
_p

StaMPS: Persistent Scatterer Interferometry Processing

Case Study: Mexico City, Nov. 2019 - Nov. 2020

TRAINING KIT – HAZA12

1

Research and User Support for Sentinel Core Products

The RUS Service is funded by the European Commission, managed by the European Space
Agency and operated by CSSI and its partners.

Authors would be glad to receive your feedback or suggestions and to know how this material
was used. Please, contact us on training@rus-coperenicus.eu

Cover images produced by RUS Copernicus

The following training material has been prepared by Serco Italia S.p.A. within the RUS
Copernicus project.

Date of publication: June 2021

Version: 1.1

Suggested citation:

Serco Italia SPA (2020). StaMPS: Presistent Scatterer Interferometry Processing - Mexico City
2021 (version 1.1). Retrieved from RUS Lectures at https://rus-copernicus.eu/portal/the-rus-
library/learn-by-yourself/

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License.

DISCLAIMER

While every effort has been made to ensure the accuracy of the information contained in this publication, RUS Copernicus
does not warrant its accuracy or will, regardless of its or their negligence, assume liability for any foreseeable or
unforeseeable use made of this publication. Consequently, such use is at the recipient’s own risk on the basis that any
use by the recipient constitutes agreement to the terms of this disclaimer. The information contained in this publication
does not purport to constitute professional advice.

2

Table of Contents

1 Introduction ... 3

2 Training .. 3

2.1 Data used .. 3

2.2 Software in RUS environment ... 3

3 Register to RUS Copernicus ... 4

4 Request a RUS Copernicus Virtual Machine to repeat a Webinar ... 5

5 Data download and preparation ... 7

6 Installation and configuration (Linux) .. 7

6.1 MATLAB ... 7

6.2 TRAIN ... 8

6.3 Snaphu (Installed in RUS VMs) .. 9

6.4 Triangle .. 9

6.5 StaMPS .. 9

6.6 StaMPS Visualizer .. 10

7 Step by step ... 11

7.1 Check the parameters ... 12

7.2 STEP 1: Load the PS Candidates .. 12

7.3 STEP 2: Calculate temporal coherence .. 15

7.4 STEP 3: Initial PS selection ... 16

7.5 STEP 4: PS weeding .. 17

7.6 STEPS 1-4 for other patches .. 19

7.7 STEP 5: Phase correction ... 19

7.8 STEP 6: Phase unwrapping .. 21

7.9 TRAIN: Linear tropospheric correction .. 22

7.10 Estimation of spatially correlated errors ... 24

7.11 Re-run STEPS 6 and 7 .. 26

7.12 Velocity estimation, standard deviation, and time series ... 26

7.13 Export to StaMPSVisualizer ... 29

7.14 Output to Google Earth ... 30

8 Extra steps ... 31

8.1 Downloading the outputs from the VM .. 31

9 References ... 32

9.1 PSI resources ... 32

9.2 Tutorials .. 32

3

1 Introduction

The Research and User Support for Sentinel core products (RUS) service provides a free and open
scalable platform in a powerful computing environment, hosting a suite of open-source toolboxes pre-
installed on virtual machines, to handle and process data derived from the Copernicus Sentinel satellites
constellation. In this tutorial we will employ RUS to identify and map land subsidence in Mexico City
using Sentinel-1 data.

Land subsidence in Mexico City caused by
groundwater overexploitation over the
last century has been more than 9 meters,
resulting in damages to buildings, streets,
sidewalks, sewers, storm water drains and
other infrastructure [1].

Due to the fact that the city is partially built
on the area of a former lake (Lago
Texcoco), it rests on the heavily saturated
clay which is collapsing due to the over-
extraction of groundwater. Current
subsidence rates using Sentinel-1 SAR data
approximate 2.5 cm/month [3].

Persistent Scatterer Interferometry (PSI) is a powerful advanced DInSAR technique able to measure and
monitor displacements of the Earth’s surface over time with hight accuracy. Hooper et al. (2004).
proposed a novel PS selection using phase characteristics, which is suitable to find low-amplitude natural
targets with phase stability that cannot be identified by amplitude-based algorithms. This work
originated one of the most widely used PSI software packages, StaMPS. 1

SNAP2StaMPS is a Python workflow developed by José Manuel Delgado Blasco and Michael Foumelis in
collaboration with Prof. A. Hooper to automate the pre-processing of Sentinel-1 SLC data and their
preparation for ingestion to StaMPS.

2 Training

Approximate time needed to complete this training session is two hours.

2.1 Data	used	

• 31 Sentinel-1A images acquired between November 1, 2019 and November 1, 2020.
[downloadable @ASF Data Search portal – Vertex]

• Auxiliary data stored locally
@ /shared/Training/HAZA09_SNAP2StaMPs_DataPrep_TutorialKit/AuxData

2.2 Software	in	RUS	environment	

MATLAB, StaMPS, TRAIN, StaMPS Visualizer, snaphu

(Commercial SW not available in RUS! If you wish to replay this exercise you have to secure your own
MATLAB license)

Mexico City’s buildings are seriously leaning due to land subsidence. Photo
credit: JOSH HANER/THE NEW YORK TIMES (http://www.sciencemag.org)

4

3 Register to RUS Copernicus

To repeat the exercise using a RUS Copernicus Virtual Machine (VM), you will first have to register as a
RUS user. For that, go to the RUS Copernicus website (www.rus-copernicus.eu) and click on
Login/Register in the upper right corner.

Select the option Create my Copernicus SSO account and then fill in ALL the fields on the Copernicus
Users’ Single Sign-On Registration. Click Register.

Within a few minutes you will receive an e-mail with activation link. Follow the instructions in the e-mail
to activate your account. You can now return to https://rus-copernicus.eu/, click on Login/Register,
choose Login and enter your chosen credentials.

5

Upon your first login you will need to enter some details. You must fill all the fields.

4 Request a RUS Copernicus Virtual Machine to repeat a Webinar
Once you are registered as a RUS user, you can request a RUS Virtual Machine to repeat this exercise or
work on your own projects using Copernicus data. For that, log in and click on Your RUS Service à Your
training activities.

Select HAZA12 (includes HAZA09), check the field “I have read and agree to the Terms and conditions of
RUS Service” and then click on Request Webinar Training to request your RUS Virtual Machine.

6

Further to the acceptance of your request by the RUS Helpdesk, you will receive a notification email with
all the details about your Virtual Machine.

To access it, go to Your RUS Service à Your Dashboard and click on Access my Virtual Machine.

Fill in the login credentials that have been provided to you by the RUS Helpdesk via email to access your
RUS Copernicus Virtual Machine.

This is the remote desktop of your Virtual Machine.

7

5 Data download and preparation

In this exercise we will use a dataset prepared during the webinar: Data preparation for StaMPS PSI
processing with SNAP. In order to follow the steps below you first need to prepare the dataset as
described here, you can also watch the recording of the webinar available on our YouTube channel -
RUS Copernicus Training - or on the RUS Training Portal.

In the materials you will find all the steps needed to derive the input dataset including the initial data
download. The input folder (as derived in the Data Preparation webinar) is named “INSAR_20200504”.
The size of the folder is approximately 42.5 Gb, and the structure is as follows:

6 Installation and configuration (Linux)

This chapter will address the setup of the software necessary to perform the exercise as it is not included
in the default RUS Copernicus VM installation. The setup here refers to Linux Ubuntu 16.04 OS – if you
do not have access to a RUS VM or other Linux PC, you can request the RUS Copernicus Docker image
or setup a local virtual environment using for example Virtual Box.

6.1 MATLAB	

Unfortunately, MATLAB is necessary to run the StaMPS processing and it is a commercial software that
requires a license to be run. The license is NOT provided by RUS Copernicus and you need to secure your
own paid/trial licence to repeat the training (even in case of requesting RUS VM).

This exercise was tested with version 2020b and you will need the following MATLAB toolboxes:

• Parallel Computing Toolbox (DM)

TIP: Note that errors have been reported when running StaMPS on Windows – Linux is the preferred
environment.

MATLAB should be run from command line (provided that StaMPS_CONFIG.bash is included in .bashrc)

Follow steps outlined in: 1) by Matthias Schlögl in his posts on GIS-Blog
 2) in the stamps and snap2stamps manuals
 3) StaMPS Persistent Scatterer Exercise by A. Hopper (2015, v3.1)

8

• Image Processing Toolbox (IP)
• Signal Processing Toolbox (SG)
• Statistics and Machine Learning Toolbox (ST)

To install MATLAB for Linux you can follow the steps outlined here.

After MATLAB is installed, we need to install the dependencies – these include GNU awk, the tcsh unix
shell, the matlab support package, the build-management-tool, and the C++ compiler:

During the matlab-support installation you will be asked if you wish to rename the gcc libraries type: “n”

6.2 TRAIN	

The Toolbox for Reducing Atmospheric InSAR Noise – TRAIN – is developed in an effort to include current
state of the art tropospheric correction methods into the default InSAR processing chain. Initial
development was performed at the University of Leeds. We request TRAIN users to reference our
publication of TRAIN:

Bekaert, D.P.S., Walters, R.J., Wright, T.J., Hooper, A.J., and Parker, D.J. (2015c), Statistical comparison of
InSAR tropospheric correction techniques, Remote Sensing of Environment, doi: 10.1016/j.rse.2015.08.035

There is no need to install TRAIN, just download it from the GitHub repository and place it to the
/home/rus folder (/home/<username>).

The folder containing the toolbox will be downloaded to /home/rus/ directory (or downloads dir if not
on RS VM), we can leave it there. To configure it enter the TRAIN folder and right click the
APS_CONFIG.sh file à Open with Mousepad (or other text editor).

Go to View à Line numbers

Now edit the lines 20, 21 and 23 to correspond to the toolbox location in your machine.

TIP: If you run to any issues during the installation, they may be related to the libstdc++6, gcc-4.9 libraries,
to fix the issue you can upgrade the libraries by running the following commands.
sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update
sudo apt-get install gcc-4.9
sudo apt-get upgrade libstdc++6

sudo apt-get install gawk
sudo apt-get install tcsh
sudo apt-get install matlab-support
sudo apt-get make
sudo apt-get build-essential g++

git clone https://github.com/dbekaert/TRAIN.git

Give the correct path to the APS toolbox
export APS_toolbox="/home/rus/TRAIN/"
export PYTHONPATH="${PYTHONPATH}:/home/rus/TRAIN/python_modules/"
full path to the get_modis.py file
export get_modis_filepath="/home/rus/TRAIN/python_packages/oscar-client-
python/get_modis.py"

9

Save the edits.

6.3 Snaphu	(Installed	in	RUS	VMs)	

Snaphu is installed by default in the RUS VMs (the installation path is /usr/local/snaphu). If snaphu needs
to be installed in your system you can follow the steps outlined below.

SNAPHU is an implementation of the Statistical-cost, Network-flow Algorithm for Phase Unwrapping
proposed by Chen and Zebker (see references below). This algorithm poses phase unwrapping as a
maximum a posteriori probability (MAP) estimation problem, the objective of which is to compute the
most likely unwrapped solution given the observable input data. (SNAPHU (stanford.edu))

C. W. Chen and H. A. Zebker, ̀ `Network approaches to two-dimensional phase unwrapping: intractability
and two new algorithms,'' Journal of the Optical Society of America A, vol. 17, pp. 401-414 (2000).

To install snaphu, open the terminal and run the following commands:

In case you follow the above installation steps, snaphu will be likely installed to /usr/local/snaphu

6.4 Triangle	

Triangle generates exact Delaunay triangulations, constrained Delaunay triangulations, conforming
Delaunay triangulations, Voronoi diagrams, and high-quality triangular meshes. The latter can be
generated with no small or large angles and are thus suitable for finite element analysis. (Triangle: A
Two-Dimensional Quality Mesh Generator and Delaunay Triangulator (cmu.edu))

To install triangle, open the terminal and run the following command:

In case you follow the above installation steps, triangle will be likely installed to /usr/local/triangle

6.5 StaMPS	

Download StaMPS from the GitHub repository - https://github.com/dbekaert/StaMPS/tree/v4.1-beta

Go to the download location and extract the downloaded archive to /stamps folder. In the terminal type:

sudo apt-get update
sudo apt-get install snaphu

sudo apt-get install triangle-bin

10

The tool will be installed in the same folder from which the installation is run.

To configure StaMPS, go back to the /stamps folder and open the configuration file
StaMPS_CONFIG.bash in a text editor (e.g., right-click on the file and select Open in Moustepad).

Edit the paths in line 1,2,10,11 to correspond to your system – they may not be the same as shown
above (hints to where the installation folders might be located are given for each SW above).
SNAP2StaMPS was used to prepare the input data and can be downloaded here – no installation is
required.

Finally navigate to your user folder (/home/rus/) and open the .bashrc file (this file is usually hidden and
you need to make it visible by going to View à Show Hidden Files). Open the file in a text editor and
scroll to the bottom. Add the following lines pointing to the configuration files for StaMPS and TRAIN.

6.6 StaMPS	Visualizer	

Requires R and R Studio installed (Check their websites for installation instructions). Download the
StaMPS Visualizer - GitHub - thho/StaMPS_Visualizer: Shiny application to visualize DInSAR results
processed by StaMPS/MTI. Extract the folder to /home/rus/StaMPS_Visualizer (or corresponding folder
on your machine).

Launch the R Studio and load the /home/rus/StaMPS_Visualizer/install_packages.R. Run all the lines
in the script to install the necessary packages.

Once the packages are installed (it will take a while) open the /home/rus/StaMPS_Visualizer/ui.R, in
the upper left corner you can see a button Run app. Click on it to open the StaMPS Visualizer window.

cd StaMPS-4.1b/src
make
make install

source /home/rus/stamps/StaMPS_CONFIG.bash
source /home/rus/TRAIN/APS_CONFIG.sh

11

7 Step by step

In the file explorer navigate to the StaMPS input folder (Prepared following the steps outlined in the
SNAP2StaMPS tutorial).

/shared/Training/HAZA09_SNAP2StaMPs_DataPrep_TutorialKit/Project/INSAR_20200504/

Right-click on the white space in the folder and select . A terminal window will open.
In the terminal type and run:

If MATLAB is correctly installed, then the MATLAB window will open. To work with StaMPS always open
MATLAB from the terminal (do not use desktop or Start icons otherwise you will not be able to run
StaMPS commands).

Once the MATLAB window opens, test the StaMPS and TRAIN setup by typing:

matlab

help stamps
help aps_linear

12

If you don’t receive any errors, then all is set, and we can start with the exercise.

7.1 Check	the	parameters	

To check the initial parameters, type:

For the moment we will not change any, but we will adapt them at the appropriate steps.

7.2 STEP	1:	Load	the	PS	Candidates	

The stamps commands 1 to 4 can be run either for each patch separately (by entering the patch folders
and running the commands from there) or for all patches at the same time (by running the command
from the main directory).

We will run the commands 1 - 4 first for a single patch à PATCH_14. Type:

Step 1 loads the data for the initial candidate PS pixels and stores them in MATLAB workspace files. To
run the first step type:

The format of the command is stamps(START_STEP,END_STEP), this makes it possible to run multiple
steps at once. To start we will however run them separately.

The command will create .mat files with “1” in the name, indicating that they contain the initial PS data.

…

The command will create .mat files with “1” in the name, indicating that they contain the initial PS data.
To list the newly created files, run:

Now we can list details for each interferogram (only part contained in PATCH_14). Run the following
command:

getparm

cd PATCH_14

stamps(1,1)

ls *.1.mat

ps_info

13

We can now visualize the wrapped phase of the selected initial PS candidate pixels using the ps_plot
command, run:

The blue image corresponds to an interferogram using the master image as both master and slave and
so it has a zero-phase difference. We cannot see many details in this view, lets then visualize a single
interferogram. We can choose the interferogram we want to visualize. Let’s choose the second ifg (slave:
18 November 2019) with the mean amplitude of all the images as background (value 5).

By default, the size of the plotted points is set to 120m, this means that the points overlap and merge
into one another. We can change the plotted size by changing the 'plot_scatterer_size' parameter. Run:

ps_plot(‘w’)

TIP: To check the functionality by running:
help ps_plot

ps_plot(VALUE_TYPE,BACKGROUND,PHASE_LIMS,REF_IFG,IFG_LIST,...)

ps_plot(‘w’,5,0,0,2)

setparm('plot_scatterer_size',30)

14

Now run the command to visualize the second interferogram again. If you place the plot with 200m
point size and the new one with 30 m size, we can see that the right side of the image contains much
less candidate pixels.

You can also notice two grey rectangles in this area, these correspond to bodies of water and should not
therefore contain any candidate pixels. This demonstrates that amplitude dispersion is not a perfect
proxy for phase noise.

200 m 30 m

15

7.3 STEP	2:	Calculate	temporal	coherence	

This is an iterative step that estimates the phase noise value (g) for each candidate pixel in every
interferogram (StaMPS manual). Processing is controlled by the following parameters:

Parameter Default Description Influence

max_topo_err 20 m

Maximum uncorrelated DEM error (in m). Pixels with uncorrelated DEM
error greater than this will not be picked.
Setting this higher, will increases the mean g value (coherence-like
measure) of pixels that have random phase. Typical values are around 10
m.

unknown

filter_grid_size 50 m

Pixel size of grid (in m). Candidate pixels are resampled to a grid with this
spacing before filtering to determine the spatially correlated phase. For
the application of this filter technique, the irregular grid of the
provisionally selected points must be transformed to a regular grid,
whereby the grid width must be sufficiently small, so that over an element
of this grid no strong variation in the phase takes place (typical values
would be 40 to 100 m). The filter works like the Goldstein filter on
individual sections of the image (windowed Fourier transformation).

low

filter_weighting 'P-square'
Weighting scheme (PS probability squared), the other possibility being
'SNR'. Candidate pixels are weighted during resampling according to this
scheme. P-squared was found to be better (Hooper et al., 2007).

high

clap_win 32

CLAP (Combined Low-pass and Adaptive Phase) filter (2-D FFT) window
size (pixel x pixel), typically 32x32 or 64x64. Depending on over what
distance pixels are expected to remain spatially correlated. Together with
filter grid size, determines the area included in the spatially correlated
phase estimation.

unknown

clap_low_pass_w
avelength 800 CLAP filter low-pass contribution cut-off spatial wavelength (in m).

Wavelengths longer than this are passed. medium

clap_alpha 1
Weighting parameter for phase filtering (CLAP α\alphaα term). Together
with the β term, determines the relative contribution of the low-pass and
adaptive phase elements to the CLAP filter.

unknown

clap_beta 0.3 Weighting parameter for phase filtering (CLAP β term).

gamma_change_c
onvergence 0.005

Threshold for change in change in mean value of γ (coherence-like
measure). Determines when convergence is reached and iteration ceases.
γ is a measure of the phase noise level and an indicator of whether the pixel
is a PS pixel (i.e., a measure of the variation of residual phase for a pixel).
Once we have converged on estimates for the phase stability of each pixel,
we select those most likely to be PS pixels, with a threshold determined by
the fraction of false positives we deem acceptable. We also seek to reject
pixels that persist only in a subset of the interferograms and those that are
dominated by scatterers in adjacent PS pixels. After every iteration we
calculate the root-mean-square change in γx. When it ceases to decrease,
the solution has converged, and the algorithm stops iterating.

low

gamma_max_iter
ations 3

Maximum number of iterations before iteration process ceases.
Phase Stability Estimation: Initially, we select a subset of pixels based on
analysis of their amplitudes, rejecting those least likely to be PS pixels. We
then estimate the phase stability of each of these pixels through phase
analysis, which we successively refine in a series of iterations.

unknown

quick_est_gamma
_flag 'y' Employ quick estimation procedure for γ value. unknown

Table adapted from StaMPS/2-4_StaMPS-steps.md · master · Matthias Schlögl / gis-blog · GitLab & StaMPS Manual

We will keep all parameters as default and run:

stamps(2,2)

16

…

7.4 STEP	3:	Initial	PS	selection	

This step makes a selection of PS based on probability, by comparison to results for data with random
phase. This is usually done twice. After the first selection, the temporal coherence of each selected pixel
is re-estimated more accurately, by dropping the pixel itself from the estimation of the spatially
correlated phase. Then the selection process is repeated. (A. Hooper, 2018)

The parameters influencing this step are shown below (some parameters set in step 2 are also relevant):

Parameter Default Description Influence

select_method 'DENSITY'

Selection method for pixels with random phase. Other option 'PERCENT'.
We select those pixels most likely to be PS pixels, with a threshold
determined by the fraction of false positives we deem acceptable. We
select PS based on the calculated values of γx (measure of the phase
stability of the pixel).

unknown

density_rand 20

Maximum acceptable spatial density (per km²) of selected pixels with
random phase. Only applies if select method is 'DENSITY'. At this stage
we can usually accept a high density, as most random-phase pixels will
be dropped in the next step.

unknown

percent_rand 20

Maximum acceptable percentage of selected pixels having random
phase. They are selected on the basis of their noise characteristics. The
value can be set higher, since bad pixels will be weeded in the next steps
(4 and 5). Only applies if select_method is 'PERCENT'.

medium

Table adapted from StaMPS/2-4_StaMPS-steps.md · master · Matthias Schlögl / gis-blog · GitLab & StaMPS Manual

We will keep all parameters as default and run:

TIP: This step is extremely time demanding due to the gamma re-estimation process. You can disable
the re-estimation by changing the corresponding parameter.

setparm('select_reest_gamma_flag’, ’n’)

stamps(3,3)

17

7.5 STEP	4:	PS	weeding	

Pixels selected in the previous step are weeded, dropping those that are due to signal contribution from
neighbouring ground resolution elements and those deemed too noisy. Data for the selected pixels are
stored in new workspaces. (StaMPS Manual)

Processing is controlled by the following parameters:

Parameter Default Description Influence

weed_standard_dev 1.0

Threshold standard deviation. For each pixel, the phase noise standard
deviation for all pixel pairs including the pixel is calculated. If the
minimum standard deviation is greater than the threshold, the pixel is
dropped. If set to 10, no noise-based weeding is performed.
A pixel may display a period of good phase stability, preceded and/or
followed by a period of low stability. To avoid picking these pixels, we
include an optional step to estimate the variance of x for each pixel
using the bootstrap percentile method with 1000 iterations and drop
pixels with standard deviation over a defined threshold, good initial
values are 1-1.2.

high:
increasing
the SD
increases
the
selected PS
but also the
noise level.

weed_max_noise Inf

Threshold for the maximum noise allowed for a pixel. For each pixel
the minimum pixel-pair noise is estimated per interferogram. Pixels
with maximum interferogram noise value higher than the indicated
threshold are dropped.

unknown

weed_time_win 730

Smoothing window (in days) for estimating phase noise distribution for
each pair of neighbouring pixels. The time series phase for each pair is
smoothed using a Gaussian-weighted piecewise linear fit. weed time
win specifies the standard deviation of the Gaussian. The original phase
minus the smoothed phase is assumed to be noise.

unknown

weed_neighbours ‘n’

Flag for proximity weeding. If set to 'y', pixels are dropped based in
their proximity to each other. A Scatterer that is bright can dominate
pixels other than the pixel corresponding to its physical location. The
error in look angle and squint angle due to the offset of the pixel from
the physical location usually results in these pixels not being selected
as PS. However, the slight oversampling of the resolution cells can
cause pixels immediately adjacent to the PS pixel to be dominated by
the same scatterer where the error may be sufficiently small that the
pixel appears stable. To avoid picking these pixels, we assume that
adjacent pixels selected as PS are due to the same dominant scatterer.
As we expect the pixel that corresponds to the physical location to have
the highest SNR, for groups of adjacent stable pixels we select as the
PS only the pixel with the highest value of γx.

high:
should be
set to 'y'

weed_zero_elevation ‘n’
This parameter should be applied if there are no elevation areas in
the study area – e.g. ocean or other waterbodies (depending on the
DEM used)

unknown

Table adapted from StaMPS/2-4_StaMPS-steps.md · master · Matthias Schlögl / gis-blog · GitLab & StaMPS Manual

In this step we will turn on the proximity weeding parameter.

We can keep the ‘weed_zero_elevation’ parameter as default since there is no zero elevation areas in
our data (altitudes between 2200 and 4000 m).

setparm(‘weed_neighbours’,’y’)

18

We will keep other parameters as default and run:

…

stamps(4,4)

Initial PS
selection

Weeded
PS
selection

19

You can test setting the weed_standard_dev to 1.2 for example and re-run step 4 to see how the number
of selected points will change. Make sure however to set the final run to the value that you wish to use
for the other patches as well.

7.6 STEPS	1-4	for	other	patches	

At this point we need to process also the other patches since they will be merged at the end of step 5.
First, we need to change the directory to INSAR_20200504. To do this run:

We do not need to process all of the patches – patch 14 is already processed and we will also disregard
patches 1 – 6 and 25 – 27 to decrease the processing time. To do this, scroll down in the Current folder
menu on the left and double click on the patch.list file. It will open in MATLAB Editor. Now delete the
lines containing patches 1 – 6, 14 and 25 – 27 and click Save. Then close the Editor window.

The patches are organized in columns, for the
descending pass the patch number 1 is located at the
upper right corner.

The process will only consider patches listed in this file. Now, to process them, run:

NOTE: This step may run for many hours depending on your machine and whether the
'select_reest_gamma_flag’ is enabled or no.

7.7 STEP	5:	Phase	correction	

Now when we have all the required patches processed, we can run the phase correction step. The
wrapped phase of the selected pixels is corrected for spatially uncorrelated look angle (DEM) error. At
the end of this step the patches are merged.

Processing is controlled by the following parameters:

Parameter Default Description Influence

merge_resample_size 0 Coarser posting (in m) to resample to. If set to 0, no resampling is
applied. Use in case of memory issues to apply coarser sampling. unknown

merge_standard_dev Inf

Threshold standard deviation. For each resampled pixel, the phase
noise standard deviation is computed. If the standard deviation is
greater than the threshold, the resampled pixel is dropped. Only
applied in case of resampling.

unknown

Table adapted from StaMPS/2-4_StaMPS-steps.md · master · Matthias Schlögl / gis-blog · GitLab & StaMPS Manual

25 22 19 16 13 10 7 4 1

26 23 20 17 14 11 8 5 2

27 24 21 18 15 12 9 6 3

cd ..

stamps(1,4)

20

We will keep all parameters as default and run:

The corrected phase information will be stored as ‘version 2’ (PS candidates were version 1). We can list
the files by using the following command:

Now it is possible to plot the phase of the selected pixels for the full study area:

We can check the coherence by visually scanning the phase of each interferogram for this we need to
plot the interferograms one by one. You can do this by running the command shown as bellow and
changing the last number which represents the number of the interferogram in the time series.

stamps(5,5)

ls *2.mat

ps_plot(‘w’)

ps_plot(‘w’,5,0,0,1)
g

21

It is possible to also change the background of the interferogram. So far, we have used value “5” which
corresponds to the mean amplitude, other possible values are “0”- black, 1 – “white” (using the “0” or
“1” will also result the image to be plotted in lat/lon instead of radar geometry “5”).

7.8 STEP	6:	Phase	unwrapping	

When we measure phase, we can only measure it in the range 0 to 2π, when you consider the
relationship of phase and wavelength you can imagine that there will be a lot of 2π cycles before the
signal arrives to the ground as the wavelength, we use here is 5.5 cm for Senitnel-1. Therefore, the
difference or interferometric phase at any point is the value between 0 to 2π plus any unknown number
k of cycles.

The phase ambiguity is solved during the so-called phase unwrapping calculation which is the process of
reconstructing the original phase shift from this "wrapped" representation. It consists of adding or
subtracting multiples of 2 in the appropriate places to make the phase image as smooth as possible.

In this step the stamps will run the unwrapping using the snaphu SW that we have set up in the
beginning.

Processing is controlled by the following parameters:

Parameter Default Description Influence

unwrap_method ‘3D’

Unwrapping method, alternative '3D_QUICK' for SBAS. '3D_QUICK'
is default for SBAS. Can be set to '3D' to potentially improve
accuracy, although this will take longer. PS data sets are in fact
three-dimensional, the third dimension being that of time, and
unwrapping accuracy is improved by treating the problem as 3-D.

medium/
high

unwrap_grid_size 200

Resampling grid spacing. If unwrap_prefilter_flag is set to 'y', phase
is resampled to this grid. Should be at least as large as
merge_grid_size. High values reduce noise but may lead to
undersampling of the signal

high

unwrap_gold_alpha 0.8 Value of α for Goldstein filter. The larger the value the stronger the
filtering.

medium/
high

unwrap_gold_n_win 32

Window size for Goldstein filter. Optionally, if the data are very
noisy, a pre-filtering step can be run to filter the data spatially before
unwrapping, as is common in 2-D (Goldstein and Werner, 1998). For
each time step, the complex phase data are first sampled to a grid
using a grid spacing over which little variation in phase is expected
(typically 40 to 100 m). Where multiple pixels fall in the same grid
cell, the complex phase is summed. The gridded phase is then
transformed using the fast Fourier transform and filtered in the
frequency domain using an adaptive phase filter [Goldstein and
Werner, 1998]. This preserves the dominant frequencies which are
present in the data. After inverse transformation, the grid cells
containing data are treated as the new data points for input into the
unwrapping algorithm.

unknown

unwrap_hold_good_values ‘n’ - -

unwrap_prefilter_flag ‘y’
Prefilter phase before unwrapping to reduce noise. SCLA and AOE
subtraction is applied when step 6 is redone after step 7. To avoid
subtraction, use scla_reset. Setting to 'y' is recommended.

high

unwrap_patch_phase ‘n’
Use the patch phase from Step 3 as prefiltered phase. If set to 'n' PS
phase is filtered using a Goldstein adaptive phase filter. Setting to 'n'
is recommended.

high

unwrap_time_win 730

Smoothing window (in days) for estimating phase noise distribution
for each pair of neighbouring pixels (i.e. smoothing filter length in
days for smoothing phase in time by estimate the noise contribution
for each phase arc). The time series phase for each pair is smoothed
using a Gaussian window with standard deviation of this size.
Original phase minus smoothed phase is assumed to be noise, which

high

22

is used for determining probability of a phase jump between the pair
in each interferogram. With a Gaussian filter, the low frequencies of
the time series are determined and subtracted, which leads to the
noise measurements whose variance is estimated.

drop_ifg_index []
ifg will not be included in unwrapping. This might be helpful if after
unwrapping and testing parameters an ifg is still noisy. After omitting
interferograms, steps from 2 onwards should be redone.

potentially
high (if
needed)

Table adapted from StaMPS/2-4_StaMPS-steps.md · master · Matthias Schlögl / gis-blog · GitLab & StaMPS Manual

We will keep all parameters as default and run:

Once the processing finishes, we can visualize the one of the unwrapped interferograms by running:

Here we have visualized only the first interferogram, but you can visualize all of them again using simply
“ps_plot(‘u’)” command. This is our first unwrapping result. We will rerun this step later …

7.9 TRAIN:	Linear	tropospheric	correction	

A linear tropospheric correction can be computed based on the phase and topographic information. By
default, the 'non_defo_flag' is set to 'n', which will force the computation of the tropospheric relation
between phase and topography based on the whole interferogram.

To compute the tropospheric correction type:

stamps(6,6)

ps_plot(‘u’,5,0,0,1)
g

aps_linear

23

Output is saved into a “tca2.mat” or “tca_sb2.mat” as the “ph_tropo_linear” variable. The parameters
which are used in aps_linear are:

Parameter Default Description Influence

hgt_matfile hgt2.mat Full file path containing the topography, stored in a column vector of
size [n_points x 1]. -

phuw_matfile phuw.mat Full file path of the unwrapped interferograms, stored as a matrix of
size [n_points x n_ifgs]. -

ll_matfile ps2.mat Full file path of the geo-coordinates, stored in a matrix with size
[n_points x 2] and in its columns the longitude and latitude. -

non_defo_flag ‘n’ By default, the correction is performed based on the full
interferogram. Put to 'y' to use the non-deforming estimation. -

Table adapted from TRAIN Manual.

We can visualize the calculated tropospheric correction for any interferogram by running (for ifg 1):

ps_plot('a', 'a_linear', 1, 0, 0, 1)

24

7.10 Estimation	of	spatially	correlated	errors	

Spatially uncorrelated look angle (SULA) error was calculated in Step 3 and removed in Step 5. In Step 7,
spatially correlated look angle (SCLA) error is calculated which is due almost exclusively to spatially
correlated DEM error (this includes error in the DEM itself, and incorrect mapping of the DEM into radar
co-ordinates). Master atmosphere and orbit error (AOE) phase is also estimated simultaneously.
(StaMPS Manual)

Processing is controlled by the following parameters:

Parameter Default Description Influence

scla_deramp ‘n’
If set to 'y', a phase ramp is estimated for each interferogram. The
estimated ramp will be subtracted before unwrapping. This is useful if
one is interested in local signals only.

medium/
unknown

drop_ifg_index []
Specified ifg will not be included in unwrapping. This might be helpful
if after unwrapping and testing parameters an ifg is still noisy. Then the
index can be set and steps from 2 should be redone.

high if
needed

Table adapted from StaMPS/2-4_StaMPS-steps.md · master · Matthias Schlögl / gis-blog · GitLab & StaMPS Manual

If we want to estimate the phase ramp, we can change the parameter and then run the step 7:

Then we can visualize:

1) the estimated the total DEM (look angle) error as radians per m of baseline:

2) the master atmosphere:

3) estimated ramps

setparm(‘scla_deramp,’y’)
stamps(7,7)

ps_plot(‘d’)

ps_plot(‘m’)

ps_plot(‘o’)

25

Now we can check for unwrapping errors (inconsistent jumps in phase). Unwrapping errors are more
likely to occur in interferograms with longer perpendicular baselines due to the fact that there is more
noise associated with each PS, and the phase due to any spatially correlated DEM error is larger, as it is
proportional to perpendicular baseline (A.Hooper, 2018). To check the baselines, use the command:

You can also see the estimated noise for each interferogram, which is calculated from the phase that is
not correlated spatially and not correlated with baseline. Anything above approx. 80 degrees is likely to
give trouble for unwrapping. In this case we are using Sentinel-1 data and the baselines are all small.
(A.Hooper, 2018)

The plot for ‘u-dm’ should also be smoother than ‘u’. Note that the default colour scales will be different
and if smoother the phase range should be smaller. If not generally smoother, one or more
interferograms have probably unwrapped incorrectly. It is also worth comparing the ‘u-dm’ to the
wrapped phase corrected for ‘d’ and ‘m’. Images below correspond to the first interferogram (highest

1) 2)

ps_info

3)

26

estimated noise - 42.316 deg) with mean amplitude background e.g. ps_plot(‘w-dm’, 5,0,0,1).

7.11 Re-run	STEPS	6	and	7	

In STEP 7 we have estimated spatially correlated errors and with TRAIN we have calculated the linear
tropospheric correction. Removing these errors from the wrapped phase can aid the unwrapping step,
for this reason we will now re-run STEPS 6 and 7. The estimates from STEP 7 are automatically subtracted
from the wrapped phase before unwrapping.

7.12 Velocity	estimation,	standard	deviation,	and	time	series	

After running STEP 7 we can plot the estimated mean velocity:

w w-dm

u-dmo u

stamps(6,6)
stamps(7,7)

ps_plot(‘v')

27

We can further subtract the DEM error, the orbital ramps and the tropospheric correction:

ps_plot('v-dao', 'a_linear')

TIP: In our example the linear tropospheric correction seems to uncover OR introduce areas with higher
velocity in the lover left corner and other spots always corresponding to higher altitudes. While it is
possible that this represents a true deformation, it may also be erroneously introduced by the
correction. We can check the effect of each interferogram on the resulting velocity estimate by running:

ps_plot(‘vdrop-do’)
This step re-estimates the velocity recursively always removing one image. In the resulting plots you can
then identify the date which had the greatest effect (if any) and remove it from the processing.

In our timeseries it appears that the effect of the atmosphere in any one image is very small as no
differences can be easily seen.

To truly assess whether the deformation in the lover left corner is real or introduced we would need
more information about the specific area and possibly also GPS measurements.

v v-dao

28

The velocity values that we see are relative to the mean velocity of the whole image. We would of course
like to have a known velocity point so we could convert them to the absolute velocity values in the LOS
direction. We can also set a reference area – with known velocity as our reference. In general, you will
want to find an area where no change is expected (if you don’t have GPS measurements).

For our study area we will select a circular reference area in the west of the city with the radius of 100m.

Note that the reference point here is selected randomly in an area on the slope of the mountain where
less subsidence is expected. To have precise result we would need a GPS point or better knowledge
of the area!

You can then visualize the ‘v’, ‘v-do’ and ‘v-dao’.

Next, we can also estimate the standard deviation of the velocity estimates (relative to the reference
area) with DEM errors and ramps subtracted, run:

Areas with larger standard deviation indicate either larger errors (due perhaps to atmosphere or
unwrapping errors) or deformation that is non-linear. We can plot the timeseries of points by using the
‘ts’option.

Then you can click at the TS plot button and select a point of interest in plot. Two additional plots will
appear:

1) Time series plot for points in 100m radius around the selected point
2) Number and location of pints found in 100m radius

setparm('ref_centre_lonlat', [-99.280 19.446])
setparm('ref_radius', 100)

ps_plot(‘vs-do’)

ps_plot(‘vs-dao’, ‘a_linear’, ‘ts’)

vs-do v-dao

29

7.13 Export	to	StaMPSVisualizer	

Apart from visualizing the data in MATLAB directly, we can also export them and use the StaMPS
Visualizer tool created by Thorsten Höser and implemented using R and R Studio.

We can export the data by running the following code in MATLAB (code taken from the StaMPS
Visualizer Manual):

A new window will open; in the new window select a radius and location of the radius centre to select
the PS to export. Then run

1) 2)

ps_plot('v-dao', ‘a_linear’,'ts');

load parms.mat;

% the 'v-dao' parameter is an example you can change it to your needs
% but be sure that you use the same paramters as above in the ps_plot()!
ps_plot('v-dao', ‘a_linear’, -1);

load ps_plot_v-doa.mat;
lon2_str = cellstr(num2str(lon2));
lat2_str = cellstr(num2str(lat2));
lonlat2_str = strcat(lon2_str, lat2_str);

lonlat_str = strcat(cellstr(num2str(lonlat(:,1))),
cellstr(num2str(lonlat(:,2))));
ind = ismember(lonlat_str, lonlat2_str);

disp = ph_disp(ind);
disp_ts = ph_mm(ind,:);
export_res = [lonlat(ind,1) lonlat(ind,2) disp disp_ts];

metarow = [ref_centre_lonlat NaN transpose(day)-1];
k = 0;
export_res = [export_res(1:k,:); metarow; export_res(k+1:end,:)];
export_res = table(export_res);

% you can specify the location and name of the .csv export by renaming the second
parameter
writetable(export_res,'stamps_tsexport.csv')

30

Once the process finishes, you will find a file named “stamps_tsexport.csv” in the INSAR_20200504
folder. Copy/Move this file into the input/stusi folder inside the StaMPS Visualizer folder. In case of RUS
it will likely be located in /home/rus/StaMPS_Visualizer/input/stusi/.

Then you can open the R Studio and load the ui.R file and in the upper left corner you can see a button
Run app. Click on it to open the StaMPS Visualizer window.

Click on Toggle Controls, select the case study file we have just exported and then you can zoom in to
an area of interest (e.g. the Mexico City Metropolitan Cathedral) and click on a point to visualize the
timeseries. You can further customize the plot by subtracting the offset (displacement will be calculated
from the start of the timeseries instead from the date of the master image).

7.14 Output	to	Google	Earth	

Finally, we can export our output velocity to be visualized in Google Earth. There is a dedicated tool in
StaMPS called ps_gescatter(‘KML_FILE_NAME’, ‘INPUT_DATA, STEP, OPACITY).

If we export the entire dataset, we will inevitably crash the Google Earth application and the creation of
the file will also take a very long time. If we want to see the overview of our entire study area, then we
can set step to 50 for example – this will remove a lot of detail, however.

If we want to have a detailed view of a smaller area, we can use only a single patch (NOTE: you will need
to re-run steps 6 and 7 inside the patch directory and then run the steps above also from inside the
directory changing the step value to 1).

THANK YOU FOR FOLLOWING THE EXERCISE!

ps_plot('v-dao', ‘a_linear’, -1)
load ps_plot_v-dao
ps_gescatter('ps_velocity.kml', ph_disp, 50,1)

31

8 Extra steps

8.1 Atmospheric	correction	

8.2 Downloading	the	outputs	from	the	VM		

In your VM, press Ctrl+Alt+Shift.

A pop-up window will appear on the left side of the screen. Click on the bar below Devices, navigate to
the folders you have saved the files you want to download and double click on them. The downloading
process to your local computer will start automatically.

Once the KML files have been downloaded, you can load and visualize them in Google Earth.

32

9 References

9.1 PSI	resources	

Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., & Crippa, B. (2016). Persistent
Scatterer Interferometry: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 78–89.
https://doi.org/10.1016/j.isprsjprs.2015.10.011

Delgado Blasco, J. M., Foumelis, M., Stewart, C., & Hooper, A. (2019). Measuring Urban Subsidence in
the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry.
Remote Sensing, 11(2), 129. https://doi.org/10.3390/rs11020129

Jia, H., & Liu, L. (2016). A technical review on persistent scatterer interferometry. Journal of Modern
Transportation, 24(2), 153–158. https://doi.org/10.1007/s40534-016-0108-4

9.2 Tutorials	

GIS-Blog - Matthias Schlögl – Using StaMPS/MTI for PSI Analysis (post series) - https://www.gis-
blog.com/stamps-1/
A. Hooper – StaMPS Persistent Scatterer Exercise (2015) – ESA Land Training Course
http://seom.esa.int/landtraining2015/files/Day_4/D4P2a_LTC2015_Hooper.pdf

FOLLOW US!!!

@RUS-Copernicus

 RUS-Copernicus

RUS-Copernicus website
website
RUS-Copernicus Training website

RUS Copernicus Training

RUS Copernicus

