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1 DEVELOPMENT CONTEXT AND BACKGROUND 

Deforestation in the Philippines is one of the major environmental issue. The Philippines’ forest cover has 

declined from 17.8 million hectares or about 60% of the land area in 1934 to about 7.17 million hectares or 

24% in 2011 (PFS, 2011). From a position as one of the top ten deforestation countries contributing to global 

greenhouse gas emissions of 17-20 percent from global forest loss in 2000 (FAO, 2006), the country has since 

recovered with modest forest cover increase and is now in the list of countries with positive forest growth 

(FAO, 2010). The socioeconomic and ecological consequences of forestland degradation include widespread 

poverty, accelerated soil erosion and massive flooding of low-lying areas.  

The current work represents a feasibility analysis of large-scale land monitoring services based on automatic 

processing of optical and SAR satellite time series data. The analysis is oriented to provide valid support for 

the development of a system for the analysis of the forest ecosystem evolution. The services can help to design 

an effective monitoring of the forest changes and to set a proper plan of nature conservation measures. 
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2 PROPOSED WORK LOGIC FOR EO-BASED SOLUTIONS 

The proposed products is meant as a support to the GIZ project “Ecosystem-based management and applica-

tion of ecosystem values in two mentioned river basins in the Philippines (E2RB)”, therefore to the Depart-

ment of Environment and Natural Resources (DENR) and local communities in the Philippines. The aim is to 

provide more frequent and reliable information about land cover and forest dynamics with respect to the da-

taset available at national level. 

The work includes two inter-related services and is structured in 6 tasks or Work Packages (WP):  

 WP1 takes care of all the management activities and lasts for the whole project's duration. 

 WP2 takes care of acquisition of data required to realize services. It has been initiated immediately at 

the start of the project. 

 WP3 takes care of resuming the state of art related to Tree cover and related changes, which is de-

scribed in details in next paragraph 3.1.1. 

 WP4 generates Service 1: Long-Term Forest Dynamics, which is described in details in next paragraph 

3.1.2. 

 WP5 generates Service 2: Forest Loss Rate, which is described in details in next paragraph 3.1.3. 

 WP6 provides a proposal on training and capacity building to local partners in using the derived da-

tasets. 
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3 DELIVERED EO-BASED PRODUCTS AND SERVICES 

3.1 Work logic and results 

The services delivered intended to provide a comprehensive overview of the recent history and trends con-

cerning land cover changes with a focus on the evolution of the forest towards agricultural areas within the 

Ilog-Hilabangan River Basin (IHRB) in the Visayas Region and the Tagum-Libuganon River Basin (TLRB) in 

Mindanao over the 2000 to 2020 period.  

3.1.1 State of art 
A state-of-the-art analysis was conducted in the initial phase to get an overview of the different on-going meth-

ods and developments within this particular field of interest. 

Regarding the forestry dynamics mapping topic (Service 1), an initial focus was put on the references provided 

by the Department of Geographical Sciences of the University of Maryland, and by the Joint Research Center. 

A specific interest was dedicated to the papers dealing with optical/SAR imagery contributions, as the cloud 

cover over the Philippines is quite regular, widely limiting the possibilities of optical imagery usage. 

In addition, a further analysis was realised on the second topic on forestry loss rate (Service 2). 

3.1.1.1 Introduction 

Since the 40’s, the Food and Agriculture Organization of the United Nations (FAO) raised the need for forestry 

assessment at a global scale through survey and mapping initiatives. 

At the first session of the Conference of FAO in the autumn of 1945, the need for up-to-date information on 

the forest resources of the world was recognized. In May 1946 the Forestry and Forest Products Division 

was founded and work was initiated on FAO's first worldwide assessment of forests. The sixth session of the 

FAO Conference in 1951 recommended that the Organization maintain a permanent capability to provide 

information on the state of forest resources worldwide on a continuing basis. Since that time, various other 

regional and global surveys have been conducted every five to ten years. Each has taken a somewhat differ-

ent form.1 

Over the years, while mainly based on local field surveys, the FAO global assessment was then progressively 

supported by the integration of EO data archives. 

Since 1990, FAO Global Forest Resources Assessment (FRA) complements the information collected through 

the country reporting process with global and regional analysis of the world’s forest resources using remote 

sensing. With better access to a growing archive of satellite imagery and availability of new tools to facilitate 

image processing and interpretation, remote sensing is becoming an important tool for the assessment of 

status and changes in tree cover and land use. FAO has conducted Remote Sensing Surveys (RSS) as part of 

the FRA 1990, FRA 2000, FRA 2010, FRA 2015 and now FRA 2020 in close collaboration with FAO Members 

and other partners. The objectives of the RSS are to build country capacities to use remote sensing for forest 

monitoring as well as to generate independent, robust and consistent estimates of forest area and its changes 

over time at global, regional and biome levels.2 

Through the last decade, thanks to the public availability of Landsat archives and to the generalisation of large-

scale processing platforms, new initiatives for forestry dynamics mapping have emerged. 

In the scope of Service 1, an initial focus has been put on the references provided by the Department of Geo-

graphical Sciences of the University of Maryland, and by the Joint Research Center. A specific interest has 

                                                             

1 http://www.fao.org/forest-resources-assessment/past-assessments/en/ 
2 http://www.fao.org/forest-resources-assessment/remote-sensing/en/ 

http://www.fao.org/forest-resources-assessment/past-assessments/en/
http://www.fao.org/forest-resources-assessment/remote-sensing/en/
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been dedicated to the papers dealing with optical/SAR imagery contributions, as the cloud cover over the Phil-

ippines is quite regular, widely limiting the possibilities of optical imagery usage. In addition, a further analysis 

has been realised on the second topic linked to forestry loss rate (Service 2). 

 

3.1.1.2 EO-based forest dynamics mapping 

Global Forest Change (UMD) 

Since 2013, the Global Land Analysis and Discovery (GLAD) laboratory at the University of Maryland, in part-

nership with Global Forest Watch (GFW), proposes the Global Forest Change dataset. It corresponds to an 

annually updated global-scale forest loss data, derived using Landsat time-series imagery. These data are a 

relative indicator of spatiotemporal trends in forest loss dynamics globally. 

Currently, the Global Forest Change dataset covers the period ranging from 2000 to 2020. In terms of the-

matic content, the GFC dataset consists in six files presented here below. 

 Tree canopy cover for year 2000: 

The tree cover in the year 2000 corresponds to canopy closure for all vegetation taller than 5m in height. 

Values are encoded as a percentage per output grid cell, in the range 0–100. 

 Global forest cover gain 2000–2012: 

This layer corresponds to new forest areas appeared between 2000 and 2012. Unlike the forest cover loss data, 

there is no indication of the year. The result is simply encoded as either “1” for areas changing from non-forest 

to forest, or “0” otherwise. 

 Year of gross forest cover loss event: 

The content of this layer is defined as a stand-replacement disturbance, or a change from a forest to non-forest 

state, during the period 2000–2020. Practically, all the clear-cuts detected over a given year between 2000 

and 2019 have been assigned a specific class. For sake of simplicity, the pixel value of the classes corresponds 

to the year when the clear-cuts have been detected (e.g. clear-cuts detected in 2013 will result with a pixel value 

equal to 13). The “0” values correspond to areas where no clear-cut has been detected over the period 2000-

2020. 

 Data mask: 

The data mask contains three values representing areas of no data (0), mapped land surface (1), and perma-

nent water bodies (2). 

 Circa year 2000 Landsat 7 cloud-free image composite: 

A reference multispectral imagery from the first available year, typically 2000. If no cloud-free observations 

were available for year 2000, imagery was taken from the closest year with cloud-free data, within the range 

1999–2012. 

 Circa year 2020 Landsat cloud-free image composite: 

A reference multispectral imagery from the last available year, typically 2020. If no cloud-free observations 

were available for year 2020, imagery was taken from the closest year with cloud-free data. 

 

The Global Forest Change data are processed on the Google Earth Engine platform. Results can be visualized 

through a dedicated portal1 and are available to download in 10x10 degree tiles2. The GFD dataset is provided 

as a complete set of granules covering the range 180W–180E and 80N–60S (with meaningful data over land 

                                                             

1 https://glad.earthengine.app/view/global-forest-change#dl=1;old=off;bl=off;lon=20;lat=10;zoom=3; 
2 https://storage.googleapis.com/earthenginepartners-hansen/GFC-2020-v1.8/download.html 

https://glad.earthengine.app/view/global-forest-change%23dl=1;old=off;bl=off;lon=20;lat=10;zoom=3;
https://storage.googleapis.com/earthenginepartners-hansen/GFC-2020-v1.8/download.html
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surfaces). All files have a spatial resolution of 1 arc-second per pixel, which corresponds approximately to 30 

meters at the equator. Figure 1 provides an overview of the GFC tiling and extent. 

 

 
Figure 1: Overview of the GFC tiles and overall extent 

The current version 1.8 is an update of gross forest cover loss that includes new 2020 loss-year and multispec-

tral imagery layers. According to the authors, the overall method has been modified in numerous ways, and 

leads to a different and improved detection of global forest loss. However, the years preceding 2011 have not 

yet been reprocessed in this manner, resulting to some inconsistencies. This new version has to be seen as part 

of a transition to a future version 2.0 that will be more consistent over the entire 2000-onward period. 

 

Tropical Moist Forest (JRC) 

In 2021, the European Commission’s Joint Research Centre (JRC) released a new dataset on forest cover 

change in tropical moist forests (TMF) using 39 years of Landsat time series1. The TMF dataset covers the 

period 1990-2020 and consists in two map products (transition and annual changes), with associated metrics 

characterizing the timing (year of deforestation, year of degradation, duration), the number of annual disrup-

tion observations and the intensity (total number of disruption observations over the full observation period) 

of the disturbances. The Tropical Moist Forest data are also processed on the Google Earth Engine platform. 

Regarding the exact thematic content, the authors provide the following map product description2. 

 Transition map: 

The transition map shows the spatial distribution of the moist forest at the end of the year 2020. It depicts the 

sequential dynamics of changes by providing transition stages from the first year of the monitoring period to 

the end of the year 2020. Two maps are proposed and described for the transition map: (i) a first version 

entitled “Transition Map - Main Classes” with the main transition classes, and (ii) a detailed version entitled 

“Transition Map-Subtypes” with sub-classes(period of disturbance, age of regrowth, several types of forest, 

several types of degradation and deforestation, change types within the mangroves and tree plantations). 

 Undisturbed and degraded tropical moist forest: 

The Undisturbed and degraded tropical moist forest is a simplification of the Transition Map - Main Classes 

and shows the spatial distribution of undisturbed and degraded tropical moist forests remaining at the end of 

the year 2020. Forests include mangroves and bamboo-dominated forest types 

 Annual change collection: 

                                                             

1 https://doi.org/10.1126/sciadv.abe1603 
2 https://forobs.jrc.ec.europa.eu/TMF/download/TMF_DataUsersGuide.pdf 

https://doi.org/10.1126/sciadv.abe1603
https://forobs.jrc.ec.europa.eu/TMF/download/TMF_DataUsersGuide.pdf
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The annual change collection depicts the extent and status of the TMF (degraded, deforested, regrowing) for 

each year between 1990 and 2020). The timeline allows seeing how the TMF is changing over the past 3 dec-

ades. 

Some metrics of timing and intensity of the disturbances are provided as additional layers. 

 Degradation year: 

The degradation year is the year when the forest cover has been degraded for the first time. It concerns all the 

degraded forest classes of the transition map including the mangroves and the recent degradation (2020). 

 Deforestation year: 

The deforestation year is the year when the forest cover has been deforested for the first time (followed or not 

by a regrowth).It concerns all the deforested classes of the transition map including the mangroves that have 

been deforested, the conversion into tree plantation, the conversion into water and the recent deforestation 

(2018-2020). 

 Duration (only available on GoogleEarth Engine): 

The duration corresponds to the number of days between the first and last disruptions detected for all the 

areas classified as TMF change in the transition map.  

 Number of annual disruption observations (only available on GoogleEarth Engine): 

This dataset provides the number of disruption observations on an annual basis. A disruption observation is 

defined as an absence of tree foliage cover within a Landsat pixel for a single-date observation.  

 Intensity (only available on GoogleEarth Engine): 

The intensity of the disturbance documents the total number of disruptions detected over the full observation 

period (from the first year of the monitoring period to 2020) for all the areas classified as TMF change in the 

transition map. 

 

The Tropical Moist Forest results can be visualized through a dedicated portal1, and are also available to down-

load in 10°x10° tiles covering tropical areas2. All files have a spatial resolution of 1 arc-second per pixel, which 

corresponds approximately to 30 meters at the equator. Figure 2 provides an overview of the TMF tiling and 

extent. 

 

 

Figure 2: Overview of the TMF tiles and overall extent 

                                                             

1 https://forobs.jrc.ec.europa.eu/TMF/ 
2 https://forobs.jrc.ec.europa.eu/TMF/download/ 

https://forobs.jrc.ec.europa.eu/TMF/
https://forobs.jrc.ec.europa.eu/TMF/download/
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For what concern Service 1, the annual change collection could be of high interest for the generation of annual 

forest cover maps. This dataset corresponds to a collection of 31 maps depicting for each year between 1990 

and 2020 the spatial extent of undisturbed forest and changes (deforestation, degradation and regrowth). 

Each of the annual changes map is an individual file containing the following 6 classes: 

1. Undisturbed tropical moist forest, 

2. Degraded tropical moist forest, 

3. Deforested land, 

4. Forest regrowth, 

5. Permanent and seasonal water, 

6. Other land cover. 

Deforestation refers to a change in land cover (from forest to non-forested land) when degradation refers to a 

temporary disturbance in a forest remaining forested such as selective logging, fires and unusual weather 

events (hurricanes, droughts, blowdown). 

 

3.1.1.3 On the use of optical/SAR imagery for forestry mapping 
 

In tropical regions, the use of optical sensors is limited by high cloud coverage throughout the year. As an 

alternative, Synthetic Aperture Radar (SAR) products can be used, alone or in combination with optical im-

ages, to monitor tropical areas. Numerous studies on the combined use of optical and SAR data have been 

conducted over the years. An exhaustive inventory would be difficult and out of interest; however, we propose 

to focus on two recent studies performed over tropical areas similar to the present one. 

The first study deals with the test of several combinations of optical and SAR data to identify the four dominant 

vegetation types that are prevalent in the Brazilian Cerrado1. The Cerrado biome is considered as being among 

the most extensive and diverse ecosystems in the tropics and is a hotspot in the context of biodiversity. It is 

also one of the most threatened ecosystems in South America, with over 40% of the biome converted to agri-

culture and the remainder highly fragmented. The Cerrado biome is the second largest complex vegetation 

present in Brazil and occupies about 200 million hectares. In this way, Brazil needs to improve the monitoring 

system of deforestation and land use change. 

The aim of this study is evaluate the use of optical and radar remote sensing for mapping the different types 

of vegetation in the transitional area between the Cerrado and Amazon biomes. To do so, the authors extracted 

features from both sources of data such as intensity, grey level co-occurrence matrix, coherence, and polari-

metric decompositions using Sentinel-2, Sentinel-1, ALOS-PALSAR 2 dual/full polarimetric, and TanDEM-X 

images during the dry and rainy season of 2017. In order to normalize the analysis of these features and to 

reduce their temporal dimensionality, principal component analysis was applied for each seasonal temporal 

stack, and subsequently applied the Random Forest algorithm to evaluate the classification of vegetation types. 

A supervised classification was first performed on two different Sentinel-2 and ALOS2 combinations, to pro-

duce a first forest/non-forest mask. The resulting thematic accuracy was excellent for both of them (nearly 

99%), and in each case, the highest contribution was provided by the near and shortwave infrared spectral 

bands from Sentinel-2 data. In that case, SAR data can be seen as a support to the information provided by 

optical data. 

A forest type mapping was then conducted in the areas masked as forests in the previous step. To analyse the 

synergy of optical and radar data for mapping Cerrado vegetation types, all possible combinations between 

optical and radar sensors were tested in two different scenarios, dry season, dry and rainy seasons. In addition, 

the authors used the sensors separately and analysed the SAR classifications. 

                                                             

1 https://doi.org/10.3390/rs11101161 

https://doi.org/10.3390/rs11101161
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During the dry season, the overall accuracy ranged from 48 to 83%, and during the dry and rainy seasons, it 

ranged from 41 up to 82%. The classification using Sentinel-2 images during the dry season resulted in the 

highest overall accuracy values, followed by the classification that used images from all sensors during the dry 

and rainy season. Optical images during the dry season were sufficient to map the different types of vegetation 

in our study area. When considering both dry and rainy seasons, the combination of optical and radar sensor 

data usually improved the vegetation classification. 

 

The second study deals with the use of SAR and optical time series for forest disturbance mapping (meaning 

both deforestation and forest degradation) in tropical areas1 where frequent cloud cover and fast regrowth 

often prevent forest disturbance monitoring with optical data only. The authors intended to overcome these 

limitations by combining dense time series of optical (Sentinel-2 and Landsat 8) and SAR data (Sentinel-1) 

over test sites located in Peru and Gabon, to increase forest disturbance detection accuracies in the humid 

tropics. 

SAR and optical data are highly complementary, since they detect different disturbed forest areas. Therefore, 

the authors aim at demonstrating that higher accuracy values can be obtained by merging detections from 

both sensor types. Their approach begins also with the generation of a forest/non-forest mask, which serves 

as the starting point for the forest disturbance mapping. Separate forest disturbance maps are then calculated 

from the SAR and optical time series. The final forest disturbance maps combine the forest disturbance results 

from SAR and optical time series by a union process. The forest masks and all the forest disturbance maps 

(SAR, optical, combined) are validated with a set of sample plots that were visually interpreted from VHR and 

HR imagery. 

The forest/non-forest mask is first produced from several classifications performed on optical data for which 

the acquisition date spans from March 2015 to March 2016. A final binary mask is obtained by applying a 

weighted majority approach to merge the initial classification. Their resulting thematic accuracy is respectively 

of 93% and 98% for Peru and Gabon. As for disturbance, the accuracies of the individual maps from optical 

and SAR time series are compared with the accuracies of the combined map.  

The authors then evaluate the detection accuracies by disturbance patch size and by an area-based sampling 

approach. The results show that the individual optical and SAR-based forest disturbance detections are highly 

complementary, and their combination improves all accuracy measures. The overall accuracies increase by 

about 3% in both areas, producer accuracies of the disturbed forest class increase by up to 25% in Peru when 

compared to only using one sensor type. The assessment by disturbance patch size shows that the number of 

detections of very small disturbances (<0.2 ha) can almost be doubled by using both datasets. 

The authors acknowledge that further improvements should focus on developing more advanced methods to 

derive forest disturbances from SAR and optical data. In addition, further studies are needed in different parts 

of the tropics and under different forest conditions to better understand the potential and limitations of sensor 

type combinations for tropical forest disturbance detections. 

 

3.1.1.4 Methodologies on forestry loss rate 
 

The forest ecosystem in the Philippines, like in many countries worldwide, is severly affected by human activ-

ities. This is particularly preoccupying as forests are essential, not only for the environment, but also for the 

social and human well-being. Among the problems that forest have to face, deforestation linked to agriculture 

is probably the main threat, due to uncontrolled and excessive exploitation caused by increasing population 

and unsustainable management of natural resources. 

 

                                                             

1 https://doi.org/10.3390/rs12040727 

https://doi.org/10.3390/rs12040727
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Besides the provision of several EO-based Land cover and Forest cover maps over both areas of interest, from 

archive (up to 2000) and recent satellite imagery to get a reliable and objective overview of landscape evolution 

within the IHRB and TLRB areas, another key objective consists in identifying the most critical zones within 

both river basins, in terms of deforestation and forestry loss rate. This component, integrated within Service 

2, is indeed crucial to support the national and local stakeholders to have a better knowledge of the situation 

and hence prioritize their actions and resources. 

 

The process is widely based on the paper by Nowosad and Stepinski (2019)1 who developed an innovative 

methodology to simulate long-term evolution of landscapes. The difference with other existing approaches is 

that it simulates the probability distribution function of long-term trajectories for a single landscape based on 

observations of short-term transitions (1992-2015), for a large number of different landscapes. The most likely 

evolutionary scenario for each landscape is then calculated using the Monte Carlo method. 

 

This methodology is particularly adapted for specific types of land changes such as deforestation, desertifica-

tion or urbanization. Moreover, the major advantage is that the model is empirical, making it unnecessary to 

account for all the different individual processes responsible for the land changes. On the other hand, the 

method also has some shortcomings, the main one being the fact that it is based on the assumption that the 

land change processes remain stationary during the whole transition period (1992-2015). The implication of 

this assumption is that the model shows how the landscape would evolve if processes driving the change and 

their intensities are stable through time. Another second assumption is that the model is built on worldwide 

statistics, so that the probabilities are calculated from the largest possible statistics of transitions. 

 

The results show that the fastest forest-to-agriculture transit (FAT) scenarios occur through the sequence of 

highly aggregated forest/agriculture mosaics with a decreasing share of the forest, and that once the forest 

share drops below 50% the remainder of the transit is rapid. Therefore, this suggests that conservation policies 

could focus on preserving the forest landscapes before its share drops below 50% at a mesoscale (~100 km²). 

 

3.1.1.5 Perspectives 
 

In a near future, initiatives such as Global Forest Change and Tropical Moist Forest will take benefit from the 

next Landsat 9 launch in September 2021. This new satellite will be placed in an orbit that it is eight days out 

of phase with Landsat 8 to increase temporal coverage of observations. Landsat 9 will continue the Landsat 

series legacy with the existing 44-year data record. 

Since 2014 and 2015, new constellation of Sentinel-1 (SAR) and Sentinel-2 (optical) satellites in the frame of 

the Copernicus program. Sentinel-2 satellites ensure a kind of synergy with Landsat sensors by offering similar 

spectral characteristics, and even offer higher both temporal and spatial resolutions; and Sentinel-1 allows to 

better taking benefit from the optical/SAR capabilities. 

Besides this, the continuous development of both High-Performance Computing (HPC) and cloud computing 

platforms and their increasing capacities offered by Space Agencies, Universities, DIAS2, and private compa-

nies (e.g. Google or Amazon, among others) paves the way to new forest mapping initiatives. 

Moreover, the increasing research on new machine learning and deep learning algorithms will allow to better 

exploit the richness of EO data. Due to the development of new technologies, new ancillary data might be also 

of interest for improving the forest dynamics mapping. 

In conclusion, whatever the sensors, computing, and algorithms capabilities are, the need for reliable ground 

truth for both training and validation is of paramount importance. 

                                                             

1 J. Nowosad, T. F. Stepinski (2019) Stochastic, Empirically Informed Model of Landscape Dynamics and Its Application 
to Deforestation Scenarios. Geophysical Research Letters 46 (23): 13845-13852. 
2 https://www.copernicus.eu/en/access-data/dias 

https://www.copernicus.eu/en/access-data/dias
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3.1.2 Service 1: Long-Term Forest Dynamics  

3.1.2.1 Specifications 
 

The Service 1 includes a set of tasks and products as follows: 

1. Land cover maps for the following three epochs: 

a. 2020 land cover maps based on S2+S1 

b. 2015(16) land cover maps based on S2+S1 

c. 2000 land cover map based on Landsat 

2. Forest cover maps for the following time ranges: 

a. 2001-2015 forest cover maps  

b. 2016-2020 forest cover maps based on S2+S1.  

For each of these products in the following are reported the necessary input data, the methodology and the 

resulting outputs. 

Land cover maps 

Three land cover maps have been realized for the epochs: 2020, 2015(16), 2000 both for the Ilog-

Hilabangan River Basin (IHRB) and the Tagum-Libuganon River Basin (TLRB). Furthermore, two 

land cover change maps (2000-2016; 2016-2020 for both the basins) have been realized with partic-

ular focus on the changes from forest versus artificial and agricultural classes. 

1. Input data 

 Shapefile containing the exact basin contours provided by GIZ 

 Landsat 5/7 time series for epochs 2000 (± 1 year for cloud filling) 

 Sentinel-2 L1C time series for epoch 2016 from the Copernicus Open Access Hub 

(www.scihub.copernicus.eu) 

 Sentinel-2 L2A time series for epoch 2020 from the Sentinel-2 Global Mosaic service 

(https://s2gm.sentinel-hub.com/) 

 Sentinel-1 data time series for epochs 2016 and 2020 

The land cover maps for earlier epoch 2000 are based on Landasat5 and Landsat7 merged dataset. 

The 2000 map was based only on the optical component due to the unavailability of SAR data in 

the selected epoch. Moreover, due to the high cloud coverage in the Landsat images series of 2000, 

also one image from 2001 has been used as input for the classification (see Errore. L'origine 

riferimento non è stata trovata.).  

The LC maps for the recent years 2015(16) and 2020 are derived by Sentinel-2/Sentinel-1. In par-

ticular, for the year 2020, the Sentinel-2 Global Mosaic service ( https://s2gm.sentinel-hub.com/) 

has been used to collect monthly mosaic compositions of S/2 images. The Sentinel-2 Global Mo-

saic (S2GM) service is a component of the Copernicus Global Land Service providing composites 

from time-series of Sentinel-2 surface reflectance observations. S2GM comprises best representa-

tive pixels in three spatial resolutions and from different compositing periods ranging from one 

day to one year on a global scale. 

For the year 2015(16), composites of the Sentinel-2 images with the less cloud coverage have been 

applied, as the Sentinel-2 Global Mosaic service is not available for this epoch.  

In the following table, the data available for each mapping epoch is shown with the corresponding 

cloud coverage and the final data selection. 

https://scihub.copernicus.eu/
(https:/s2gm.sentinel-hub.com/)
https://s2gm.sentinel-hub.com/
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Table 1: List of available data and identification of the selected input data for TLRB 2000 LC production 

 

Table 2. List of available data and identification of the selected input data for TLRB 2016 LC production 

   
Acquisition Date 

% Valid Pixels 
over AoI 

1999 
L7 10/8/1999 36.5 

L7 11/25/1999 17.3 

2000 

L5 2/21/2000 57.5 

L7 4/17/2000 55.9 

L5 4/25/2000 45.3 

L5 7/14/2000 65.7 

L7 8/7/2000 81.7 

L7 9/24/2000 65.1 

2001 

L7 4/4/2001 55.3 

L7 5/22/2001 95.0 

L7 9/11/2001 73.5 

L7 11/14/2001 57.5 
 

NYJ NZJ NYJ NZJ

1 X

2 X

3 3 X X 71.1 X

4 2 X X 86.9 X

5 X

6 11 X X 53.3 X

7 21 X X

8 10 x x 1.3 X

9 19 X X X X X

10 9 X X 77.8 X

11 28 X X 66.1 X

12 8 X X

Sentinel 2 Sentinel1

DescendingAscending
% ValidPixels 

over AoI
Month DAY

Tiles 

Available

Tiles 

Corrupted
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Table 3: List of available data and identification of the selected input data for TLRB 2020 LC production 

 

Table 4: List of available data and identification of the selected input data for IHRB 2000 LC production 

Composite Data % Valid Pixels Ascending Descending

2020_01 87.2 x x

2020_02 72.7 X X

2020_03 90 x x

2020_04 97.9 X X

2020_05 94.5 x x

2020_06 92.9 X X

2020_07 92.4 x x

2020_08 94.6 X X

2020_09 89.3 x x

2020_10 95.4 X X

2020_11 71 x x

2020_12 92.7 X X

Sentinel2 Sentinel1

   

Acquisition date 
% Valid Pixels 

over AoI 

1999 L7 10/6/1999 29.1 

2000 

L5 4/23/2000 66.3 

L7  5/1/2000 69.3 

L5 5/25/2000 49.6 

L5 6/26/2000 53.1 

L7   9/22/2000 44.8 

L7   11/25/2000 39.8 

2001 

L7 5/4/2001 66.3 

L7 8/8/2001 26.1 

L7 11/12/2001 94.9 
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Table 5: List of available data and identification of the selected input data for IHRB 2016 LC production 

 

Table 6. List of available data and identification of the selected input data for IHRB 2020 LC production. 

2. Methodology: 

 Pre-processing 

A set of pre-processing operations, aimed to correct radiometric and geometric distor-

tions of data and to harmonize the input multisensory and multiscale data was carried out 

with the aim to create a single time series image as input for each classification mapping 

epoch. SAR and optical data were integrated for the generation of a multilayer data stack 

used as input for the classification phase based on AI methodologies. All images were 

combined into one multistack dataset for each production year that contains time sorted 

optical and SAR images. 

PVL PVM PWL PWM PVL PVM PWL PWM

11 X

12 X

1 16 x x x x x X

2 X

3 X

4 15 x x x x 62.7 X

5 X

6 X

7 X

8 3 x x x x
High Cloud 

Cover X

9 X

10 22 x x x x 63.6 X

11 11 x x x x 96.1

12 X

Sentinel 2 Sentinel1

Desc.Asc.

2015

2016

% Valid 

Pixels over 

AoI

Month DAY
Tiles Available Tiles Corrupted 

Composite Data % Valid Pixels Ascending Descending

2020_01 95.2 X X

2020_02 96.1 X X

2020_03 98.7 X X

2020_04 95 X X

2020_05 92.1 X X

2020_06 90 X X

2020_07 60 X X

2020_08 14.3 X X

2020_09 85.1 X X

2020_10 80.1 X X

2020_11 94.4 X X

2020_12 90.3 X X

Sentinel2 Sentinel1
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Since the different nature of the input data used for each epoch, the pre-processing is 

described in details for each one.  

The general workflow followed for the pre-processing of optical data was: 

1. Perform the atmospheric correction of each optical image in the time series. 

For Landsat data, surface reflectance images have been generated using the LEDAPS al-

gorithm, developed by NASA, while for Sentinel-2 data, the Sen2Cor plugin available in 

SNAP was adopted for the LC 2016. This phase was not carried out for the LC 2020 since 

the Sentinel-2 Global Mosaic service provides data atmospherically corrected and mo-

saiced over the requested AoI and time windows. For the present work, the time window 

was settled on a monthly scale. For this specific epoch therefore the pre-processing of 

optical data started from the cloud masking and interpolation. 

2. Cloud masking and filling. 

It was an important issue and also a relevant component to manage for both the selected 

AoIs since the generally high cloud presence in the Philippines. A pixel-based interpola-

tion process was implemented using the time series data to fill no-data cloud covered 

values using a simple linear interpolation since it is able to balances the final obtained 

accuracy with the computational time.  

3. Computation of vegetation indices 

Some vegetation indices were added to multistack input data to highlight different be-

haviours between pixels and separate different thematic classes allowing a more effective  

extraction of features. Some vegetation indices were calculated and added to the multi-

stack: NDVI, NDWI, MSAVI2 were estimated from Sentinel2 and Landasat7 data, while 

from the Landsat 5, due to the absence of a band into the SWIR region, only NDVI, and 

MSAVI2 were calculated. 

With specific reference to the SAR data pre-processing, starting from the GRDH data 

from both ascending and descending orbits, it was done performing the following steps: 

 ellipsoid correction (to project the image on the ground on UTM projection) 

 conversion in sigma0  

 cut over the area of interest 

 suppress speckle effects preserving relevant features (edges, point target, artifi-

cial areas, water, etc.). 

 create the monthly SAR mosaic over the AoI 

 co-registrate it with the optical data and resampling to the latter’s resolution.  

All the SAR pre-elaborations were performed using the software SNAP. Notice that when 

both ascending and descending SAR data were available, their average value was used to 

perform the LC classification to reduce the size of the multistack used for the classifica-

tion. 

 Training 

Different sets of training samples have been collected for each epoch applying a stratifi-

cation scheme based on the land cover classes distribution of the Global Land Cover ESA 

CCI. For each basin about 4% of the basin area has been used as training for the AI clas-

sifiers for each epoch. The training polygons have been delineated and classified on screen 

exploiting the available reference data (e.g., Google Earth, OpenStreetMap, Spatial Data-

base of Planted Trees (SDPT) 2015 dataset2, Global Forest Change (GFC) 2000-2019 da-

taset3). In some cases, a preliminary automatic image segmentation of the best optical 
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image available for each epoch over the basin has been useful to help the polygons selec-

tion on screen. 

 

Table 7. Training sample composition used for TLRB 2000 LC production. 

 

Table 8. Training sample composition used for TLRB 2016 LC production. 

 

Table 9. Training sample composition used for TLRB 2020 LC production. 

LC Code LC Class Area Class [km2]

1 Artificial 2.9

2 Forest 51.5

3 Tree crops 59.3

4 Permanently herbaceous 3.4

5 Periodically herbaceous 10.0

6 Water 2.1

129.16

3205.25

4.0%

Total Training [km2]

Area AoI [km2]

Total Area Training / Area AoI

LC Code LC Class
Area Class 

[km2]

1 Artificial 2.9

2 Forest 51.5

3 Tree crops 59.2

4 Permanently herbaceous 3.4

5 Periodically herbaceous 3.4

6 Water 2.1

122.44

3205.25

3.8%

Total Training [km2]

Area AoI [km2]

Total Area Training / Area AoI

LC Code LC Class
Area Class 

[km2]

1 Artificial 2.2

2 Forest 51.5

3 Tree crops 59.2

4 Permanently herbaceous 3.4

5 Periodically herbaceous 10.8

6 Water 2.1

129.19

3205.25

4.0%

Total Training [km2]

Area AoI [km2]

Total Area Training / Area AoI
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Table 10. Training sample composition used for IHRB 2000 LC production. 

 

Table 11. Training sample composition used for IHRB 2016 LC production. 

 

Table 12. Training sample composition used for IHRB 2020 LC production. 

 AI algorithms 

Among the AI algorithms available, which allows to reach high accuracy in classification 

of time series data the Light Gradient Boosting Method (LGBM 

https://lightgbm.readthedocs.io/en/latest/) has been applied. The idea behind this 

standard machine learning algorithm is very simple: it combines the predictions of mul-

tiple decision trees by adding them together. Moreover, the LightGBM package, offers an 

intuitive, fast, distributed, and a high-performance gradient boosting framework based 

LC Code LC Class
Area Class 

[km2]

1 Artificial 0.4

2 Forest 29.9

4 Permanently herbaceous 6.0

5 Periodically herbaceous 43.4

6 Water 0.6

80.4

2173.2

3.7%

Total Training [km2]

Area AoI [km2]

Total Area Training / Area AoI

LC Code LC Class
Area Class 

[km2]

1 Artificial 0.3

2 Forest 29.3

4 Permanently herbaceous 3.5

5 Periodically herbaceous 46.3

6 Water 0.6

80.1

2173.2

3.7%

Total Training [km2]

Area AoI [km2]

Total Area Training / Area AoI

LC Code LC Class
Area Class 

[km2]

1 Artificial 0.4

2 Forest 29.3

4 Permanently herbaceous 6.1

5 Periodically herbaceous 43.3

6 Water 0.6

79.7

2173.2

3.7%

Total Training [km2]

Area AoI [km2]

Total Area Training / Area AoI

https://lightgbm.readthedocs.io/en/latest/
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on decision tree algorithms. For tuning the parameters of the classifier, various ap-

proaches such as a grid search or a random search can be pursued and evaluated on the 

test dataset. To perform this multiclass classification was settled as metric the ‘multi lo-

gloss' and a number of nodes (“num_leaves”) equal to 31 and decision trees equals to 

1,000. Only the 15% of the training sample was used for the validation while the remaining 

85 % was used for the model’s training.  

 

Figure 3. Schematic of the decision trees in the LightGBM framework. (Source: http://arogozhni-
kov.github.io/2016/06/24/gradient_boosting_explained.html) 

3. Output data: 

 List of the output maps for TLRB and IHRB basins 

o Land cover map 2020 

o Land cover map 2016  

o Land cover map 2000  

The land cover maps were combined to extract the changes from forest areas to-

wards artificial and agriculture: 

o Land cover change map 2000-2016 (forest changes)  

o Land cover change map 2016-2020 (forest changes)  

 Format 

o Raster: TIFF (Tagged Image File Format) 

o Vector: ESRI Shapefile 

Both are provided in the Coordinate Reference System: WGS 84 / UTM zone 51N 

(EPSG: 32651) 

 Minimum Mapping Unit (MMU) 

o Land cover maps: 0.09 ha MMU (for LC 2000) / 0.10 ha MMU (for LC 2016 and 

LC 2020)  

o Land cover changes: 1 ha MMU 

The LC maps for the recent years (2016 and 2020) derived by Sentinel data are charac-

terized by a spatial resolution higher than the LC maps derived by Landsat datasets. In 

order to make the maps spatially coherent, the 2000 outputs were resampled from the 

native Landsat resolution of 30 meters to the Sentinel resolution. As a result, 10 meters 

LC maps were retrieved for all the three epochs considered.  

Since the size of one Landsat pixel (30 m x 30 m = 900 sq m = 0.09 ha) is near the mini-

mum mapping unit (0.1 ha) no post-processing was carried out to eliminate isolated pix-

els obtained in the LC map. Conversely, for the S2-based LC maps, since the size of one 

pixel (10 m x 10 m = 0.01 ha) is 10 times smaller than the minimum mapping unit, a post-

processing was carried out by identifying the contiguous pixel groups smaller than the 

MMU and replacing them with the biggest contiguous LC class. 

4. Nomenclature 

The following list of classes, described in Table 13, are included into the land cover maps. 

As shown in the table, the nomenclature is slightly different in the IHRB and TLRB basins.  
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LC Code Color code 
(RGB) 

Description 
TLRB  

2000; 2016; 
2020 

IHRB 
2000; 2016; 

2020 

1 225,225,225 Artificial (settlements) X X 

2 56,168,0 Forest X X 

3 
255,170,0  Tree crops (coconut palm, banana, 

other permanent crops etc.) 
X  

4 163,255,115 Permanent herbaceous (grasslands) X X 

5 
255,255,0 Periodically herbaceous (arable land, 

annual crops) 
X X 

6 0,197,255 Water X X 

Table 13: LC nomenclature 

For TLRB basin the separation between forest and tree crops was implemented not only 

in the 2016 and 2020 classifications (as planned in the proposal phase), but even in the 

2000 mapping based on Landsat data. The reason is in the landscape pattern of TLRB 

basin, characterized by large tree crops fields having a size compatible with the scale of 

satellite input data. 

On the other hand, in IHRB basin the tree crops are marginal and the fields are small and 

fragmented with low tree cover density. In this context, the application of Sentinel and 

Landsat data to separate tree crops becomes difficult and subjected to misclassification 

with others classes (e.g., forest, perennial herbaceous), as demonstrated by some testing 

activity performed in this area. For this reason, the classifications for the three epochs in 

IHRB includes the same nomenclature of TLRB except for the tree crops class. 

5. Thematic Accuracy: overall thematic accuracy ≥ 80% 

 

File Naming Description 

Land cover 
map raster 
layers 

Land_Cover_TLRB_20xx.tif 
Land_Cover_IHRB_20xx.tif  GeoTIFF file format 

 Unsigned integer pixel type 

 8-bit pixel depth 

 UTM51N coordinate system 

 GSD 10m Land cover 
map change 
layers 

Land_Cover_change_TLRB_20xx.tiff 
Land_Cover_change_IHRB_20xx.tiff 

Forest map 
layer files 

Land_Cover.lyr 
Land_Cover_change.lyr 

ArcGis layer file containing the 
forest cover map symbology 

Table 14: Description of the land cover maps (2000, 2015(16)-2020) deliverables 

 

Forest cover maps 
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This service is aimed to demonstrate the feasibility of a frequent mapping of the forest cover based on 

optical and/or radar data. For the time range 2001-2015, annual forest cover maps have been pro-

duced based on available forest product at global scale (i.e. Tropical Moist Forest). For the period 

2016-2020, the feasibility of a «twice per year» forest cover has been tested. After the initial evaluation 

of the available input dataset (detailed in the following paragraphs) annual forest cover maps have 

been realised based on S2+S1 data for the years 2016-2020. Furthermore, the classification of an en-

tire times series over the year allows to follow the phenology of the crops over a longer observation 

window getting more details useful to improve the final accuracy of the product. 

2001-2015 annual forest cover maps 

Initially, a combination of the various datasets mentioned previously (Global Forest Change 2000-2020, Trop-

ical Moist Forest 1990-2020) was intended to provide the annual forest cover maps over both AOIs, over the 

period 2001-2015. The content of the layers contained in these datasets is different; therefore, a particular 

attention was given when trying to mix these layers. It appeared first that TMF dataset provides annual 

changes for both gain and loss aspects, while the gain for GFC is integrated over time. 

Moreover, the current version of the GFC dataset is 1.8, and is in transition toward a major 2.0 release. This 

means, among several aspects, that the current dataset do not provide any consistency over the whole 2000-

2020 period, due to processing discrepancies for data acquired before 2011 and those from 2011 onward. 

Therefore, only the Tropical Moist Forest annual change collection was considered. In addition, a conservative 

approach was followed by considering only deforestation and regrowth, not degradation, to avoid commission 

errors that may be encountered when using the GFC dataset. The 2000 land cover map is also used to make 

sure that for 2001: 

 deforested areas are not outside the 2000 land cover forest class, 

 new forest areas are outside the 2000 land cover forest class. 

To produce each annual forest cover maps, the process is sequential, starting from the 2000 land cover map 

and adding for each particular year the deforestation/regrowth information resulting from the information 

content provided by the appropriate classes of the TMF dataset. Before to update the year n+1, the year n was 

first processed to remove deforested areas (value set to “0”) and to convert the regrowth areas as forest (value 

set to “1”). Table 15 provides some details about the coded values used for each annual forest cover map. 

 

Value Color code (RGB) Description 

NoData N/A Initial cloud mask from the 2000 land cover map 

0 255,255,255 Non-forest areas 

1 110,170,0 Undisturbed forest 

2 255,0,0 Deforested land 

3 0,0,255 Forest regrowth 

Table 15: Description of the annual forest cover maps (2001-2015) values 

 

Both geometric and thematic consistency between the 2000 land cover map and all the annual forest cover 

maps was ensured. Given that the TMF is derived from Landsat time series the spatial resolution is around 30 

meters. Therefore, the size of one pixel (30m x 30m = 900 sq.m-1 = 0.09 ha) is near the minimum mapping 

unit (0.1 ha) and hence no post-processing was carried out to eliminate isolated pixels. Table 16 describes the 

technical details for annual forest cover maps. 

 

File Naming Description 
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Forest map 
raster layers 

Forest_Cover_TLRB_20xx.tif 
Forest_Cover_IHRB_20xx.tif 

 GeoTIFF file format 

 Unsigned integer pixel type 

 8-bit pixel depth 

 UTM51N coordinate system 

 GSD 30m 

Forest map 
layer files 

Forest_Cover_TLRB_20xx.lyr 
Forest_Cover_IHRB_20xx.lyr 

ArcGis layer file containing the forest 
cover map symbology 

Table 16: Description of the annual forest cover maps (2001-2015) deliverables 

 

2016-2020 forest cover maps based on S-2 +S1 

Input data: 

 Shapefile containing the exact basin contours provided by GIZ 

 Sentinel-2 L2A time series retrieved from the Sentinel-2 Global Mosaic service ( 

https://s2gm.sentinel-hub.com/) for epochs 2017, 2018, 2019 

 Sentinel-1 data time series for epochs 2017, 2018, 2019 

 LC maps retrieved for the epoch 2016 and 2020. 

For the 2016 and 2020 epochs, the LC maps produced in the first phase of the project have been used 

to derive the Forest map products for the same corresponding epochs for both the basins. For this 

reason, for these epochs a recoding of the LC classes, available in the LC maps, has been performed in 

order to obtain the output Forest maps: the classes “Artificial”, “Tree crops” (in LC where the class is 

applicable), “Permanent herbaceous”, “Periodically herbaceous”, “Water” are assigned to “No-Forest” 

while the LC class “Forest” maintains the same assignment. 

The following tables with the the data available for each mapping epoch show how the cloud coverage 

issue reduced the final data selection to a limited number of scenes. 

 

Table 17. List of available data and identification of the selected input data for TLRB 2017 Forest 
cover map production. 

 

Composite Data % Valid Pixels % Valid Pixels (Interp.)Ascending Descending

2017_01 0 X

2017_02 0 X

2017_03 4.5 X

2017_04 24.9 X

2017_05 82.5 86 X

2017_06 0.8 X

2017_07 21.4 X

2017_08 96.5 96.5 X X

2017_09 0 X X

2017_10 45.4 X X

2017_11 91.9 96.7 X X

2017_12 85.5 X X

Sentinel2 Sentinel1

file:///C:/Users/donzelli/Progetti/EO%20Clinic/RFP/RFP16%20Ecosystem-Based%20Management%20in%20River%20Basins%20in%20the%20Philippines/(%20https:/s2gm.sentinel-hub.com/)
file:///C:/Users/donzelli/Progetti/EO%20Clinic/RFP/RFP16%20Ecosystem-Based%20Management%20in%20River%20Basins%20in%20the%20Philippines/(%20https:/s2gm.sentinel-hub.com/)
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Table 18. List of available data and identification of the selected input data for TLRB 2018 Forest 
cover map production. 

 

 

Table 19. List of available data and identification of the selected input data for TLRB 2019 Forest 
cover map production. 

 

Composite Data % Valid Pixels Ascending Descending

2018_01 91.5 X

2018_02 98.6 X X

2018_03 80.2 X X

2018_04 96.9 X X

2018_05 94.7 X X

2018_06 30.5 X X

2018_07 95.8 X

2018_08 94.6 X X

2018_09 97.6 X X

2018_10 98.9 X X

2018_11 89.4 X X

2018_12 94.7 X X

Sentinel2 Sentinel1

Composite Data % Valid Pixels Ascending Descending

2019_01 16.6 X X

2019_02 90.3 X X

2019_03 97.1 X X

2019_04 96.8 X

2019_05 91.3 X

2019_06 96.4 X X

2019_07 92.5 X X

2019_08 99.1 X X

2019_09 95.4 X X

2019_10 98.7 X

2019_11 97 X X

2019_12 95.1 X

Sentinel2 Sentinel1
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Table 20. List of available data and identification of the selected input data for IHRB 2017 Forest cover map production. 

 

Table 21. List of available data and identification of the selected input data for IHRB 2018 Forest cover map production. 

 

Table 22. List of available data and identification of the selected input data for IHRB 2019 Forest cover map production. 

 

Composite Data % Valid Pixels Ascending Descending

2017_01 1.2 X

2017_02 0 X

2017_03 43.4 X

2017_04 90.6 X

2017_05 3.3 X

2017_06 67.9 X X

2017_07 8 X X

2017_08 78.6 X X

2017_09 3.6 X X

2017_10 43.3 X X

2017_11 53.2 X X

2017_12 92.9 X X

Sentinel2 Sentinel1

Composite Data % Valid Pixels Ascending Descending

2018_01 64.2 X X

2018_02 92.3 X X

2018_03 95.3 X X

2018_04 93.5 X X

2018_05 87.4 X X

2018_06 92.8 X

2018_07 69.4 X X

2018_08 85.4 X X

2018_09 50 X X

2018_10 97.7 X X

2018_11 96.9 X X

2018_12 96.6 X X

Sentinel2 Sentinel1

Composite Data % Valid Pixels Ascending Descending

2019_01 63.9 X X

2019_02 96 X X

2019_03 98.4 X X

2019_04 94.8 X X

2019_05 96 X X

2019_06 84.1 X X

2019_07 52.5 X X

2019_08 45.9 X X

2019_09 98.5 X X

2019_10 94.2 X X

2019_11 86.8 X X

2019_12 92.7 X X

Sentinel2 Sentinel1
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Methodology: 

 Pre-processing 

The pre-processing of the data, since the coincidence of the type of input data used, fol-

lows entirely the methodology previously described for the 2020 LC map. For the Senti-

nel/2 mosaics time series, a set of vegetation indices have been produced and added to 

the multispectral information in order to derive the multistack layer to be used as input 

for the automatic classifier. 

 Training  

The training collection for the forest maps production follows the same strategy adopted 

for the LC map production. Even in this case, the samples cover about 4% of the mapping 

area for each epoch.  

 

 

Table 23. Training sample composition used for TLRB 2017 Forest Map production. 

 

Table 24. Training sample composition used for IHRB 2017 Forest Map production 

 AI algorithms 

As for the LC maps, even for the forest cover maps the Light Gradient Boosting Method 

(LGBM https://lightgbm.readthedocs.io/en/latest/) was selected, but in this case its pa-

rameters were settled to perform a binary classification (instead of a multiclass classifica-

tion) using as metric the 'binary cross entropy'.  

6. Output data: 

 List of the output maps 

o Forest cover map 2016 

o Forest cover map 2017  

o Forest cover map 2018  

o Forest cover map 2019 

o Forest cover map 2020 

 Format 

o Raster: TIFF (Tagged Image File Format) 

Both the basins are provided in the Coordinate Reference System: WGS 84 / UTM 

zone 51N (EPSG: 32651) 

Forest map 

Code
Forest map Class

Area Class 

[km2]

1 Forest 51.5

2 No Forest 78.4

129.9

3205.0

4.1%Total Area Training / Area AoI

Total Training [km2]

Area AoI [km2]

Forest map 

Code
Forest map Class

Area Class 

[km2]

1 Forest 29.3

2 No Forest 47.5

76.8

2173.2

3.5%Total Area Training / Area AoI

Total Training [km2]

Area AoI [km2]

https://lightgbm.readthedocs.io/en/latest/
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 MMU: 0.10 hectares 

Since the size of one Sentinel 2 pixel (10 m x 10 m = 0.01 ha) is 10 times smaller than 

the minimum mapping unit, a post-processing was carried out by identifying the con-

tiguous pixel groups smaller than the MMU and replacing with the biggest contiguous 

LC class. 

 Nomenclature  

The output forest maps will include the following information content. 

Value 
Color code 
(RGB) 

Description 

0 N/A No data 

1 110,170,0 Forest 

2 255,255,255 No-forest  

Table 25: Description of the annual forest cover maps (2016-2020) values 

 

File Naming Description 

Forest 
map ras-
ter lay-
ers 

Forest_Cover_TLRB_20xx.tif 
Forest_Cover_IHRB_20xx.tif 

 GeoTIFF file format 

 Unsigned integer pixel type 

 8-bit pixel depth 

 UTM51N coordinate system 

 GSD 30m 

Forest 
map 
layer 
files 

Forest_Cover.lyr 
ArcGis layer file containing the 
forest cover map symbology 

Table 26: Description of the annual forest cover maps (2016-2020) deliverables 

3.1.2.2 Quality Control and Validation 
 

 Land cover maps 

1. The validation of the land cover maps have been performed by sample points randomly strat-

ified over the land cover class areas. The stratified random technique, also called proportional 

or quota random sampling, involves dividing the classification map into homogeneous sub-

groups (the individual land cover classes) and then taking a simple random sample in each 

subgroup. The sampling is proportionate producing sample sizes that are directly related to 

the size of the classes (i.e., the larger the class, the more samples will be drawn from it).  

2. The land cover class assignment of the validation points has been done using the available 

reference data not directly used in the automatic classification process (e.g. Google Earth, 

OpenStreetMap, Spatial Database of Planted Trees (SDPT) 2015 dataset2, Global Forest 

Change (GFC) 2000-2019 dataset3) 

3. Results 

The following tables represent the output confusion matrices resulting from the comparison 

between the validation points and the classification maps for each epoch both in Ilog-Hila-

bangan River Basin (IHRB) in the Visayas Region and the Tagum-Libuganon River Basin 

(TLRB). 
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Figure 4: Confusion matrix of LC 2000 in TLRB basin 

 

Figure 5: Confusion matrix of LC 2016 in TLRB basin 

 

Figure 6: Confusion matrix of LC 2020 in TLRB basin 

 

Figure 7: Confusion matrix of LC 2000 in IHRB basin 
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Figure 8: Confusion matrix of LC 2016 in IHRB basin 

 

Figure 9: Confusion matrix of LC 2020 in IHRB basin 

 

 Forest cover maps  

1. The validation of the forest cover maps have been performed by sample points randomly strat-

ified over the forest/no forest areas.  

2. The class assignment of the forest/ no forest validation points has been done using the avail-

able reference data not directly used in the automatic classification process (e.g. Google Earth, 

OpenStreetMap, Spatial Database of Planted Trees (SDPT) 2015 dataset2, Global Forest 

Change (GFC) 2000-2019 dataset3) 

3. Results 

The following tables represent the output confusion matrices resulting from the comparison 

between the validation points and the Forest cover maps for each epoch both in Ilog-Hila-

bangan River Basin (IHRB) in the Visayas Region and the Tagum-Libuganon River Basin 

(TLRB). 

 

 

Figure 10: Confusion matrix of Forest map 2017 in TLRB basin 
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Figure 11: Confusion matrix of Forest map 2018 in TLRB basin 

 

Figure 12: Confusion matrix of Forest map 2019 in TLRB basin 

 

Figure 13: Confusion matrix of Forest map 2017 in IHRB basin 

 

Figure 14: Confusion matrix of Forest map 2018 in IHRB basin 
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Figure 15: Confusion matrix of Forest map 2019 in IHRB basin 

 

 Annual forest cover maps (2001-2015) 

The annual forest cover maps products for the period 2001-2015 were inspected before delivery according to 

the Quality Control list presented in Table 27. 

QC elements Deliverables QC measure Quality target 

Completeness 
Raster layers Full visual check in GIS software 100% AOI coverage 

Delivery folders Full inspection of the delivery folder Missing items: 0 

Readability Raster layers Full visual check in GIS software 100% readability 

Compliance Raster layers Full visual inspection in GIS software 100% format compliance 

Thematic 
accuracy 

Raster layers Thematic accuracy for input data Overall accuracy >80% 

Table 27: QC list for annual forest cover maps (2001-2015) 

As for the thematic accuracy, a validation process was carried out in order to ensure that the overall accuracy 

for 2000 land cover maps reaches at least 80% as required by the user. Regarding Tropical Moist Forest data, 

the authors presented an overall accuracy of 91.4% for the 1990-2019 dataset. 

 

3.1.2.3 Usage, Limitations and Constraints 
Some examples of the land cover products are presented in this section.  
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Figure 16: LC 2000 in TLRB basin 

 

Figure 17: LC 2016 in TLRB basin 
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Figure 18: LC 2020 in TLRB basin 

 

Figure 19: Forest map 2017 in TLRB basin 
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Figure 20: Forest map 2018 in TLRB basin 

 

Figure 21: Forest map 2019 in TLRB basin 
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Figure 22: LC 2000 in IHRB basin 

 

Figure 23: LC 2016 in IHRB basin 
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Figure 24: LC 2020 in IHRB basin 

 

Figure 25: Forest map 2017 in IHRB basin 
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Figure 26: Forest map 2018 in IHRB basin 

 

Figure 27: Forest map 2019 in IHRB basin 



  

Page 35 of 45 

Annual forest cover maps (2001-2015) 

Thematic content and accuracy for the annual forest cover maps are dependent on both the 2000 land cover 

maps and the Tropical Moist Forest dataset accuracy. Moreover, some missing areas (i.e. NoData) due to cloud 

coverage were already present in the initial Land Cover map for the Tagum-Libuganon river basin. Hence, 

these areas were kept during the annual forest cover maps processing. 

 

3.1.3 Service 2: Forest Loss Rate Methodology  

3.1.3.1 Specifications 
The Service 2 was focused on the understanding a long-term evolution of landscapes which results in a pro-

found change to the land use/cover over large spatial extents with a specific interest to the evolution from a 

forested to an agricultural area (Forest to Agriculture Transit - FAT), which leads to deforestation. To under-

stand what are the most likely intermediate steps of such a transit and which evolutionary paths is more likely 

than others, we followed the Stochastic, Empirically Informed Model of Landscape Dynamics proposed by 

Nowosad and Stepinski (2019) to analyse the Deforestation Scenarios at global scale. The principal hypothesis 

under this model is that the evolution of the landscape from forested to agricultural happen starting from a 

landscape of homogeneous forest and ending with a landscape of homogeneous agricultural land. The model 

simulates the evolution of the landscape from forested to agricultural and yields different deforestation sce-

narios and their probabilities. A landscape currently covered entirely by forest will most likely evolve to an 

agricultural landscape along the maximum likelihood trajectory which reflects a prevailing series of circum-

stances; this is the most likely deforestation scenario. A different evolution of FAT along less likely trajectories 

can happen under rare circumstances; such occurrences are considered less likely deforestation scenarios. 

The LC maps produced in Service 1 and created for the reference years (2000, 2016, and 2020) were the input 

for Service 2. Since, as previously described and motivated, the automatic classification applied to IHRB and 

TLRB basins was slightly different with respect to the tree crops separation, two different specific testing ex-

ercises were performed for the two basins. Specifically, for the IHRB only the “periodically herbaceous” class 

was included in the agricultural area while for the TLRB also “periodically herbaceous” and “tree crops” were 

considered as agricultural class. In the following paragraphs, the analysis of the complete time series 2000-

2016-2020 of TLR basin is presented considering that the outcomes are more meaningful due to the separa-

tion of tree crops the tree covered areas. 

 Input data: 

1. LC maps for the epochs 2000, 2016 and, 2020  

 

 Methodology 

Following the work flow proposed by Nowosad and Stepinski (2019), the land change in a given areal 

unit was conceptualized as a modification of landscape pattern within this unit between two epochs 

of observations (t0 and t1). The entire workflow is reported in the following figures. 
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Figure 28. Workflow of Service 2 

1. For the Landscape classification, the AoI was tessellated into 35,611 and 24,144 nonoverlapping 

square areal units of the size 0.3 km × 0.3 km (30 × 30 LC maps cells). A mosaic, formed by the 

selected land categories in a given areal unit at a given epoch, constitutes a landscape character-

ized by a specific configuration (a pattern geometry ) and a thematic content (names of land cover 

classes present). The landscape classification was done by computing the 17 landscapes metrics 

listed in Nowosad and Stepinski (2018) using R software with the package “landscapemetrics”. In 

addition, also the percentages of area covered by each land cover category represented in the areal 

unit (i.e. PLANDs in the landscape metrics nomenclature) were estimated to characterize the com-

position of the patterns. This step was the highest computationally demanding part of the calcu-

lation for the Service 2. 

 

 Name 

ai aggregation index 

cohesion patch cohesion index 

contag connectance 

division division index 

iji interspersion and juxtaposition index 

pd patch density 

pladj percentage of like adjacencies 

lpi largest patch index 

msidi modified simpson's diversity index 

msiei modified simpson's evenness index 

shdi shannon's diversity index 

shei shannon's evenness index 

sidi simpson's diversity index 

siei simspon's evenness index 

pafrac perimeter-area fractal dimension 

contig_mn contiguity index  

contig_sd contiguity index  
Table 28: Landscape metrics used to characterize the composition of the patterns. 

 

These 17 metrics could be briefly parametrized by only two metrics interpreted as “Complexity” (C) 

and “Aggregation” (A) following the Nowosad & Stepinski (2018) obtained by performing a PCA anal-

ysis (performed with R software) on these indexes: the first two rotated principal component define 

1. Landscape classification

2. Landscape subsetting

3. Transition probabilities

4. Forest transition trajectories
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the complexity and aggregation. The quantization of such two components in a bi-dimensional histo-

gram describes the landscape types.  

Indeed, the “C” component is positively correlated with all diversity metrics: it increases when the 

histogram of the LC categories composition inside a unit’s cell is flat (all the LC categories are well 

represented inside the cell) and it decrease when the histogram is peaked (the unit is dominated by a 

single LC category).  

The “A” component measures the aggregation or connectivity: it increases when cells of the same LC 

categories are more aggregated within the unit. Therefore, small values of A indicate a landscape with 

a large number of small patches.  

The metrics “C” and “A” are principal components and have a theoretical range of values between -4 

and 4 (Nowosad & Stepinski, 2018). It was possible to classify all landscapes, based on the values of C 

and A, by constructing an equispaced C-A grid, that divides the C/A space into 64 sections. In such 

grid, each section is characterized by ΔC = 1 and ΔA = 1. 

This is a 2-D classification that takes into consideration values of C and A but not landscape's thematic 

content and allows to classify all the landscapes into up to 64 classes with respect to their configura-

tions. Moreover 64 are the theoretically maximum possible, while the real number of classes is gener-

ally lower and depends on the specific characteristics of the considered landscape. 

As output of this step, for each LC map, a corresponding C-A classification map (with a final resolution 

of 30 x 10 m = 300 meters) was obtained . 

 

TLRB 

LC 2000 

  

LC 2016 
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LC 2020 

  

Figure 29. C/A classification for the TLRB 

 

IHRB 

LC 2000 
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LC 2016 
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LC 2020 

  

Figure 30. C/A classification for the IHRB 

 

2. Landscape subsetting 

The classification of landscapes based on C and A concerns their geometric configuration but ig-

nores their thematic content (which is given only by landscape composition represented by the 

PLANDs1 of each LC class). For this reason, it was necessary to focus only on a suitable subset of 

landscapes (i.e., LC categories composition) based on the process of deforestation. 

In the scenario proposed by Nowosad and Stepinski (2018), where forest is replaced by agricul-

tural land cover, a sequence of transitions between subsequent landscape types occurs. The start-

ing point is a fully forested landscape and the ending point is a fully agricultural landscape; this 

sequence is referred to as a FAT trajectory. During our analysis, each FAT trajectory was divided 

into two phases: 

1. Forest-dominant phase (FAT1).  

The model for FAT1 was built starting from a subset of the landscapes (i.e., aerial units) sub-

ject to the following conditions: forest is the primary land cover class and agriculture is the 

secondary land cover class in LC at to. Along the evolution of the landscape towards t1, the 

transitions are towards a diminishing share of the forest. 

2. Agriculture-dominant phase (FAT2).  

The model of FAT2 was built starting from a subset of the landscapes subject to the following 

conditions: agriculture is the primary land cover class and forest is the secondary land cover 

class in LC at to. Along the evolution of the landscape towards t1, the transitions are towards 

an increasing share of agriculture. 

 

TLRB 

FAT 1 FAT 2 

2000 - 2016 

                                                             

1 The percentages of area covered by each land cover category represented in the areal unit. 
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2016-2020 

 
 

Figure 31. Landscape subsetting (FAT1 and FAT2 landscape units in green) for the TLRB. 

 

IHRB 

FAT 1 FAT 2 

2000 - 2016 
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2016-2020 

 
 

Figure 32. Landscape subsetting (FAT1 and FAT2 landscape units in green) for the IHRB. 

 

3. Transition Probabilities 

A specific landscape (LC category composition) at t0 may change into different types of landscape 

at t1. The frequencies of landscape types changes were calculated for each landscape type. This 

results in a probability distribution of changes that can occur for a given landscape type towards 

any other type of landscapes. 

 

4. Forest transaction trajectories 

Instead of run thousands of simulated trajectories, following Nowosad (2021), we used the prob-

ability distribution of the transitions. In this way, we studied some defined trajectories choosing 

always the most probable transition from each stage to the next one. The direction was defined 

moving always towards an increase of C and a decreasing of A in case of FAT1, and the opposite 

for the case of FAT2. 

A stage-to-stage transition probability of a landscape during 𝛥t was estimated. Such probability is 

the product of a probability (pch) that a landscape would transit to another type and a probability 

(ptr) of the landscape transitioning to a specific different type. Thus, the product pch ptr is a prob-

ability of a specific stage-to-stage transition occurring during a single 𝛥t and the mean waiting 

time (in units of 𝛥t) for such transition to occur is 1/𝑝𝑐ℎ𝑝𝑡𝑟. This reflects the mean waiting time 

for such a transition to occur. 

The FAT trajectories for the TLRB are reported in Figure 33 and Figure 34. 
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Figure 33. Summary of the forest-dominated phase (FAT1) and agriculture-dominated phase (FAT2) trajectories simu-
lating an evolution from a homogeneous forested to a homogeneous agricultural landscape for the TLRB during the 

epochs 2000-2016. 

 

Figure 34:. Summary of the forest-dominated phase (FAT1) and agriculture-dominated phase (FAT2) trajec-
tories simulating an evolution from a homogeneous forested to a homogeneous agricultural landscape for the 

TLRB during the epochs 2016-2020. 
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A FAT1 trajectory, which implies a diminishing share of the forest, starts from the upper left side 

of the C-A diagram characterized by high aggregation and a low complexity, typically of a uniform 

landscape. At each step of the trajectory, an increasing of complexity and/or a decreasing of ag-

gregation occurs. The process continues until the opposite corner of the C-A diagram (character-

ized by high complexity and low aggregation) is reached. This condition represents a tipping point, 

because still the forest class was prevalent for the considered landscape. This point coincides with 

the end of the phase 1 and the starts of the phase 2. Phase 2 leads to a uniform agricultural land-

scape through states characterized by decreasing of complexity and/or an increasing of aggrega-

tion. 

Numbers placed over the arrows in Figure3 and Figure 34 indicate the waiting time needed for 

the transition between two consecutive stages to occur. For example, a transition B1 → E4 Bd in 

the most likely FAT1 trajectory for the TLRB during the period 2000 -2016 is equal to 22 years. 

This value reflects the mean waiting time for such a transition to occur and depend on both pch 

and ptr. The total mean waiting time for the completion of the FAT1 trajectory is 539 years while 

for the FAT2 is 114.  

Analysing the mean waiting times in trajectories, reported synthetically in Table 29Table , it is 

possible to observe that Phase 1 of FAT trajectories takes longer to complete than Phase 2. This 

result was confirmed also by the study conducted at global scale by Nowosad and Stepinski (2019) 

which observed as FAT takes longer to lose the first ∼50% of the forest but once reached this 

tipping point, the FAT for the remaining forest accelerates. 

 

 FAT1 FAT2 FAT1 + FAT2 
2000-2016 539 114 653 
2016-2020 329 248 577 

Table 29: Mean waiting times for FAT observed in the TLRB. 

The results obtained for the TLRB suggest a moderate deceleration of FAT since the total waiting 

time passed from the 653 of the mid-term (2000-2016) to the 577 year of the short-term (2016-

2020). This result was achieved for both FAT1 and FAT2.  

 

3.1.3.2 Quality Control and Validation 
The plausibility of the results of the Forest Loss Rate analysis has been checked by comparing them with the 

outcomes of the work published by Nowosad and Stepinski (2019), used as main reference for the model con-

figuration. 

3.1.3.3 Usage, Limitations and Constraints 
The results obtained in Service 2 could be used to interpret the deforestation scenario at the river basin scale. 

Their use for conservation policy development should consider how the size of the grid used to define the 

landscape units can have a relevant impact on the final results. It should be carefully selected taking into ac-

count the size of AoI with the characteristics of the LC input map. In our case the selected 30x30 pixels grid 

was considered as enough representative for the two analyzed landscapes (i.e., forest and agricultural). 

Finally, as suggest also by Nowosad and Stepinski (2019), it is possible to use the model developed in this 

Service also for land change scenarios others than FA (e.g., desertification or urbanization), by selecting an 

appropriate subset of the dataset. 

3.1.4 Training and capacity building proposal 
The proposed online training is composed by two sessions aimed to describe the results of the activities and 

the applied methodologies. The training will be held through an online training platform for an interactive 

videoconferencing: MS Teams platform is proposed. In particular, the following topics are proposed to be 

addressed. 
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Session 1 (3 hours) 

Service 1 
Land cover 
mapping 

o Introduction to the input EO and other data availability 
 EO input data availability over TLRB and IHRB basins 
 Application and usability of available forest products at global scale 
 Feasibility of forest monitoring (annual or twice per year) 

o AI algorithms for land cover and forest mapping 

o Mapping results obtained for TLRB and IHRB basins 

o Discussion and QA 

o Training sample selection (sampling scheme, samples selection and interpretation) 
o Validation activity 
o Discussion and QA 

Session 2 (2 hours): 

Service 2 
Forest Loss 
Rate analysis 

o Introduction to the workflow applied for the Service 1 based on Nowosad and 
Stepinski (2019) model for forest dynamics analysis 

o The landscape metrics calculation 
o Building the forest transactions trajectories 
o Results obtained for TLRB and IHRB basins 
o Discussion and QA 

Table 30: Proposed agenda for the online training and capacity building meeting 

The schedule of the proposed online training will be set compatibly with the time zones of the people involved 

in the activity. A possible date will be planned following users availability. 


