore data repository (see Data 
section). These datasets contained CryoSat-2 waveforms processed to Level 1B, 
including the surface elevation estimated from a semi-analytical echo model fit to 
radar waveforms and the range integrated power (RIP), both unavailable in the ESA 
official CryoSat-2 L1B product. The SARvatore processor fits the SAMOSA+ waveform 
model to observed echoes (Dinardo, et al., 2018), retracking the timing of the window 
delay based on the theoretical epoch (mean elevation of the target sea ice surface). 
SAMOSA+ has been shown to produce good estimates for the range to and thus surface 
elevation of sea ice targets, as well as coastal waters and inland waters (Dinardo, et al., 
2018). The RIP is the delay-Doppler radar map summed in the orthogonal direction 
and acts as an additional waveform parameter for interpreting the echoes. We 
developed another radar altimeter waveform model over the course of the grant 
(Landy, et al., 2019), the so-called facet-based echo model (Matlab code available 
https://github.com/jclandy/FBEM), which has been applied to winter CryoSat-2 
waveform observations over the Arctic (Landy, et al., 2020). Examples for the fits of 
FBEM model solutions to L1B CryoSat-2 echoes are shown in Figure X, in a similar 
process to SARvatore. However, after testing the application of FBEM to CryoSat-2 
data in summer we decided – both for ease of use and time – to use the dataset already 
available on the GPOD repository. We additionally ran 15-20 of our custom jobs on 
SARvatore at the higher 80 Hz posting rate, compared to the normal 20 Hz posting, 
to assess whether the higher ~80 m along-track resolution might better discriminate 
thin leads in the ice pack. 
 

 

Figure 2. | a. Theoretical radar altimeter echo modelled from FBEM fit to a L1B CryoSat-2 SAR 
waveform backscattered from winter sea ice. b. theoretical echo fit to a lead waveform. Inset values are 
the waveform amplitude, epoch, surface roughness, and mean square slope optimized from the 
theoretical model fit to the waveform (Landy, et al., 2020). 

CryoSat-2 samples along the satellite orbit were aligned to coinciding SAR or optical 
satellite imagery with a custom-built Matlab GUI (designed by G. Dawson). This GUI 
shows the radar waveform and RIP for a chosen sample along track, and the local Ku-
band backscattering coefficient 𝜎𝜎0 and elevation (from SAMOSA+ retracking) for a 5 
km window around the sample (Fig. 3). More than 100 lead samples were identified 
where the waveform parameters for a given sample showed strong deviations from 

https://github.com/jclandy/FBEM
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their neighbors and a lead could be confirmed in the satellite image. Figure 3 
illustrates a valid lead sample manually identified from the training imagery. Sea ice 
samples were identified where there was no evidence for a lead or other speckle feature 
in the coinciding imagery. We manually selected >100 lead samples and >200 sea ice 
samples in this manner. Following early experiments, we discovered that the CryoSat-
2 elevation and 𝜎𝜎0 observations over melting sea ice exhibited significant noise 
(incoherent variability). Noisy samples were particularly evident around valid leads 
(e.g. Fig. 3), possibly because the radar footprint covers multiple surface types in these 
regions or more easily ‘snags’ onto off-nadir specular features like leads. It is 
important for the machine learning algorithm to include a noise category if 
significantly different from retrievable classes like sea ice or leads, so we further 
identified >300 random ‘noise’ samples from the training imagery. 

 

Figure 3 | Simple GUI to generate sea ice, lead and noise training samples for the waveform 
classification. The Sentinel-1 SAR image footprint and CryoSat-2 orbit are shown in the upper map. 
Waveform parameters and local observations are shown to the right. The manually selected ‘lead’ 
sample is highlighted in red. 

General patterns from the manually identified training samples are shown in Figure 
4, where local variations in RIP, pulse peakiness, 𝜎𝜎0 and elevation are normalized and 
centered on the sample. Lead samples exhibit clear oscillations in the 1st derivative for 
parameters around the lead. Sea ice samples exhibit no obvious change in the 1st 
derivative but evidently stable local windows in 𝜎𝜎0 and elevation. Noise samples 
exhibit random distributions in all local parameters. We use the absolute values for all 
these parameters as the basis for our machine learning classification, but also the 
distributions in parameters within a hierarchy of window sizes around the sample too. 
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Figure 4 | Local variations in select waveform parameters within 4 km windows around the manually 
identified training samples. RP = range integrated power, PP = pulse peakiness, Sig0 = backscattering 
coefficient, SSH = elevation from SAMOSA+ retracking. 

We have tested many different options for classifying the CryoSat-2 samples into sea 
ice , lead and noise classes; however, we report on two chosen strategies: one shallow 
and one deep learning algorithm. For the shallow learning algorithm we used SciKit, 
a common Python based classification toolbox https://scikit-learn.org/stable/. We 
employed a decision tree algorithm because it is simple, easy to track the algorithm 
decisions about specific parameters, and offers estimates for the final ‘importance’ of 
different training features. We used twelve parameters from the short spatial series 
shown in Figure 4. Parameters for tree building are defined by running model 
iteratively and testing output stability, with the GINI index providing a measure of the 
‘purity’ of a final class output. An 80-20% split was used to separate between samples 
for training and testing the model, respectively.  

For the deep learning algorithm we used a 1D convolution neural network (CNN), from 
the KERAS + TensorFlow software https://keras.io/. This algorithm takes in short 1D 
spatial series of data which, in our case, are the local windows of parameters around 
training samples (Fig. 5). The CNN uses multiple layers with different feature 
detectors/filters with different kernel sizes to identify simple or more complex 
patterns in the input data. Pooling layers extract the main features, containing the 
majority of the signal, and discard redundant features – thereby preventing 
overfitting. The 1D CNN produces a PDF of classification uncertainty over the output 
feature classes. In the schematic example in Figure 5, the CNN identifies >1000 useful 
parameters from the input spatial data series from which to classify the CryoSat-2 
samples. The same 80-20% split was used between training and testing. 

The final accuracies of each classification algorithm was 70% for the decision tree and 
81% for the 1D CNN, between all three categories: melting sea ice, lead and noise. This 
represents a significantly better capability for classifying the samples than random 
chance (i.e., 33%). The accuracies are lower than strict parameter-based machine 
classifiers for separating winter sea ice samples from leads (Lee, et al., 2016), which 
produce accuracies of 90+%. However, our summer sea ice classifier is comparable in 

https://scikit-learn.org/stable/
https://keras.io/
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accuracy to less conservative winter classifiers which provide a more realistic number 
of leads for the ice concentration but more commission errors (Lee, et al., 2016). We 
hereafter show results using the 1D CNN classifier applied to the full CryoSat-2 
dataset, including zones outside our training areas. 

 

Figure 5 | Schematic diagram of the typical 1D CNN workflow. TensorFlow takes in the raw CryoSat-
2 spatial series themselves as input (rather than derived parameters or subset windows). Multiple layers 
have different purpose: to identify patterns, pool features and prevent overfitting. 

Given that CryoSat-2 samples are classified as ‘noise’ up to 60% of the time over 
summer sea ice, we could not derive sea ice radar freeboards in the conventional way 
(i.e., interpolating the sea level between local lead samples along track). We filter out 
all samples classified as noise and apply further filters to remove clearly erroneous sea 
ice samples. We then fit a robust polynomial function to all ‘sea ice’ samples within an 
8-km window around each ‘lead’ sample. Radar freeboard is then obtained from the 
difference between fitted sea ice elevation and the lead elevation. This process helps 
to smooth out the universal along-track variability and speckle apparent in the 
summer elevation observations. Radar freeboards are interpolated onto both 80 km 
and 160 km pan-Arctic grids using an inverse-distance weighting algorithm, weighted 
by sample distance and time to the grid cell. We use the rmse of polynomial sea ice fits 
and lead classification uncertainties to obtain a preliminary estimate for the overall 
uncertainty of the grid cell radar freeboard. 
 
CryoSat-2 L1B observations from SARvatore at an 80 Hz posting rate were used to 
assess possible biases in lead elevations in the 20 Hz observations (see results). SARIn 
observations at 20 Hz were also used to test the off-nadir distance of the first phase 
coherent target over melt-pond covered sea ice, applying the approach of (Armitage & 
Davidson, 2013), so we could evaluate the reliability of elevation estimates. If the radar 
is continuously snagged to the nearest coherent melt pond target, at different distances 
from the nadir point for consecutive along track samples, this would introduce a strong 
(but random) ranging error. However, we found the 1 sigma off-nadir ranging distance 
was within 100 m for a number of tested orbits over sea ice within the ‘Wingham Box’. 
 

3.3 Data 

 
The following datasets were used in Arctic-SummIT to train & test the classification 
algorithm, calculate sea ice freeboards, filter valid freeboards and analyze results: 
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• CryoSat-2 L1B SAR mode 20 Hz waveform observations from the GPOD SARvatore 
processor, available from the repository 
ftp://repository:RSS_service@eogrid.esrin.esa.int/0045 

• CryoSat-2 L1B SARIn mode 20 Hz waveform observations from the GPOD 
SARINvatore processor, available from the repository 
ftp://repository:RSS_service@eogrid.esrin.esa.int/0046  

• Custom processed L1B SAR and SARIn mode 80 Hz waveform observations from 
the GPOD SARvatore altimetric toolkit, 15-20 orbits, here https://gpod.eo.esa.int/  

• 500+ Sentinel-1A&B images L2 GRD from https://scihub.copernicus.eu/  
• 100+ Sentinel-2 images L2 from https://scihub.copernicus.eu/  
• 550 RADARSAT-2 images L2 GRD project partners at Environment Canada (Steve 

Howell and Alex Komarov). Authorization provided by the data supplier: Macdonald, 
Dettwiler and Associates (MDA) to use this set of imagery in our project. Not 
available publicly. 

• OSI-401-b: SSMIS Sea Ice Concentration Maps on 10 km Polar Stereographic Grid, 
freely available at http://osisaf.met.no/p/ice/  

• OSI-403-c: Sea Ice Type Maps on 10 km Polar Stereographic Grid, freely available at 
http://osisaf.met.no/p/ice/  

• Beaufort Gyre Exploration Project (BGEP) upward looking sonar observations 
mooring A, B, and D, available here https://www.whoi.edu/page.do?pid=160656  

 

3.4 Results 

 
Owing to the high noise floor in the summer elevation data and the need to accumulate 
a lot of data to get good results, with our current approach we’re limited to a best 
resolution of around 80 km. Grids based on one month of freeboard samples at 80 km 
generally still contain regions of missing data, particularly in May, June and July when 
the sea ice floes are expected to have highest melt pond coverage and be at their most 
specular (i.e., similar to leads) (Kwok, et al., 2018). In these missing regions there are 
insufficient leads classified to obtain valid freeboards. 
 

 

 
 
Figure 6 | Climatology of 80-km gridded radar freeboards [m] 2011-2019, including one month of 
data, at bi-weekly intervals. The April and October mean radar freeboard grids which bookend our new 
dataset are from the LARM processing chain of (Landy, et al., 2020). 
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Figure 6 illustrates the climatology of 80-km radar freeboards for all years between 
2011 and 2019. We have included mean radar freeboard maps for the months of April 
and October, i.e. the two cold season maps that bookend our new summer freeboard 
dataset, derived from the application of the FBEM physical echo model to CryoSat-2 
observations (Landy, et al., 2019). The processing chain to obtain this Oct-April 
dataset for 2010-2019 is described in (Landy, et al., 2020) and the dataset itself is 
available here: Arctic sea ice and physical oceanography derived from CryoSat-2 
Baseline-C Level 1b waveform observations, Oct-Apr 2010-2018 
https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01257b (Funding 
acknowledged from ESA Living Planet Fellowship Arctic-SummIT grant 
ESA/4000125582/18/I-NS and NERC Project PRE-MELT grant NE/T000546/1). 
The summer radar freeboard patterns in Figure 6 appear quite realistic when 
compared with the (conventionally processed) April and October thickness fields. The 
early May and late September fields appear almost identical to the April and October 
means. There is a clear pattern of ice melting and ice edge retreat throughout June, 
July and August, before ice thickening begins again in mid-September. 
 

 

 
 
Figure 7 | Climatology of 160-km gridded radar freeboards [m] 2011-2019, including two weeks of 
data, at weekly intervals. The April and October mean radar freeboard grids which bookend our new 
dataset are from the LARM processing chain of (Landy, et al., 2020). 
 
Because the majority of sea ice in summer is clustered around the pole, where the 
CryoSat-2 orbits converge, we can reduce the spatial resolution of the grid to 160 km 
and obtain approximately weekly freeboard fields (Fig. 7). These highlight changing 
snowpack properties from April into May, with an apparently rapid increase in 
freeboards in the Beaufort Sea and Eastern Arctic by the end of May. As the snow gets 
warmer and wetter following melt onset in the Arctic, the Ku-band CryoSat-2 radar 
will be prevented from penetrating into the snow. So, the May radar freeboards appear 
to show approximately total snow plus sea ice freeboards, rather than sea ice 
thickening (which is unrealistic). The freeboards start to decline in late-May/early 

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01257b


Living Planet Fellowship 
 
June, before thinning significantly between June and mid-August. There is sea ice 
thinning and then total loss and ice edge retreat through August, for example in the 
Beaufort and Chukchi Seas (Fig. 7). Some ice thickening is clear over the remaining 
Central Arctic ice pack during September. 
 
To assess the validity of these new freeboard observations, we converted freeboards to 
estimates for the sea ice draft by applying a simple constant density conversion for all 
summer grids. Woods Hole Oceanographic Institute have deployed underwater 
moorings in the Beaufort Sea for many years, with upward looking sonars that can 
measure the ice draft (the portion of the ice floating below sea level). So, we compared 
ice drafts estimated from our CryoSat-2 data to the time-series of drafts measured at 
the mooring locations. In Figure 8, we show the Beaufort Gyre Exploration Program 
(BGEP) Mooring A, including our satellite data from winter months (black points) 
(Landy, et al., 2020) and the new data from summer months (red points). The data 
match quite closely, capturing most of the full sea ice freeze-up and melting seasons. 
It is encouraging that the crossover time periods between datasets from the ‘cold’ and 
‘warm’ periods match up well. For instance, the high summer ice year of 2013 and low 
years of 2012 and 2016. However, there does appear to be some underestimation of 
total draft at the start of summer (May) reflecting the fact we haven’t corrected for a 
snow load in any of the summer months, including May. 
 

 
Figure 8 | Sea ice draft measured at the upward looking sonar on BGEP Mooring A (blue line), with a 
31-day moving average applied (solid blue line). Coinciding satellite ice drafts measured by CryoSat-2 
in winter months Oct-Apr (black points) and summer months May-Sept (red points). 
 
The comparison to airborne sea ice thickness data from the AWI “IceBird” Program 
(courtesy of Dr. Thomas Krumpen), for Arctic-SummIT Objective C, is not as 
encouraging. We have compared four years of IceBird sea ice campaigns in August-
September, 2011, 2016, 2017 and 2018, to the CryoSat-2 freeboard estimates. An ice 
density of 916 kg/m3 was used to convert radar freeboards to ice thickness. We have 
found that CryoSat-2 ice thickness underestimates the airborne electromagnetic 
induction (AEM) sensor in all flight campaigns (Fig. 9). Over the marginal sea ice 
sampled in 2011, CryoSat-2 underestimates the AEM by 40-50 cm. Over the Central 
Arctic pack ice (the thickest sea ice in the Arctic) in 2016-2018, it underestimates the 
ice thickness by around 100 cm. A significant part of our research that was not 
anticipated at the proposal stage has therefore involved examining why this is the case. 
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Figure 9 | a. Sea ice campaigns flown by the AWI “IceBird” Program, in 2011 (red), 2016 (black), 2017 
(green), and 2018 (blue). B. Histograms of the difference between CryoSat-2 estimated sea ice thickness 
and AEM thickness [m] (CS2 minus AEM). 
 
We have identified five possible sources for this ice thickness bias. One source may 
dominate, or multiple sources could be acting together. 
 
1. The range to the sea surface is underestimated at leads, with the radar sensitive 

to specular scatterers covering just 1% of the sensor footprint (Kwok, et al., 
2018). If a CryoSat-2 return classified as a lead comprises reflections from melt 
ponds closer to the nadir point than a lead, or mixed classes within the pulse-
limited footprint (~320 x 1500 m), the retrieved lead elevation could be biased 
high. This is supported by analysis of sea surface height (SSH) observations 
from leads between 80 and 20 Hz posted data (i.e., 80 vs 320 m along-track 
resolution) for the same tracks. The SSH at 20 Hz is above the SSH at 80 Hz, 
with a median difference of 5 mm (Fig. 10). So, the range from the altimeter to 
the sea surface is slightly underestimated at the coarser resolution. This would 
constitute an order 5 cm bias in thickness. 

 

 
Figure 10 | Sea surface height retracked by SAMOSA+ at leads for 20 Hz versus 80 Hz posted along-
track observations. The median difference is 5 mm, so leads are not as well resolved at the coarser 20 
Hz footprint, suggesting interference from ice floes/ponds within the footprint. 
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2. There are some evident differences between the SSH measurements from the 

GPOD L0 > L1B processor and the official ESA L1B product for CryoSat-2. We 
have applied a peak retracker to waveforms reliably classified as leads in winter 
months, for identical tracks from the GPOD L1B archive and ESA L1B archive 
(with the GPOD tracks processed with an identical chain to the official product). 
The ESA SSH estimates are on average 7 mm lower than the GPOD SSH 
estimates, simply from the different L0 > L1B processing chains. This would 
constitute an order 7 cm underestimation in ice thickness. 

 
3. The effective density of sea ice floes in Arctic summer months could be much 

higher than 860-910 kg/m3, i.e. the range of densities used for multi-year to 
first-year sea ice types in winter months (Alexandrov, et al., 2010). If sea ice 
floes in summer are completely permeable, then air pockets will be filled with 
ocean water. Thus, the actual density of the liquid filled sea ice below sea level 
might be much higher than expected. Using an ice density of >930 kg/m3 
produces satellite -derived ice thickness estimates more comparable to the 
airborne observations. 
 

4. If there is a residual snow load on the sea ice or melt pond water accumulated 
on the ice above sea level, we would need to account for this in the hydrostatic 
conversion from ice freeboard up to thickness. The following equation has been 
derived for converting freeboard to thickness in the presence of surface 
meltwater load above sea level: 

ℎ𝑠𝑠𝑠𝑠 = �
𝜌𝜌𝑠𝑠𝑠𝑠

𝜌𝜌𝑠𝑠𝑠𝑠 − 𝜌𝜌𝑠𝑠𝑠𝑠
� �ℎ𝑓𝑓 + 𝜀𝜀� − �

𝜌𝜌𝑠𝑠𝑠𝑠 − 𝜌𝜌𝑝𝑝𝑠𝑠
𝜌𝜌𝑠𝑠𝑠𝑠 − 𝜌𝜌𝑠𝑠𝑠𝑠

� 𝑓𝑓𝑝𝑝ℎ𝑝𝑝  

 Where 𝜌𝜌𝑠𝑠𝑠𝑠 and 𝜌𝜌𝑠𝑠𝑠𝑠 are the densities of seawater and sea ice, respectively, 𝑓𝑓𝑝𝑝 is 
the surface melt pond fraction, 𝜌𝜌𝑝𝑝𝑠𝑠 is the density of pond water and ℎ𝑝𝑝 is the 
pond depth. We can safely assume that 𝜌𝜌𝑠𝑠𝑠𝑠 = 1024 kg m-3 e.g. (Ricker, et al., 
2014) and 𝜌𝜌𝑝𝑝𝑠𝑠 = 1000 kg m-3. This equation demonstrates that the sensitivity 
of estimated ice thickness to exaggerated variations in pond fraction (0-100%) 
and depth (0-50 cm), calculated from Equation 2, is relatively low. For instance, 
we can expect uncertainty <10% when ice freeboard is greater than 0.1 m. 

 
5. Possibly the most influential bias might be that melt ponds affect the principal 

scattering horizon of the CryoSat-2 Ku-band radar. For a diffusely scattering 
sea ice surface in winter months, the radar waveform integrates a backscattered 
return from sea ice across the pulse-limited footprint – sampling the full height 
distribution of the ice over this footprint. The theoretical radar retracking point, 
for instance obtained by fitting SAMOSA+ to waveforms, should accurately 
identify the mean level of the sea ice surface. This is crucial for estimating the 
ice freeboard, because any systematic deviation of the principal scattering 
horizon away from the mean ice level would introduce a bias. (This idea is well 
documented in ocean altimetry as the so-called electromagnetic (EM) bias). 
Ponds on the sea ice surface in summer months will produce coherent 
reflections that dominate the radar waveform, which is why the majority of sea 
ice echoes are specular (have high pulse peakiness) (Kwok, et al., 2018). The 
waveform peak is referenced to the surface of reflecting ponds, so if these pond 
surfaces lie below the mean ice level a positive bias will be added to the range 
measurement over sea ice. 
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We have completed a set of numerical experiments with the FBEM waveform model 
(Landy, et al., 2019) to quantify this final bias, before potentially accounting for it in 
the conversion from ice freeboard to thickness. We have added random distributions 
of melt ponds, with a range of coverage, to sea ice surfaces with a range of surface 
roughness (Fig. 11). Dielectric properties for the melting sea ice and ponds have been 
obtained from the literature (Scharien, et al., 2014). Our simulations demonstrate that 
increasing the melt pond coverage at the ice surface produces increasingly specular 
peaky echoes (Fig. 11a) because the ponds start to dominate the radar return. If the sea 
ice surface is rougher, the mean pond surface height will lie at an increasingly low level 
with respect to the mean ice level – leading to a higher freeboard bias (Fig. 11b). We 
can therefore expect rougher multi-year sea ice in the Central Arctic, with lower 
surface pond coverage than smoother first-year ice in the marginal Arctic (Landy, et 
al., 2015), to produce a higher freeboard bias of up to 15 cm (Fig. 11b). The likely range 
of the freeboard bias would constitute an underestimation in CryoSat-2 summer sea 
ice thickness of 20-150 cm. 
 

 
Figure 11 | a. Numerical simulations of the backscattered radar echo from melting sea ice, with a 
roughness standard deviation of 20 cm, and surface melt pond coverage of 0, 20 and 50%. B. The 
estimated sea ice freeboard bias caused by melt pond surfaces sitting at a different height to the mean 
ice surface level, within the radar footprint 
 
In our ongoing work, we are attempting to use sea ice roughness observations (Landy, 
et al., 2020), coinciding measurements of the sea ice melt pond fraction 
(https://seaice.uni-bremen.de/melt-ponds/) and these simulation results to produce 
pan-Arctic corrections for the measured CryoSat-2 radar freeboard. These corrections 
will be applied to the freeboards before converting to ice thickness and re-validated 
against the available AEM thickness data from AWI (Fig. 9). Once these corrections 
have been developed, we will disseminate Version 1 of the CryoSat-2 sea ice thickness 
product including uncertainties, to the BAS Polar Data Centre. 
 
We have not yet been able to confront Objective D of Arctic-SummIT, requiring the 
sea ice thickness product to be finalized before integrating with ice drift to obtain 
volume fluxes. Our partners at EC have produced a weekly sea ice motion product from 
RADARSAT-2 and Sentinel-1A&B, available since 2016 (Howell, et al., 2018), which 
we will use to study sea ice volume fluxes across Nares Strait, Fram Strait, and Bering 
Strait. We will use the combined winter and summer sea ice thickness data (Fig. 8) to 
estimate several full years of volume fluxes across the key Arctic gateways.  
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4 CONCLUSIONS AND RECOMMENDATIONS 

Arctic-SummIT has confirmed that to obtain valid Arctic sea ice thickness data in 
summer from CryoSat-2 is a huge challenge! However, in spite of the challenges, we 
have made several major steps here towards achieving this goal. We have developed 
several machine learning classification algorithms, with shallow and deep learning 
strategies, for separating CryoSat-2 echoes from leads and melt pond-covered sea ice. 
The algorithms have been trained on and tested against a set of hundreds of coincident 
satellite images from Sentinel-1A&B, RADARSAT-2, Sentinel-2, and Landsat-8. We 
obtain classification accuracies up to 81% for the deep learning algorithm versus 
independent testing samples, which are not far short of the accuracies of classical 
waveform-parameter based threshold classifiers applied to cold season altimeter 
observations. 
 
Sea ice radar freeboards derived from the CryoSat-2 sea ice and lead echoes reflect 
expected spatial and temporal patterns in summer melt evolution. Gridded radar 
freeboard fields are produced at 80-km resolution on biweekly timescales and 160-km 
resolution on weekly timescales. The Ku-band radar scattering horizon becomes 
elevated as the snowpack begins to melt in May, producing thicker than expected radar 
freeboards. Sea ice thins between June and August, with clear thinning before ice edge 
retreat in the marginal Arctic seas. Sea ice begins to thicken in the Central Arctic from 
mid-September. Comparisons with sea ice draft observations from the in situ ULS at 
BGEP moorings demonstrate that CryoSat-2 can capture the full annual ice evolution 
in the Beaufort Sea. However, CryoSat-2 estimates for sea ice thickness typically 
underestimate coincident airborne EM observations. 
 
We have identified multiple possible causes for this thickness bias and have completed 
numerical waveform modelling experiments to characterize the most dominant source 
of bias. In our future work, we will develop a generalized bias correction for freeboard-
to-thickness conversion from CryoSat-2 sea ice surface roughness observations and 
MERIS melt pond fraction data. We will finish validating the satellite ice thickness 
product against ULS and airborne EM observations, constraining the data product 
uncertainties. Finally, we will obtain sea ice volume fluxes at key Arctic gateways 
across the entire annual season, for the first time, by integrating the new sea ice 
thickness data with SAR ice motion observations. The importance of summer Arctic 
sea ice thickness data to the research community has been confirmed with our success 
gaining grant funding from NERC to build on the progress of Arctic-SummIT. The 
PRE-MELT project will support our continued developmental work, but we will 
acknowledge ESA funding in all relevant future manuscript submissions. 
 
 
Scientific roadmap for follow-on work 
We make the following recommendations for future work in this field, which could be 
supported by future ESA research funding: 

1. Our preliminary research with higher posted 80 Hz CryoSat-2 observations 
suggests there may be some advantage of using these finer sampled data over 
sea ice in summer months. We recommend that further tests are made with 80 
Hz observations, potentially intercomparing results for a full summer season 
between 80 and 20 Hz processed sea ice freeboards. 
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2. To test our classification and ice freeboard retrieval algorithms on Sentinel-

3A&B. We anticipate that the existing algorithms could be applied to Setinel-3 
SRAL altimeters exactly as they have been for CryoSat-2. This would enable 
sub-weekly sampling of sea ice freeboard in summer months, would 
significantly reduce the regions of missing data in current CryoSat-2-only 
freeboard fields, and produce more valid lead returns to improve the reliability 
of derived freeboard grids. It might be necessary to wait for the new version of 
Sentinel-3 SRAL processing over sea ice regions, so that Sentinel-3 L1B 
observations perfectly match those of CryoSat-2. 

3. Pan-Arctic summer melt pond fraction data will be crucial for converting the 
derived radar freeboard fields to thickness. Pond fraction is important for both 
the freeboard bias introduced by specular radar reflections from pond surfaces 
and for estimating the volume of pond water loading the ice above sea level, to 
accurately solve the hydrostatic equation. We would recommend future support 
for projects building melt pond fraction datasets from optical satellite sensors. 

4. Early research suggests that it might be possible to measure sea ice freeboard 
and thickness with NASA’s ICESat-2, following continued developmental work 
(Tilling et al., 2020). With CryoSat-2 now operating alongside ICESat-2, with a 
migrated orbit producing 20+ profiles of coinciding along-track observations 
every month, in the Cryo2Ice campaign. Future research should focus on 
intercomparing CryoSat-2 freeboards and ICESat-2 sea ice properties along 
coincident profiles – provided CryoSat-2 continues to operate as normal, this 
multi-mission study will be possible following summer 2021. 

5. The reference AEM sea ice thickness observations from our AWI partners have 
been and will continue to be crucial for validating derived ice thickness 
products from CryoSat-2 (or Sentinel-3, ICESat-2) in summer months. We 
would recommend that ESA consider future CryoVex airborne sampling 
campaigns over sea ice during summer months (May-Sept) – including the 
thickest multi-year ice in the Central Arctic, but also the thinner decaying ice in 
the marginal seas. Airborne radar altimeter and aerial photograph observations 
over pond-covered sea ice would support improved classification algorithm 
development and training, complimenting the EM ice thickness measurements. 
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