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1 Executive Summary 

With the onset of the COVID19 pandemic in early 2020, significant restrictions, including closing 

of shops, pubs, and restaurants, limitations of displacement and social contacts, obligation of 

homeworking… have been implemented in many countries worldwide to limit the spread of the 

disease. Those lockdown measures have had a significant impact on human activities and therefore 

on anthropogenic emissions of pollutants into the atmosphere. The 1-year ICOVAC project is built 

following an ESA initiative upon experts from the Royal Belgian Institute for Space Aeronomy 

(BIRA-IASB), the University of Bremen (IUP-Bremen), the Royal Netherlands Meteorological 

Institute (KNMI) and the Netherlands Institute for Space Research (SRON) and aims at  

 Evaluating the impact of COVID19-related restriction measures on atmospheric NO2 

concentrations in different regions of the world using satellite data products but also ground 

remote or in situ measurements. This activity is supported by models, which help to better 

interpret the observations by considering factors other than COVID-related emission 

changes affecting NO2 concentrations. When possible, the changes in NOx emissions due to 

lockdowns are also estimated either using models or specific data analyses; 

 Investigating whether any footprint of lockdown measures can be detected (and quantified) 

from space using other satellite atmospheric data products available to the consortium. The 

considered species are SO2, CO, HCHO, CHOCHO as well as the climate-related gases CO2 

and CH4. 

 

The present report aims at describing the main findings of the study, which are summarized below. 

 

Impact on NO2 tropospheric column and concentrations and on NOx emissions. 

 

 Significant reductions of NO2 amounts have been observed and quantified in many locations 

worldwide during the local lockdowns. Space and ground measurements showed very 

consistent reductions in 2020 compared to 2019.  

 In Europe, the strongest reductions (-40/-50%) have been observed during the most intense 

lockdown phase (March/April 2020) in Southern European and French cities. NO2 

reductions were more moderate in the Northern and Eastern European countries (-15/-25%). 

Using models, the contribution of meteorology on the year-to-year variability has been 

estimated to be as large as 15% for the NO2 columns, and 21% for in-situ concentrations. 

NOx emissions derived from TROPOMI with the DECSO algorithm showed similar overall 

reductions in Europe. In many cities, they also showed reductions in the first months of 2020, 

before the implementation of any COVID19 restriction. Those are linked to a general long-

term downward trend of NOx emissions in European cities, which needs to be considered in 

the analyses. This has also been highlighted by ground data in the cities of Bremen/Germany 

and Vienna/Austria, which show reduced NO2 concentrations in 2020 due to both a long-

term trend and the local lockdowns. 

 In China, NO2 columns and concentrations have been reduced by about -40% in many cities 

during the severe lockdown of February 2020, and then rapidly rebounded. In Wuhan, this 

reduction was even more severe (-60%) and lasted until June. The observed 2020/2019 NO2 

ratio in China could be reproduced with simulations realized with the CTM MAGRITTEv1.1 

using a COVID19-optimized anthropogenic emission inventory, both during the most 

intense lockdown phase in February and later when the NO2 returned to usual levels.  

Using TROPOMI observations, NOx emissions have also been inverted with the DECSO 

algorithm and were found to be lower by about -20/-50% in the urban areas of China and by 

-40% in the energy sector compared to last year. The inversion of those emissions at high 
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spatial resolution clearly indicated that the strongest NO2 reductions took place in area where 

the traffic-related emissions dominate. 

 NOx emissions have been derived directly from satellite observations for a series of cities 

worldwide: In Buenos Aires and New Delhi, they have been estimated to be respectively up 

to -56% and -89% lower in April 2020 compared to 2019. In New York, Riyadh, Kano and 

Madrid, despite larger uncertainties related to the analysis, lower NOx emissions were also 

often derived in 2020 with a timing depending on the local COVID19 waves. 

 

Impact on other species. 

 

 Based on a novel algorithm to retrieve SO2 tropospheric columns from TROPOMI 

measurements with an improved detection limit, some significant reductions of SO2 have 

been identified in Northern China (-75%) and in India (-40%) during their local lockdowns 

(February and April respectively). 

 Similarly, reductions have been identified in the TROPOMI tropospheric columns of HCHO 

and CHOCHO in Northern China (-40%) and Northern Indo-Gangetic Plains (-20% and -

25% respectively; -40% and -50% over New Delhi). Simulations realized with the CTM 

MAGRITTEv1.1 using a COVID19-optimized anthropogenic emission inventory indicate 

HCHO and CHOCHO reductions in China consistent with the observations.  

 On contrary, the longer atmospheric lifetimes of CO and CH4 and the large variability of CO 

prevented to identify any unambiguous signature of the COVID measures in their 

TROPOMI column measurements in any region worldwide. 

 A thorough analysis of an ensemble of XCO2 satellite data products indicated an emission 

reduction of a few percent over East China. However, the associated uncertainty, which is 

on the order of the derived emission change, makes this result statistically insignificant. 

Detecting and quantifying the impact of human-induced emission reductions via analysis of 

XCO2 satellite data is challenging because of the weak signal, the impact of biospheric CO2 

fluxes, the sparseness of the data and remaining biases of the satellite data. 

 

Finally, an important activity for the ICOVAC team was to contribute to outreach and 

communication to both public and experts on the impact on air quality and climate-related gas 

concentrations of the unprecedented measures taken to stem the new coronavirus. This has been 

largely achieved with contributions to 14 press articles and web stories and to 6 press releases. The 

consortium has also been significantly involved into the preparation of a specific MOOC module 

on this topic and one team member contributed to a BBC docuseries. Communication to the 

scientific community has also been intense with contributions to 19 peer-reviewed articles published 

or in preparation, as well as via at least 15 presentations at international conferences.  
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2 Introduction and overview of activities 

The global crisis due to the pandemic spread of the coronavirus COVID-19 that the humanity is 

facing since early 2020 led to unprecedented measures taken by different governments worldwide 

in order to limit as much as possible the number of impacted persons. Those measures include social 

distancing, banning of people gathering and travels, encouragement for teleworking, closings of 

schools, universities, restaurants, pubs and non-essential product shops, border closings, etc. All 

those measures have been implemented by the individual countries at different moments, depending 

mostly on the virus outbreak timing in each territory. China has been the first country to be strongly 

impacted in January 2020 and lockdown measures have been taken at that time for trying to stem 

the spread. The virus then propagated to other countries. From early March 2020, European 

countries have been affected by the virus outbreak and most of them entered into a period of 

lockdown for a few weeks or months1. Very rapidly, the virus also propagated to countries in 

America and Africa. From May 2020 onwards, the virus propagation weakened, most likely 

resulting from all taken social distancing measures, which could be progressively lifted out during 

summertime. However, a second wave of the coronavirus struck many countries from early October 

2020 onwards, which obliged many governments to reintroduce social restrictions to slow down 

again the virus propagation. Despite the restrictions in place, a third wave stroke again Europe in 

Spring 2021. In early summertime 2021, the benefit of vaccination has progressively improved the 

situation in the United States and Europe and most of the restrictions have been progressively lifted 

out. Many other countries such as India, Brazil where access to vaccination is more limited are still 

strongly impacted. Furthermore, the spread of different variants of the virus requires specific 

attention. 

 

All those measures have a significant impact on the anthropogenic emissions in the atmosphere as 

they lead to drastic drops in road and air traffic and a strong reduction of industrial activities in non-

essential sectors. On the other hand, other sectors might have faced increased demands, like 

domestic heating for example. Satellite measurements of nitrogen dioxide (NO2) tropospheric 

columns are a direct proxy for anthropogenic emissions and a reduction of the NO2 concentrations 

collocated with lockdown measures has been reported very rapidly at the early phase of the crisis. 

However, quantitative evaluations of the impact of lockdown measures on NO2 quantities (and on 

NOx emissions) require accounting for the other factors impacting in a significant way NO2 

concentrations, such as the meteorology or longer-term emission changes. Besides NO2, other 

atmospheric species such as CO, SO2, glyoxal (prime product of the main contract), CO2... originate, 

at least partly, from anthropogenic activity and might be impacted by the taken COVID-19 

measures. It is beneficial to investigate whether such lockdown signatures are visible in the different 

available satellite atmospheric data products, and to quantify the observed changes, if possible.  

 

The ICOVAC (Impacts of COVID-19 lockdown measures on Air quality and Climate) project is a 

response from a consortium built on experts from the Royal Belgian Institute for Space Aeronomy 

(BIRA-IASB), the University of Bremen (IUP-Bremen), the Royal Netherlands Meteorological 

Institute (KNMI) and the Netherlands Institute for Space Research (SRON) to an ESA initiative to 

address those questions. The 1-year ICOVAC study relied on three main activity components that 

were inter-related: 

                                                 

 
1 For a description of the timing of different virus waves and lockdowns per region worldwide, see for 

example https://www.ft.com/content/a2901ce8-5eb7-4633-b89c-cbdf5b386938 or 

https://en.wikipedia.org/wiki/COVID-19_lockdowns. 

https://www.ft.com/content/a2901ce8-5eb7-4633-b89c-cbdf5b386938
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 An analysis of satellite data products for tropospheric NO2 columns and other trace gases 

including CO, VOC, and greenhouse gases (CO2 and CH4)… to investigate if they present 

signatures of the human emission reductions due to lockdown measures in the different 

regions worldwide (Asia, Europe, US,…).  

 An analysis of collected remote sensing and in situ ground data in Europe and China to detect 

possible lockdown signatures in the time series. Results of this analysis have been confronted 

to the satellite data analyses and to models. 

 A comprehensive modelling component based on CAMS, DECSO and MAGRITTE to 

support the interpretation of the observations. Those models allowed disentangling the 

changes in the satellite products caused by the meteorology or by actual human emission 

changes (possibly resolved per industrial sector). Optimized NOx emissions have also been 

derived in China and Europe using inverse modelling techniques. Those updated NOx 

emissions allowed to better estimate the impact of COVID-19 measures on air quality, but 

also on climate as they can be used as a proxy for fossil-fuel CO2 emissions. 

 

This final report aims at presenting and summarizing all the findings and activities carried out during 

the project.  

Section 3 focuses on investigations related to species linked to the air quality aspect. A large part of 

this section is dedicated to the analysis of satellite and ground-based NO2 measurements in many 

different locations worldwide and of their inter-consistency (section 3.1). A specific focus is on 

China and Europe where the consortium has the tools needed to go one step further and to evaluate 

and remove the contribution of meteorology from the observed NO2 changes in order to better 

quantify the effect of emission changes. Furthermore, 2020 and 2019 NOx emissions, whether 

directly derived from the observations or based on inverse modelling techniques, are compared in 

different regions of the world.  

Section 3.2 presents the findings of search for footprints of COVID-19 lockdowns in a series of 

other air quality-related satellite data products, including SO2, CO, formaldehyde and glyoxal. 

Section 4 focuses on the climate-related species CO2 and CH4 and presents the conclusions from the 

satellite data product analyses carried out for trying to detect a possible impact of emission changes 

on the corresponding measurements. 

Finally, this unprecedented crisis generated a large interest of the public in the topic. Therefore, the 

consortium has also devoted a significant effort in outreach with a large number of contributions to 

interviews, general articles, press releases or web stories. Communication has not only been ensured 

for the public, but also for the scientific community with a number of presentations at workshops 

and conferences as well as the publication or the preparation of many peer-reviewed articles. All 

these contributions are listed in section 5. 

 

3 Impact of lockdown measures on air quality 

 Nitrogen dioxide (NO2) 

3.1.1 Analyses of satellite observations 

3.1.1.1 Sharp changes in NO2 levels detected by TROPOMI over large cities (BIRA-IASB) 

The TROPOMI data used for our analysis are L3 data for NO2 for the period from January 2019 to 

November 2020. The data, gridded at 0.05×0.05 degree, are based on the offline L2 data version 

1.3.2 with the identifier “S5P_OFFL_L2__NO2”, and are processed using the HARP software 

(https://atmospherictoolbox.org/harp/). Scenes with a quality flag lower than 0.75 are removed from 

https://atmospherictoolbox.org/harp/
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the analysis. The time series shown in Figure 3.1.1 and Figure 3.1.2 are based on a daily average of 

all valid data within a 25×25 km2 square box around the city centre. A running mean is used to 

reduce the noise that is associated to meteorological variability. Since the day-to-day column 

variability is larger for the European cities, a longer period is used for the running average (28 days) 

in Figure 3.1.2 compared to Figure 3.1.1 (14 days). 

 

The lockdown periods and the measures taken against the spread of the virus have been country- 

and often city-specific. Figure 3.1.1 illustrates the temporal evolution of NO2 columns from January 

to May over large cities in different continents. The TROPOMI observations indicate substantial 

decreases in NO2 during the lockdowns in all studied cities, but the reductions vary significantly 

from one city to another. 

 

 

 
Figure 3.1.1: TROPOMI NO2 column (in 1015 molec.cm-2) time series from 1 January to 1 June for selected cities 

in 2019 (black dots) and 2020 (red dots). TROPOMI observations are averaged over a 25×25 km2 box around 

the city centre. The lines indicate the 14-day running mean for 2019 (black) and 2020 (red). The grey zones 

indicate the official lockdown period for each city. The reduction of the average NO2 column during the lockdown 

period relative to the same period in 2019 is given inset. The given uncertainties are standard errors calculated 

from the retrieval uncertainties, accounting for the number of days with valid data. 

 

In Wuhan, the first city to issue quarantines and lockdown measures, the NO2 column was 

drastically reduced (-60%) between 23 January and 8 April 2020 compared to the same period in 

2019. This reduction is in good agreement with estimated reductions based on TROPOMI NO2 over 

11 February-2 March 2020 (-43%, Bauwens et al. 2020), and in situ NO2 observations in Wuhan    
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(-55%, Shi and Brasseur, 2020). Note however, the strong day-to-day NO2 column variability due 

to meteorological factors, as well as the missing data over Wuhan in February 2019 due to clouds. 

Model calculations by Liu et al. (2020) indicate that meteorological variability could have led to 

increased NO2 columns in 2020 compared to 2019, suggesting that the observed NO2 reductions 

underestimate the impact of emission reductions due to Covid-19. The lifting of the restrictions on 

8 April led to a progressive increase of NO2 levels, which however remained lower than in 2019, 

likely, because the population was still advised to stay at home as much as possible and schools 

remained closed. A similar response in NO2 levels was observed in Beijing, but the decreases were 

less pronounced (-40%), in excellent agreement with the reported decrease based on in situ NO2 

measurements (-40%, Shi and Brasseur, 2020). The weaker response could be due to the less drastic 

measures adopted in Beijing, because locally sustained Covid-19 cases were lower than in the Hubei 

province. Strong NO2 reductions were observed for other Chinese cities, like Nanjing, Qingdao and 

Zhengzhou, based on TROPOMI NO2 observations (Bauwens et al. 2020).  

The strongest NO2 decline among all cities was observed in Lima (-63%), where very strict stay in-

door orders have been enforced. A drastic NO2 drop compared to the 2019 levels marked the start 

of the lockdown, and the levels remained very low throughout the entire lockdown period. The 

gradual increase of NO2 columns in Lima and other Southern Hemisphere cities from January to 

May reflects the natural seasonal variation of NO2 levels, which peaks in Southern Hemisphere 

wintertime due to longer lifetime in the winter season. 

In Buenos Aires, the observed reduction was relatively weaker than in Lima over the entire 

lockdown period (-35%), but was particularly marked during the first month of the lockdown (20 

March-20 April 2020), because of a compulsory quarantine period and near-total shutdown. 

Although a partial lifting of the measures was issued after 10 April for many provinces of Argentina, 

the measures in the Buenos Aires agglomeration were maintained due to the elevated number of 

cases. More moderate reductions are found for Mexico City (-23%) and Sao Paulo (-28%) during 

the lockdown in comparison to the same period in 2019, that could be attributed to the pressure of 

the population and the reluctance of their governments to strictly implement the coronavirus 

guidelines. 

Strong reductions were observed over the entire lockdown period in the heavily hit cities in south-

west Europe, Los Angeles and New York, with reductions ranging between -32% and -54% 

(Bauwens et al. 2020). Note however, that in these regions, the start of the lockdown period is 

generally less marked partly because the lockdowns were not as strictly enforced in Europe and the 

U.S. as in China and India. Moreover, the satellite signal displays a strong variability attributed to 

meteorology, e.g. over Paris, New York and Los Angeles in 2019. This variability is estimated at 

about 13% for European cities, as discussed in section 3.1.1.4. In Sydney, the reduction was 

moderate (-14%) and delayed with respect to the onset of the measures. This delay could be due to 

the initial disrespect of the bans on gatherings and social events, obliging the government to issue 

new legislation on people movement. 

A quick and strong response of the NO2 columns to the lockdown measures was observed in 

Auckland, New Zealand (-55%). The lockdown in New Zealand was swift and tight, with effectively 

communicated and largely accepted rules.  The end of the lockdown coincided with a strong increase 

in NO2 pollution, from 1.8×1015 molec.cm-2 to 3×1015 molec.cm-2 in the last 3 weeks of May. 

In Africa, Nigeria was among the countries with the highest number of cases (Ekienabor, 2020). 

The locking down of Lagos for two weeks was announced on 30 March. The NO2 column declined 

by -33% during the lockdown with respect to the same period of last year, and remained lower than 

in 2019 after the lifting of restrictions on 4 May. An NO2 column decrease of similar magnitude             

(-37%) was observed in Johannesburg, where a national lockdown was enacted on 26 March 2020, 

and a gradual easing from 1 May. In Sub-Saharan Africa the emissions reductions in April were 
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significant, larger in populous and industrialized areas, whereas no noticeable drop was found in 

less developed regions (Masaki et al. 2020).  

Finally, the Iraqi capital Baghdad faced an initial lockdown starting on 22 March until 21 April 

and a second partial lockdown from 20 May and for two weeks in reaction to a spike in infections 

since restrictions were relaxed in late April to ease the Ramadan celebration. The NO2 column 

responded quickly, as confirmed by the rapid drop upon issuing the curfew measures. 

 

3.1.1.2 Up-to-date time series over European cities (BIRA-IASB) 

 

Figure 3.1.2 shows the temporal evolution of the NO2 columns in a 25×25 km2 box around 4 

European cities between January and November 2019 and 2020 as well as their relative changes.  

In London, we observe very low columns at the end of January 2020 associated with specific 

meteorological conditions (Gaubert et al., 2020). Shortly after the announcement of the lockdown 

on 23 March 2020, the NO2 columns reduced by 40%, but bounced back at normal levels in May. 

Moreover, we did not observe abrupt changes due to the announcement of the second lockdown in 

November. Overall, the variation in 2020 NO2 in London are close to the 2019 variations, and cannot 

be clearly linked to the COVID-19 measures. Moreover, in January-February 2019 very few 

TROPOMI NO2 data are available over London due to cloudy conditions. Therefore, the use of a 

running mean generates an artificial plateau around the few days with observations. In Paris as well, 

meteorology is responsible for extremely low NO2 columns observed in February and March 2020, 

before the onset of the lockdown. The start of the lockdown on 17 March 2020 led to a decrease of 

NO2 columns to values up to 60% lower as in 2019. A slow recovery was observed afterwards, but 

the announcement of a second lockdown on 30 October might have induced a new reduction in NO2.  

In Madrid, a strong NO2 column reduction (60%) is observed after the first lockdown. NO2 columns 

recovered by the end of July, but a new lockdown announced on 20 August resulted in a significant 

column decline by the end of September.  

In Rome, NO2 columns stayed low since the start of the COVID-19 crisis. The columns that were 

about 50% lower in the beginning of April 2020 compared to April 2019, gradually increased, but 

until today, they are about 20% lower on average than in 2019. 

Figure 3.1.2 also shows that NO2significant reductions in NO2 columns were found in Northern 

Europe in January-February, in addition to the NO2 decrease in response to the later economic 

slowdown. Since no lockdown was imposed at that time in Europe, these changes are the result of 

meteorological variability. Barré et al. (2020) and Goldberg et al. (2020) stress that meteorology 

complicates the analysis of observed data and that such natural variations have a large impact, 

sometimes competing with or even exceeding the effects of the Covid-19 shutdowns.  
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Figure 3.1.2: The upper panels show the 28-day running mean of the NO2 columns over four European cities 

between January and November 2020 in 2019 and 2020. The lower panels show the relative reduction of NO2 in 

2020 compared to 2019. The yellow lines indicate the starting day of lockdown periods. The coordinates of the 

city centres are obtained from the https://geonames.org. 

 

3.1.1.3 Examples of NO2 reductions observed by TROPOMI (KNMI) 

In relation to all the media attention in 2020 a large number of plots were generated comparing 

lockdown periods with similar periods in 2019 (as reference). All around the globe TROPOMI has 

detected major decreases in NO2NO2, and graphical material was produced for China, South-West 

Europe, North-West Europe, Eastern Europe, India, Middle East, Africa, North America and several 

countries and cities in South America (see also section 5).  

  

One example of such a plot is the composite shown in Figure 3.1.3. This image was produced for 

the Levelt et al. 2021 preprint. 
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Figure 3.1.3:  Global distribution of NO2NO2 based on the annual average of tropospheric column amounts of 

NO2NO2 measured by TROPOMI for 2019 (top panel) shown in units of micromole per m2. Using the same data, 

several zoom-in plots are shown in the middle and bottom panels:  regional zoom-in for central South America 

(middle left) and a city-scale zoom-in over Santiago, Chile (middle right panels, comparing 23 March to 10 April 

2020 with March-April 2019), over Paris (lower left, comparing 15 March to 15 April 2020 with March-April 

2019) and over New Delhi (lower right, comparing 28 March to 22 April 2020 with April 2019). Note the different 

color scales in the three subpanels. The domain size of the panels is 1.5 x 1.0 degree for Paris, and 1.1 x 1.0 degree 

for New Delhi. Reference: Levelt et al., 2021. 
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3.1.1.4 Correction for the meteorology contribution to observed NO2 changes in Europe 

(KNMI) 

 

The TROPOMI NO2 observations were analysed on a month-by-month basis, starting 15 March. In 

March-April 2020 we observe the strongest impacts of the lockdowns, with 40-50% reductions in 

the NO2 tropospheric columns over major cities in south-west Europe (Madrid, Rome, Milan, Paris) 

compared to 2019. These large reductions lasted until early May, after which the strict lockdowns 

have been relaxed. This can be seen in Figure 3.1.4, where we observe a recovery of the 2020 

concentrations relative to 2019. However, also in May-June there is still a clear indication that 

concentrations did not reach the values observed in 2019. 
 

 
Figure 3.1.4: TROPOMI NO2 tropospheric columns in May-June 2019 (left), 15 May to 15 June (middle), and 

the reductions calculated from the ratio between vertical column concentrations in 2020 and 2019.  

 

Locally, changes in the weather, even when averaged over a full month, can still be substantial and 

will impact the 2020/2019 ratio. So only part of the observed differences between the years may be 

attributed to the COVID-19 measures and related emission reductions. In order to estimate the 

impact of the weather we performed model runs with the LOTOS-EUROS model version 2.2 

(CAMS configuration) for 2019 and 2020 with fixed emissions at a resolution of 0.1 x 0.1 degree. 

The hourly model fields were post-processed: the model profiles were co-located to the location and 

time of each of the cloud-cleared (qa_value > 0.75) TROPOMI observations. The profiles were 

integrated to 3 km altitudes and convoluted with the TROPOMI averaging kernels. A tropospheric 

column was generated by adding the profiles of the CAMS-global forecasts from 3km altitude up 

to the tropopause. Next, these columns were averaged over the month to represent the satellite 

observations (like shown in Figure 3.1.4) as good as possible. Subsequently these 2D column fields 

were averaged over boxes of 0.6 degree longitude x 0.4 degree latitude, centered over the city centers 

of major towns in Europe.  

 

Figure 3.1.5 shows the results of these simulations. On average, the standard deviation is 13%. 

However, in some cases the difference may be larger. We looked in more detail at London in May-

June. We find that the mean wind direction is different in 2019 and 2020, shifting the maximum of 

NO2 of the pollution cloud over the city to different suburbs. The fixed choice of the box used to 

average the data is a second reason for (substantial) differences from year to year, adding to the total 

variability observed. A better approach would be to analyze the city plumes and time-average over 

the plumes accounting for the changes in location and wind speed. 
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Figure 3.1.5: LOTOS-EUROS simulations of the ratio of monthly-mean NO2 tropospheric column observations 

for 2020/2019, using a fixed emission inventory in the model. The simulations have been averaged over boxes 

around the centres of major cities in Europe (horizontal axis), and for 5 monthly periods (legend on top). The 

mean variability, attributed to differences in weather between the two years, is 13% (1 sigma) for the 12 

cities/agglomerates shown.  

 

  

In Figure 3.1.6 we show the TROPOMI observed relative reductions in 2020 compared to 2019 on 

a monthly basis. The dashed line shows the TROPOMI results corrected for the weather impact (by 

multiplying with the ratios shown in Figure 3.1.5. Correcting with the LOTOS-EUROS simulations 

does not change the main conclusions: in south-west Europe, we observe major decreases in NO2 

of 35-50% over the large cities compared to 2019. These decreases become less, but a significant 

reduction compared to 2019 remains of the order of 20%, indicating impacts of the relaxed 

lockdowns and impacts on the economy. In north-west Europe, the impact of the lockdowns was a 

reduction in NO2 of the order of 15-20%, and the reduction stays around 15% also for the later 

months (May-August). The LOTOS-EUROS corrected results sometimes show unexpected values, 

like the strong reduction in May-June in N-W Europe. This may indicate problems in the model to 

accurately simulate the year-to-year variability.  
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Figure 3.1.6: NO2 reductions calculated from the ratio between satellite tropospheric column observations in 

2020 and 2019. The solid line are the satellite ratios. The dashed line are the same ratios but corrected for weather 

influences using the LOTOS-EUROS model with fixed emissions. The results are averaged over major cities in 

Spain+Italy+France (red/orange), and Germany+Belgium+Netherlands (blue, light blue).  

 

3.1.1.5 Correction for the meteorology contribution to observed NO2 changes on global 

scale (KNMI) 

 

KNMI have contributed to a recent review paper (Gkatselis et al., 2021) on the impact of COVID-

19 measures on air quality. The abstract of this paper is reproduced here: 

  

“The coronavirus-19 (COVID-19) pandemic led to government interventions to limit the spread of 

the disease which are unprecedented in recent history; for example, stay at home orders led to 

sudden decreases in atmospheric emissions from the transportation sector.  In this review article, 

the current understanding of the influence of emission reductions on atmospheric pollutant 

concentrations and air quality is summarized for nitrogen dioxide (NO2), particulate matter 

(PM2.5), ozone (O3), ammonia, sulfur dioxide, black carbon, volatile organic compounds, and 

carbon monoxide (CO). In the first 7 months following the onset of the pandemic, more than 200 

papers were accepted by peer-reviewed journals utilizing observations from ground-based and 

satellite instruments. Only about one-third of this literature incorporates a specific method for 

meteorological correction or normalization for comparing data from the lockdown period with 

prior reference observations despite the importance of doing so on the interpretation of results. We 

use the government stringency index (SI) as an indicator for the severity of lockdown measures and 

show how key air pollutants change as the SI increases. The observed decrease of NO2 with 

increasing SI is in general agreement with emission inventories that account for the lockdown. 

Other compounds such as O3, PM2.5, and CO are also broadly covered. Due to the importance of 

atmospheric chemistry on O3 and PM2.5 concentrations, their responses may not be linear with 

respect to primary pollutants. At most sites, we found O3 increased, whereas PM2.5 decreased 

slightly, with increasing SI. Changes of other compounds are found to be understudied. We highlight 

future research needs for utilizing the emerging data sets as a preview of a future state of the 

atmosphere in a world with targeted permanent reductions of emissions. Finally, we emphasize the 
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need to account for the effects of meteorology, emission trends, and atmospheric chemistry when 

determining the lockdown effects on pollutant concentrations.”  

  

Data from 150 papers was digitized for this review. Of these 150 papers, about 50 reported satellite 

observations (a majority of papers was of course based on surface observations). Of these 50 papers, 

the vast majority used the TROPOMI NO2 product, which demonstrates the huge increase of interest 

in this satellite dataset in 2020. 

  

For the paper we produced a comparison between April 2020 (with the exception of China, where 

we focused on February 2020) and April 2019. The Copernicus Atmosphere Monitoring Service 

(CAMS) reanalysis results (Inness et al., 2019) were used to correct for changes in NO2 caused by 

the variability of the meteorology between the months of April 2019 and April 2020. The emissions 

used in the CAMS reanalysis were based on “business as usual” scenarios, unaffected by COVID-

19 reductions. The CAMS 3-D NO2 fields were interpolated to the location and time of all the 

individual TROPOMI observations in April 2019 and 2020 used to construct the monthly mean. 

The averaging kernels were applied to obtain CAMS simulations of all the individual TROPOMI 

observations. These data were subsequently averaged over the month of April, and the CAMS ratio 

2019/2020 was applied to the TROPOMI April 2020 monthly mean to correct for the expected 

meteorological impact on NO2 between the two years.  

  

The results of this procedure led to the figure in the Gkatselis paper reproduced below (Figure 3.1.7). 

In some regions we see a clear positive impact of the procedure (e.g. the North Sea area), while in 

other regions the results of the procedure are less conclusive. 
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Figure 3.1.7: Meteorologically corrected TROPOMI NO2 column difference between April 2020 and 2019 using 

the global Copernicus Atmosphere Monitoring Service-Integrated Forecasting System reanalysis in (a) the 

United States, (b) Europe, and (c) India at 0.1 x 0.1 resolution, as well as (d*) for the three post-Chinese New 

Year weeks in 2020 and 2019 in China at a 2 x 2 km resolution, (e) globally between April 2020 and 2019 at 0.4 

x 0.4 resolution, and (f) the national stringency index as an indicator for the severity of lockdown averaged over 

April 2020. The corresponding stringency indices of the regions (a)–(d) are provided below the individual panels. 

Reproduced from Gkatselis et al., 2021, https://doi.org/10.1525/elementa.2021.00176. 

 

3.1.1.6 Increasing the spatial resolution of TROPOMI NO2 observations using 

oversampling over China (BIRA-IASB) 

 

The large amount of TROPOMI observations at high resolution (3.5×5.5 km2) allows us to generate 

data at even higher spatial resolution by performing temporal averaging on a spatial grid finer than 

the pixel resolution of the instrument. This method is referred to as oversampling and consists in 

increasing the spatial resolution of the observations at the expense of temporal resolution. It has 

proved to be useful to better characterize pollutants emissions from urban point sources (de Foy et 

al., 2009; Zhu et al., 2014).  

Here we applied this technique to generate monthly TROPOMI NO2 data at 0.02° × 0.02° over 

eastern China (20-44°N, 110-130°E) from February to June in 2019 and 2020. Figure 3.1.8 
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illustrates the resulting dataset. It also displays the average NO2 columns and the corresponding 

relative NO2 decrease over 2 regions (northeastern China, in black, and the city of Wuhan, in red). 

Over northeastern China, we find a reduction of -40% to -20% in February and March, respectively, 

followed by moderate reductions from April onwards. At the scale of the city of Wuhan, we detect 

much stronger reductions in March (-60%), and NO2 columns stay lower than usual until June. Note 

that NO2 columns over Wuhan were not available in February due to the presence of clouds.  

 

 
 
Figure 3.1.8: TROPOMI NO2 data at 0.02° × 0.02° obtained by applying an oversampling method for the 5 

periods indicated in the titles. The values shown in the right corner denote the average and the standard deviation 

of the NO2 columns over the rectangular region indicated in blue (29-43°N and 111.5-123°E) and over the city of 

Wuhan in red. The percentages in parentheses indicate the relative NO2 reduction over the respective region for 

the specific period. 

 

The oversampled TROPOMI data are used in order to conduct a more detailed comparison with the 

in situ measurements, as described in section 3.1.2.3. Overall, the NO2 reductions observed by 

TROPOMI are similar to the reductions observed using in situ data (see Figure 3.1.9). TROPOMI 

reductions agree quite well with in situ reductions in March, but are more pronounced in February 

and May. TROPOMI also observes a slight increase of NO2 columns in April, which is not seen in 

the in situ data. On average, the NO2 change observed by TROPOMI over February-June is equal 

to -19%, in close agreement with the in situ change (-16%). 
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Figure 3.1.9: Left: Location of the in situ measurement sites (pink) and oversampled TROPOMI data at 

0.02° × 0.02°. Right: Relative change in NO2 observed using in situ measurements (pink) and oversampled 

TROPOMI dataset. 

 

 

3.1.1.7 Comparison with NO2 changes over China simulated with the CTM 

MAGRITTEv1.1 

MAGRITTEv1.1 (Model of Atmospheric Composition at Global and Regional scales using 

Inversion Techniques for Trace gas Emissions, Müller et al., 2019) is run at 0.5°×0.5° over China 

and surrounding areas (73-150°E, 17-54°N) for February and May 2019 and 2020. Meteorological 

fields are from the ERA5 reanalysis (Hersbach et al., 2020). Biomass burning fluxes are taken from 

the GFED4s database (van der Werf et al., 2017, https://www.geo.vu.nl/~gwerf/GFED/GFED4), 

and biogenic emissions from the MEGAN-MOHYCAN model (Stavrakou et al., 2018; Opacka et 

al., 2021). Baseline anthropogenic emissions are provided by the CAMS-GLOB-ANT_v4.2-R1.1 

inventory (Granier et al., 2019, Elguindi et al., 2020), which provides emissions from 2000 to 2020. 

The anthropogenic emissions during the pandemic are obtained from the CONFORM (COvid 

adjustmeNt Factor fOR eMissions) global dataset, which accounts for the slowdown of human 

activities through adjustment factors based on activity data, which are applied for all economic 

sectors and geographical regions (Doumbia et al., 2021). For China, on average, the adjustment 

factors for the main sectors, i.e. road transport, power generation, industry, and residential are 

estimated at 0.4, 0.6, 0.65, and 1.1, respectively, in February 2020, and at 1.0, 0.9, 0.8, 1.0 in May 

2020 (Doumbia et al., 2021). The factor for air traffic emissions is estimated at 0.44 in February 

2020 and 0.67 in May 2020. Figure 3.1.10 illustrates the emission ratio (E2020/E2019) for 

anthropogenic NOx and VOC fluxes in February and May, as well as the difference in biomass 

burning VOC and isoprene fluxes between 2020 and 2019. Besides the average adjustment factors, 

the CONFORM dataset provides low and high estimates of those factors accounting for 

uncertainties due to lack of data or limited information for some activity sectors (Figure 3.1.11).  

 

The modeled columns are sampled for the same days as the satellite observations, and account for 

the averaging kernels. We conduct the following simulations (Table 1): (i) R1, using the average 

CONFORM estimate; (ii) R1H and R1L, using the CONFORM high and low adjustment factors, 

respectively; (iii) R2, using the baseline anthropogenic emissions for 2020, which neglect the 

pandemic-induced disruptions.  
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Table 1: Description of the model simulations. All simulations use the same emissions for 2019 but differ regarding 

their 2020 emissions. 

Short 

name 

Description 

R1 
Use average estimates of CONFORM adjustment factors for anthropogenic 

2020 emissions (Doumbia et al., 2021) 

R1H 
Use high estimates of CONFORM adjustment factors. The resulting 

anthropogenic fluxes for 2020 are higher than in R1. 

R1L 
Use low estimates of CONFORM adjustment factors. The resulting 

anthropogenic fluxes for 2020 are lower than in R1. 

R2 

Use 2020 baseline anthropogenic emissions from CAMS-GLOB-ANT_v4.2-

R1.1 (Granier et al., 2019, Elguindi et al., 2020). These emissions do not 

account for pandemic-induced disruptions. 

 

 
 

Figure 3.1.10: (a) Ratio of anthropogenic NOx fluxes, February 2020 to February 2019 (left) and May 2020 by 

May 2019 (right). (b) Idem for anthropogenic VOC fluxes.  The anthropogenic fluxes for 2020 are those of the 

CONFORM dataset (Doumbia et al., 2021). (c) Absolute flux difference 2020-2019 for biomass burning VOCs 

in February (left) and May (right). (d) Idem for isoprene biogenic fluxes. 
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Figure 3.1.11: NOx emission estimates over China according to the baseline inventory CAMS-GLOB-ANT_v4.2-

R1.1 (dashed), and the CONFORM emissions which account for the slowdown of economic activities due to the 

crisis (red). The pink shading represents the uncertainty ranges of the CONFORM emissions. 

 

Figure 3.1.12 illustrates the ratio of NO2 columns in February 2020 to those of February 2019, 

observed by TROPOMI and simulated by MAGRITTEv1.1 using the adjustment factors from the 

CONFORM dataset. The modeled and observed ratios show a good degree of consistency, both in 

terms of spatial patterns and percentage changes. In February the NO2 column ratio is generally 

smaller than 1 (blue), in line with Figure 3.1.8 that shows higher columns in 2019. One exception 

is the north-western part of China where NO2 columns are higher in 2020. Note however that the 

NO2 columns are very low in this region (< 3×1015 molec.cm-2) as seen in Figure 3.1.8. Over eastern 

China, defined as 22-42°N, 108-125°E (Figure 3.1.13), the column decrease estimated by the R1 

experiment (-38.8%) is in excellent agreement with the observed decrease (-39.5%), whereas the 

simulations R1H and R1L, using high and low CONFORM factors (Figure 3.1.11) result in 

underestimated (-31.4%) or overestimated (-47%) changes, respectively (Table 2). These declines 

respond almost linearly to the anthropogenic NOx flux decreases of the CONFORM dataset in the 

R1 simulation (-41%), as well as in the R1H (-33%) and R1L (-51%) simulations. The strongest 

column reduction is observed in the Hubei-Hunan (HH) region (-42%, Figure 3.1.13), encompassing 

the Hubei province where some of the most severe lockdowns were enforced, and Wuhan, the city 

where the pandemic was first detected. The R1 experiment leads to a slightly weaker decrease over 

this region (-37%), suggesting that the CONFORM factors are likely too high. The opposite is found 

in the Yangtze River Delta (YRD), where the modeled change is slightly stronger than observed (-

43% in R1 vs. -38% in TROPOMI). An excellent match is found between the observed and modeled 

decreases in the densely populated North China Plain (NCP) with an average reduction of -46%. 

The baseline R2 scenario predicts a column decrease of 2%, due to the 2% lower NOx emissions in 

2020 with respect to 2019 in the CAMS-GLOB-ANT_v4.2-R1.1 dataset, while the R3 (same 

anthropogenic NOx flux for 2019 and 2020) and R5 (same emissions in 2019 and 2020) simulations 

lead to small NO2 column changes (less than 5%).  
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Figure 3.1.12: (a,b) NO2 column ratio, February 2020 divided by February 2019, according to TROPOMI (left) 

and to the R1 simulation (right). (c,d) Idem for May. Invalid data and areas with very low NOx emissions (less 

than 2×1010 molec.cm-2s-1) are left blank. 

 

 
Figure 3.1.13: Regions used in this study. ECN=eastern China (22-42°N, 108-125°E); NCP= North China Plain 

(34-41.5°N, 112-119°E); YRD=Yangtze River Delta (29-33.5°N, 117.5-122.5°E); HH=Hubei-Hunan (27-32°N, 

108.5-116.5°E); PRD=Pearl River Delta (22-24.5°N, 111-117°E). 

 

After the sharp decline in economic activity during the first three months of 2020, China’s economy 

recovered in the following months, reaching almost normal levels by mid-May, as suggested by 

numerous indicators, like traffic density, energy consumption and business reopening (Al-Haschimi 

et al., 2020; Doumbia et al., 2021). By the beginning of May 2020, the resumption levels were 

estimated at ~90%, marking a swift normalization of economic activity, even though some sectors 

restarted somewhat later, e.g. the services sector (Al-Haschimi et al., 2020). According to the 

average CONFORM estimate for May 2020, the anthropogenic NOx and VOC fluxes over China 

were respectively about 15% and 13.5% lower than in May 2019 (Figure 3.1.10), while the high 

(low) CONFORM estimate suggests decreases of 7% (18%) for NOx and 5% (20%) for VOCs.  

Figure 3.1.12 demonstrates an overall close agreement between the observed NO2 column changes 

and the R1 simulation in May (-15.5% vs. -11%, Table 2), and indicates that the use of the low 
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CONFORM values (R1L) brings the model even closer to the observed change (Table 2). We find 

very similar decreases in R1 and the observations in the NCP (-15%) and in YRD (-21%), although 

the observed decreases in PRD (-22%) are slightly stronger compared to R1 (-10%), possibly 

indicating that the CONFORM distribution of NOx emission decreases (Figure 3.1.10) might be too 

homogeneous. The change in NO2 column due to the COVID-19 restrictions is estimated at about 

10% in May (difference between R1 and R2 changes). 

 
Table 2 Percentage changes of monthly columns between 2020 and the same month in 2019 ((2020-2019)/2019), based 

on observed and modelled columns from simulations R1 (CONFORM emissions), R1H and R1L (high and low 

CONFORM emissions), and R2 (baseline emissions). All values are calculated for the eastern China region shown in 

Figure 3.1.13 delimited by 22-42°N, 108-125°E. 

 TROPOMI  R1  R1H  R1L  R2  

February -39.5 -38.8 -31.4 -47.0 -2.1 

May -15.5 -11 -4.0 -13.2 -2.5 

 

3.1.1.8 Direct estimation of NOx emission changes from TROPOMI data (IUP-Bremen) 

 

Satellite observed NO2 columns are not directly proportional to NOx emissions but rather depend 

on emissions, meteorology and photochemistry. Estimation of emissions from satellite columns can 

either be done by inverse modelling at different levels of complexity or by estimating fluxes directly 

from the data by combining them with wind information. An elegant method to derive both NO2 

fluxes and lifetimes from satellite data was introduced by Beirle et al. (2011) and later refined by 

Pommier et al. (2013) and Valin et al. (2013). It is based on three steps: First, a time series of daily 

measurements around an emission hot-spot is averaged after rotating each day’s measurement in the 

direction of the wind vector. Only scenes with wind speeds > 2 m/s are used. In the second step, 

data is converted to NOx using modelled NO2/NOx ratios, averaged across the plume over a region 

wide enough to cover the plume, but small enough not to include any other sources, converting a 

mean map to a line integral. In the third step, this curve is fitted by the product of a Gaussian and 

an exponential decay, resulting in an estimate of the emission and of the lifetime.  This method has 

been applied to operational NO2 lv2 data from TROPOMI observations. Details can be found in 

Lange et al., 2021. 

 

Since the EMG (exponentially modified Gaussian) method can only be used to investigate point 

sources, the range of possible study areas is limited. Here we focus on several cities which can be 

considered to be point sources and have an appropriate number of days with satellite data available 

during the comparative periods using the recommended quality assurance value of 0.75. The EMG 

method was used and monthly means of emissions from 2019 and 2020 were calculated and 

compared for the month January to November. In December, the FRESCO version used in the 

operational S5P NO2 retrieval changed which has a significant impact on the NO2 columns and 

therefore prevents direct comparisons of data after this point with earlier retrievals. 
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Figure 3.1.14: Monthly NOx emissions calculated with the EMG method based on TROPOMI data from 2019 

(blue) and 2020 (orange) for (a) January to November for New Delhi (India), Madrid (Spain), new York (US), 

Buenos Aires (Argentina),  Riyadh (Saudi-Arabia) and Kano (Nigeria). The numbers in the bars give the number 

of days available for the monthly mean. 

 
 

Figure 3.1.14 shows the monthly means of the NOx emissions calculated from TROPOMI data for 

2019 and 2020 for New Delhi (India), Madrid (Spain), new York (US), Buenos Aires (Argentina),  

Riyadh (Saudi-Arabia) and Kano (Nigeria) The same months in 2019 and 2020 can be compared, 

as well as the pre COVID-19 period with the period of containment measures. However, in the latter 

case the seasonality of NO2 emissions must be considered. Due to seasonality effects, the NOx 

emissions calculated for Buenos Aires, Madrid and New York show lower emissions during 

respective summer months and are increasing towards the winter months. The emissions for New 

Delhi do not show such a strong seasonality as those for Buenos Aires, but in general the emissions 

are also higher during the winter months January and February (months 1-2) and decrease towards 

the summer months. 

 

On 20 March 2020, a nationwide strong lockdown started in Argentina, which remained in place 

for Greater Buenos Aires until October 2020. From January to March, NOx emissions from 2020 

are comparable with those from the same months in 2019. In April 2020, the first complete month 

in lockdown, the emissions are 56 % lower than in April 2019, and also in May 2020, the emissions 

are 48 % reduced compared to 2019. In June, however, emissions are higher in 2020 than in 2019, 

although there has been no major change in the containment measures by the government. A 

possible explanation is that the June 2019 emissions are lower than expected from the seasonal cycle 

comparing to May and July 2019 but it is also possible that June 2020 emissions are unexpectedly 

high due to a cold winter month and people starting to burn waste for heating due to new poverty. 

The emissions in July behave similarly as in March and April, only with a somewhat smaller 

decrease of 32% compared to 2019.  

 

In India, a nationwide strict lockdown started on 24 March 2020. The reductions in NO2 columns 

when comparing April 2020 and 2019 were strong all over India but very pronounced for New 

Delhi. In January and February, the calculated NOx emissions are higher in 2020 than in 2019. In 
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this time period, there is no impact of COVID-19 yet, and India’s rapidly growing economy is 

probably the explanation for the upward trend in NOx emissions. In April 2020, the first complete 

month in lockdown, the emissions are 89 % lower than in April 2019, and also in May and June, 

the emissions are much lower (70 % and 47 %) than in 2019. For July, comparisons are not possible 

as less than four days of measurements are available per month due to persistent clouds. In October 

and November, NOx emissions are lower in 2020 than in 2019 but less so than in spring. 

 

In New York, Riyadh and Kano and Madrid, lower NOx emissions are found in 2020 than in 2019, 

but with different seasonal patterns. This is related to the different timing of the Covid-19 infection 

waves and the differences in lockdown severity. There is however also variability in the data, which 

is probably linked to differences in sampling due to clouds and uncertainties introduced by 

measurement errors and inaccuracies in the wind fields used.  

 

Despite the shortness of the periods available for analysis, it was possible to investigate short-term 

variability of NOx emissions induced by COVID-19 with TROPOMI NO2 data and the EMG 

method. Strong decreases due to lockdown measures of 56 % in Buenos Aires and 89 % in New 

Delhi are shown for April 2020 compared to April 2019. These emission estimates account for wind 

conditions and can therefore give a better estimate of the COVID-19 on NOx emissions than direct 

comparisons of NO2 column measurements. For some cities and months, the number of days in 

monthly means is very limited due to cloud cover, which also is a problem when comparing monthly 

NO2 levels, even if days with lower wind speeds are also included. 

 

3.1.2 Analyses of ground-based/in situ measurements 

3.1.2.1 Analyses of ground-based observations in Bremen, Germany (IUP-Bremen) 

 

The city of Bremen operates a network of air quality monitoring stations (BLUES, 

https://www.bauumwelt.bremen.de/umwelt/luft/luftqualitaet-24505) measuring key pollutants 

including NO2. Data of this network can be used to investigate a possible reduction of NO2 levels 

during the first lockdown phases in Germany first in March and April 2020 and then in January – 

May 2021. These data are complemented by observations of the MAX-DOAS instrument located 

on the roof of the IUP building, University of Bremen at the northern outskirts of the city.  

 

The approach used for the analysis is a simple comparison of data from 2021 and 2020 with the 

corresponding values for 2019. This analysis is oversimplified for an assessment of the Covid19 

measures on NOx emissions as not only emissions, but also meteorology plays an important role in 

determining pollutant levels at ground level. Nevertheless, similar comparisons have widely been 

used in the literature and the media, and it is interesting to evaluate it for a mid-sized (560 000 

inhabitants) industrial city in Northern Germany. 

 

For the air quality network, data from 8 stations is used. The NO2 instrument operated in BLUES is 

a Cavity Attenuated Phase Shift (CAPS) measuring at 450nm. Three of the stations are located at 

road-side to represent traffic situations while the other 5 are located in residential areas measuring 

background levels. All data shown are 24 hour averages without distinguishing between day and 

night. 

 

The MAX-DOAS instrument on the roof of the IUP building is a scientific grade two channel 

instrument equipped with a telescope which can point at any position of the sky. Measurements at 

https://www.bauumwelt.bremen.de/umwelt/luft/luftqualitaet-24505
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different elevation angles are performed routinely in three azimuthal directions covering different 

parts of the city. Data from the visible channel are used and the geometric approximation is applied 

to convert measurements under 15° elevation to vertical tropospheric columns. All valid 

measurements from all three directions are averaged to obtain representative daily mean values. 

 

 

 

 
 

Figure 3.1.15: Comparison of the NO2 measurements in Bremen for 2021, 2020 and 2019. The top panel shows 

mean concentrations measured by the in-situ instruments of the air quality network BLUES, the bottom panel 

shows mean tropospheric columns observed by the MAX-DOAS instrument on the IUP building. Left figures 

show absolute values for the three years, right figures the ratio between 2020 and 2019. The shaded area indicates 

qualitatively the time period with restrictions in 2020 due to the Covid-19 pandemic. 

 

In Figure 3.1.15, measurements for 2019 and 2020 are compared for both data sets. Data from 2021 

is also included in the left column. As expected, both in-situ NO2 measurements at ground level and 

MAX-DOAS tropospheric columns were lower during the lockdown period in early 2020 than at 

the same months in 2019. The difference is of the order of 20% (in-situ) and 30% (MAX-DOAS). 

Over the course of the year, values increased and the ratio was back to being close to 1 in October. 

One unexpected result was, that already in February, NO2 levels in Bremen were clearly lower in 

2020 than in 2019, a result that cannot be related to the Covid19 measures, which had not started by 

then. This reduction was probably linked to unusual weather conditions with an exceptional number 

of clear-sky days in February 2020. In 2021, the lockdown in Germany was not as strict as in 2020 

until mid-March, when it became more stringent but arguably still less efficient than in 2020. 

Consequently, NO2 values were mostly larger than in 2020 but lower than in 2019.  However, there 

is clear variability from month to month because of the impact of weather. 

 

Both data sets are in good agreement with respect to the temporal evolution in 2020 and 2021, 

indicating that surface NO2 dominates the MAX-DOAS measurements. There appears to be a larger 

seasonality in MAX-DOAS derived columns than in the in-situ observations, but this can in part be 

the effect of using 24-hour averages for the in-situ data while the MAX-DOAS observations are 

limited to daytime where photolysis plays an important role. 
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Figure 3.1.16: Evolution of mean NO2 concentrations in Bremen as measured by the BLUES air quality network, 

separated by traffic and residential area background measurements. Reference is the year 2011. 

 

 
 

Figure 3.1.17: Ratio of weekday to weekend (Saturday + Sunday) NO2 concentrations measured by the BLUES 

air quality network in Bremen for the years 2010 to 2020, separated by traffic and residential area background 

measurements. The year 2011 was chosen as reference as for this year, all BLUES stations covered a full seasonal 

cycle. 

 

Overall, both data sets have a tendency to show lower values in 2020 than in 2019 even outside the 

time period affected by lockdown measures. This could be part of a longer downward trend in NO2 

concentrations in Bremen as shown in Figure 3.1.16. Relative to the year 2011, NO2 measurements 

in 2019 were lower by 15% at background stations and even more in 2020. The decrease was even 

25% for 2019 at traffic stations, followed by more than 35% in 2020. For the traffic stations, the 

decrease happened in the 4 years since 2015, indicating recent rapid improvements in NOx 

emissions from cars. This link to traffic is further confirmed by an interesting trend in the weekday 

to weekend ratios shown in Figure 3.1.17. While this ratio is stable and around 1.3 for background 

stations, it significantly decreased from 1.7 in 2010 to 1.48 in 2019, indicating a decreasing 

importance of traffic. In 2020 however, the ratio increased strongly. This was driven by larger 

reductions during the weekends, arguably because the lockdown mainly affected private activities 

and much less work related traffic. Also, because of the lower NO2 levels on weekends, a similar 

absolute decrease on all days would result in an increase in the ratio of weekday to weekend values.  
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Figure 3.1.18: MAX-DOAS observed tropospheric NO2 columns in Vienna (top left), Bremen (top right) and 

Athens (bottom) for several years. 

 

The general decrease in NO2 levels over recent years is further illustrated in Figure 3.1.18 where 

MAX-DOAS measurements at three stations are shown for several years. Like for the Bremen data, 

all valid measurements in Athens and Vienna from all azimuthal directions are averaged to obtain 

representative daily mean values. The clear reduction from year to year is apparent both in the 

Bremen data and in the observations in Vienna, 2021 data being the exception but still at the same 

or a lower level than 2019. The low values in 2020 are therefore probably a combination of the long-

term downward trend and the effects of Covid-19 measures taken. In Athens, the situation is less 

clear – while there is a small downward trend, variability between years is large and the pattern is 

less obvious. The effect of the strict lockdown in March – May 2020 is however clearly visible, 

while NO2 columns for the same period in 2021 are back to normal.  

 

In summary, analysis of in-situ and MAX-DOAS measurements in Bremen, Vienna and Athens 

show that 

● a reduction in NO2 levels by 20 – 30% was seen during the lockdown in 2020 relative to 

2019 and a smaller effect in 2021, 

● lower NO2 columns are also found in February 2020, probably due to unusual weather 

conditions,  

● a long-term downward trend in NO2 is found which is in particular linked to traffic and needs 

to be taken into consideration when estimating Covid-19 effects in Germany and Austria, 

but probably also in other European countries. This effect is large and on an annual basis 

could be comparable or even more important than the reductions in NOx emissions from 

Covid-19 abatement measures. 

 

3.1.2.2 Analysis of NO2 concentration changes in Europe and correction for the 

meteorology contribution (KNMI) 

 

In-situ measurements for major European cities have been retrieved from the central database of the 

European Environmental Agency (EEA – available at https://www.eea.europa.eu/data-and-

maps/data/aqereporting-8). The NO2 surface concentration reductions due to COVID in 2020 have 

been determined by a direct comparison with corresponding periods in 2020 and 2019, see Figure 

3.1.19. To avoid the influence of non-representative local sources, we use the average of background 

stations (i.e. discarding street stations). 
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Figure 3.1.19: NO2 reductions calculated from the ratio between background concentrations in 2020 and 2019. 

The dots indicate daily average reductions, while the thick lines represents a 31-day moving average. The dark 

grey area indicates the period with strict lockdown measures, while the light grey area correspond to the 

following with less strict measures.  

 

As expected, the NO2 reductions are highest during the period with strict lockdown measures. For 

cities in Spain, Italy, and France, NO2 was reduced by 50%-60% during this period. The reductions 

are found to be less for Northern and Eastern Europe, as a combined effect of less strict measures 

and stronger meteorological variability. Towards the summer, when measures become less strict, 

NO2 concentrations start to increase again, although generally they are still behind their pre-COVID 

levels. 

 

Agreement analysis from space and from ground 
 

The NO2 reduction analysis from in situ-observations compares well with the analysis from space 

based on TROPOMI NO2 tropospheric columns, as can be seen in Figure 3.1.20. This reconfirms 

the sensitivity of the TROPOMI instrument to concentrations at the boundary layer of the 

atmosphere. 
 
The comparison between the two approaches can also be summarized as scatter plots in Figure 

3.1.21. The derived NO2 reductions agree within 5%, with the exception of Paris (9%) and London 

(14%). As stated before, the largest reductions are found in Southern Europe. In the post-lockdown 

period (July-August) the NO2 concentrations increase again, but generally are still around 15% 

behind their pre-COVID levels. 
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Figure 3.1.20: Time series of NO2 concentrations for 2019 (black) and 2020 (red) for selected European cities. 

The upper panels show daily tropospheric NO2 columns, while the bottom panels show concentrations of in-situ 

background stations. The grey areas indicate the lockdown period; the different shades indicate the strength of 

the lockdowns measures. 

 

 

  
Figure 3.1.21: Comparison of NO2 reductions determined from space and from in-situ observations. 

 

This direct approach does not account for meteorological variability, which can be substantial on a 

year-to-year basis. To estimate the meteorological influence, we analyzed simulated surface 

concentrations by LOTOS-EUROS with a fixed emission inventory.  

Table 3 lists the monthly ratios between 2020 and 2019 for 10 cities. From the different time series, 

we estimate the standard deviation to be 21%. This number is higher than the standard deviation 

found in simulated tropospheric NO2 columns (see Section 3.1.1.4), as column concentrations are 

insensitive to changing vertical distribution of NO2 by e.g. different boundary layer heights. 
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Table 3: Ratios of surface concentrations by LOTOS-EUROS (mean2020-mean2019)/mean2019 

 

 
Rome Milan Madrid Barcelona Paris Brussels Amsterdam London Berlin Budapest 

Jan 0.27 0.22 0.58 0.37 -0.07 -0.10 0.07 0.07 0.02 0.62 

Feb 0.12 -0.14 0.22 -0.07 -0.41 -0.44 -0.50 -0.38 -0.46 -0.37 

Mar -0.04 -0.08 0.26 0.10 0.05 -0.11 -0.17 0.14 -0.00 0.18 

Apr 0.28 0.34 0.06 0.02 0.12 -0.09 0.10 0.30 0.03 0.22 

May 0.13 -0.02 -0.07 -0.20 -0.16 -0.11 0.01 -0.07 -0.01 -0.11 

Jun -0.05 0.07 -0.14 0.03 -0.07 0.02 0.03 -0.16 -0.02 -0.04 

stdev 0.14 0.18 0.26 0.19 0.19 0.16 0.23 0.24 0.19 0.34 

 
The meteorological variability is further illustrated in Figure 3.1.22, which shows monthly averaged 

surface concentrations simulated by LOTOS-EUROS, based on a fixed (2019) emission inventory. 

Especially in February large differences are found in NO2 concentrations in North West Europe, 

when comparing 2020 with 2019 (see also corresponding values in  

Table 3). 

 

 
Figure 3.1.22: Monthly averaged surface NO2 concentrations, as simulated with LOTOS-EUROS with a fixed 

emission inventory for February and March. The right-hand panels show the difference between the 2020 and 

2019 concentration fields. 

 

Chemical transport model runs with unchanged emission inventories can provide the “business as 

usual” scenario, i.e. what would the NO2 concentration be without lockdown measures. Having 4 

quantities, obs2019 (the observation in 2019), obs2020 (the observation in 2020), fc2019 (the model 
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forecast in 2019), and fc2020 (the model forecast in 2020, with 2019 emission inventory), we can 

calculate 
𝑓𝑐2019

𝑓𝑐2020

𝑜𝑏𝑠2020

𝑜𝑏𝑠2019
 

 
which can be interpreted as  
 

𝑜𝑏𝑠2020

𝑜𝑏𝑠2019
∗

 

 

 
in which obs*

2019 is the observation from 2019 corrected for meteorology with a weather correction 

factor fc2020 / fc2019, or alternatively as 
 

𝑜𝑏𝑠2020

𝑓𝑐2020
∗

 

 

 

in which fc*
2020 is the forecast for 2020 corrected for representation error with a factor obs2019 / fc2019. 

 

In our assessment we used two model runs to study the meteorological correction: the forecast of 

the CAMS regional ensemble, and the before-mentioned LOTOS-EUROS model with a fixed 2019 

emission inventory. The results for both runs are not satisfying. The CAMS consortium introduced 

important emission inventory revisions in the ensemble members during 2019-2020, therefore not 

providing a consistent dataset. On the other hand, LOTOS-EUROS is not able to simulate urban 

NO2 concentrations sufficiently realistically, i.e. it suffers from meteorology and location dependent 

biases. This is illustrated for Paris in Figure 3.1.23. The upper panels show the observed surface 

concentrations for 2019 and 2020. The middle panels show the ratio between observation and 

forecast. The CAMS ensemble forecast corresponds well with the observation in the first 6 months 

of 2019 (note the thick blue line is close to 1). Due to a switch to a different (generally lower) 

emission inventory in June 2016, this fixed relation is broken. As a consequence, the corrected 

concentration reduction for the pre-lockdown period in January and February are strongly biased, 

as can be seen in the lower left panel. The blue line for LOTOS-EUROS reveal a strong seasonal 

dependency during 2019. The corrected concentration reductions (bottom right panel) seem more 

realistic that for CAMS, but still a strong emission reduction is visible in the pre-lockdown period 

(January to half March). 

 

Using LOTOS-EUROS for meteorological correction, the time series of Figure 3.1.19 change into 

the time series of Figure 3.1.24. For cities in Spain, Italy, and France, NO2 reduction remain 50%-
60%. 
The model is able to correct partially the strong NO2 differences found in the pre-lockdown months 

for Northern-European cities. The COVID-19 measures taken in Berlin were of the order of 20% in 

the first period and remain similar in the months up to August 2020. This behaviour is typical for 

cities in North-West Europe. Also in Eastern Europe the impact of the measures has been less drastic 

than in Southern Europe and France, with reductions of the order of 15-25%. 
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CAMS regional ensemble forecast LOTOS EUROS 

  
 
Figure 3.1.23: Observations and model corrections by CAMS (left) and LOTOS-EUROS (right) 

 

  
 
Figure 3.1.24: NO2 reductions found in selected European cites, after correcting for meteorological variability 

by LOTOS-EUROS. The dots indicate daily average reductions, while the thick lines represents a 31-day moving 

average. 
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3.1.2.3 Comparison between TROPOMI and in situ data in China (BIRA-IASB). 

 

The availability of ground based NO2 measurements in 1643 stations well distributed over China 

allows to compare the time series of temporal evolution of TROPOMI columns and in situ 

concentration measurements focusing and in particular on the NO2 reduction observed during the 

lockdown. The observed concentrations of NO2 were obtained from the China National 

Environmental Monitoring Center (Liu and Wang, 2020, courtesy of Y. Liu). The stations monitor 

the air quality at a half-hour resolution, providing measurements of various pollutants including 

NO2, SO2, CO, O3, and PM2.5.  

Here we compare the in situ NO2 observations to TROPOMI NO2 daily gridded columns at 

0.05° × 0.05° from the operational product, obtained via the Copernicus open data access hub 

(https://s5phub.copernicus.eu, van Geffen et al., 2020). In order to allow meaningful comparison 

between in situ concentrations and the satellite data, we proceed as follows:  

 for each of the 0.05° × 0.05° TROPOMI grid cells including one of the 1643 in situ stations, 

we extracted the daily TROPOMI NO2 columns and generated daily satellite data series per 

site; 

 we considered only in situ data within a two-hour time-window around the TROPOMI 

overpass time (12-14h); 

 we considered comparisons for days where both in situ and TROPOMI data are available.  

Figure 3.1.25 shows the average NO2 concentrations for all measurements stations in 2019 (dotted 

line) and 2020 (solid line) for in situ measurements (black) and TROPOMI observations (red). The 

right panel displays the relative NO2 reduction observed from both datasets, the lines representing 

a 21-day running mean. Both in situ data and TROPOMI data show an NO2 reduction between 

January and April, with the strongest reduction of -40% observed by the end of February. However, 

the NO2 levels were reduced in January 2020, before the start of the lockdown. This is partly due to 

the Chinese New Year festivities, which kicked off on 25 January 2020. Important reductions in air 

pollutant concentrations were reported during the New Year holidays in China (Tan et al., 2009). 

Between May and July, both datasets show a negligible NO2 reduction of about -5%. Overall, the 

in situ and TROPOMI data show a good agreement in the observed NO2 change (r =0.88), however 

TROPOMI suggests a stronger reduction at the end of January. 

Figure 3.1.26 shows the change in NO2 over the same period, for individual provinces affected by 

the shutdowns. Overall, for all provinces, the NO2 changes observed by TROPOMI and by 

monitoring stations are very well correlated. The strongest correlations are found in Hubei, 

Shandong, and Guangdong provinces (>0.9), followed by high correlations (0.8-0.9) in other 

Chinese provinces, like Fujian, Zhejiang, Hunan, and Jiangxi, all strongly affected by the 

lockdowns. Weaker correlations are found in Beijing and Shanghai (0.5-0.6), which might be related 

to the small number of measurement stations. Based on these comparisons, we note that most 

provinces have undergone a pronounced NO2 decrease of -40% to -60% in the month of February, 

which vanishes by the beginning of April.  

The stronger NO2 reduction observed by TROPOMI at the end of January occurs in several central 

and northern provinces (e.g. Liaoning, Henan and Shandong), whereas the higher NO2 observed by 

TROPOMI in April occurs in other provinces (e.g. Guangdong). Local dynamics play in important 

role and might account for a large part of these differences. Models accounting for meteorological 

variability and chemical interactions are needed to help understand these discrepancies.  

 

 

https://s5phub.copernicus.eu/
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Figure 3.1.25: Left: Average NO2 concentration over all 1643 in situ measurement sites in China. Middle: Average 

NO2 column observed by TROPOMI over the grid cells with in situ measurement stations. Right: Relative change 

in NO2 between 2020 and 2019. The black and red lines represent the changes derived from in situ and from 

TROPOMI data, respectively. The correlation between both is given in the top right corner. The curves 

correspond to 21-day running averages. 

  

 
Figure 3.1.26: The relative changes in NO2 between 2020 and 2019 per province based on in situ (black) and 

TROPOMI NO2 data (red). The Pearson’s correlation coefficients calculated between the two datasets. The 

number of in situ sites per province is indicated between brackets in the title. The curves correspond to 28-day 

running averages. 
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3.1.2.4 Analysis of NO2 concentration changes in China and correction for the meteorology 

contribution (KNMI) 

 

We daily collect the data of more than 1500 in-situ stations covering all major cities in China that 

are published by the China National Environmental Monitoring Centre. They provide hourly 

observations of the pollutants PM10, PM2.5, O3, NO2, SO2, and CO. NO2 is measured by a chemi-

luminescence technique (Zhang & Cao, 2015). Data can also be accessed via websites of third 

parties, such as www.pm25.in and www.aqicn.org. For this study, we have averaged the various in 

situ NO2 observations in a city to a single value per hour for each of 36 selected major cities (with 

a population of more than 3 million. For comparison with model results, we calculated a daily value 

based on the observations from 10:00 to 18:00 local time. The daytime selection is due to large 

inaccuracies in simulations of the night time boundary layer height.  

 

To eliminate the effect of meteorology and transport we compare these measurements of in situ 

stations with an ensemble model for air quality developed for urban areas of China (Brasseur et al., 

2019, Petersen et al., 2019, http://www.marcopolo-panda.eu). The ensemble service has a typical 

resolution of about 20 km. The model is driven by emission inventories, which are not corrected for 

the effects of either Spring Festival or the COVID-19 crisis and hence are considered the business-

as-usual situation. A possible bias between measurements and model is corrected for by normalizing 

the results for the first two weeks of January. In Figure 3.1.27, the ratio between in-situ measured 

NO2 and the modelled NO2 is shown. The concentration reductions are shown as green area, while 

increased concentrations are shown in red. The reduction starts around the Chinese New Year and 

ends in March. Exception is the concentration level of Wuhan that becomes similar to that of the 

business-as-usual scenario after the first week of April. The average concentration reduction of all 

36 cities is 41%, comparable to the emission reduction of 35 % shown in section 3.1.3. A striking 

difference between Wuhan and the other Chinese cities is the longer duration (by about one month) 

of the concentration reductions. 

 

 
Figure 3.1.27: Ratio of measured NO2 concentrations (from 1 January to 12 April 2020) to concentrations of the 

business-as-usual scenario. The Chinese New Year is indicated by the blue dashed line. 

 

http://www.marcopolo-panda.eu/
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3.1.3 Impact on NOx emissions in China (KNMI) 

 

During the COVID‐19 lockdown in China, air quality had strongly improved. Here we study what 

sources were reduced and how much the reduction per city was. We used TROPOMI observations 

of the Sentinel‐5P satellite, which monitors the Earth's atmosphere daily. We focused on 

observations of the pollutant “nitrogen dioxide,” an important precursor of air pollution in the 

atmosphere. With our novel methodology we are able to calculate the pollution back to the sources 

of the emissions, whether these are big cities, industrial regions, power plants, or busy shipping 

lanes. We applied this method to East China, we see strong emission reductions of 20–50% in the 

cities during the lockdown in February 2020. Besides urban China, we found an average emission 

reduction of 40% over coal power plants and a reduction in maritime transport by 15–40% 

depending on the region. The period of reduced emissions lasted until around the end of February, 

and the emissions slowly returned to normal during the month March 2020. Exception is the region 

Wuhan, the center of the COVID‐19 crisis, where emissions started to rebound since 8 April, the 

end of their lockdown period. 

 

From the observations of the TROPOMI instrument on the Sentinel‐5P satellite, over China we see 

Tropospheric NO2 column concentrations decrease about 35% and some areas up to 60% during the 

COVID‐19 regulation period compared to the same period of 2019 (see Figure 3.1.28 a and b). The 

concentrations alone provide only an indication of the impact of the COVID‐19 measures on air 

pollution. The inverse modeling system allows us to quantify the impact of the COVID‐19 measures 

and distinguish emissions from cities, power plants, and maritime transport separately. 

 

DECSO is a state-of-the-art inverse algorithm developed by Mijling and van der A (2012) updating 

daily emissions of short-lived atmospheric constituents using an extended Kalman filter, in which 

emissions are translated to concentrations via a CTM and compared to the satellite observations. 

The sensitivity of concentrations to emissions is calculated from a trajectory analysis to account for 

transport of the short-lived gas by using a single CTM forward run. DECSO has been successfully 

applied to NO2 observations from OMI and TROPOMI over different regions. In this project, daily 

NOx emissions from January 2019 to April 2020 over East Asia (102–120°E, 18–50°N) are derived 

with DECSO using the Eulerian regional off-line CTM CHIMERE v2013 (Menut et al., 2013) and 

TROPOMI NO2
 observations. The implementation of CHIMERE v2013 in DECSO is described in 

Ding et al. (2015). We apply DECSO to the super-observations of TROPOMI instead of directly 

using individual TROPOMI observations. Super‐observations are representing the integrated 

average of the TROPOMI observations over the grid cells of the model after filtering for clouds. 

Figure 3.1.28 (c and d) shows the mean NOx emissions derived from TROPOMI for the same period 

as in Figure 3.1.28 (a and b) in 2019 and 2020 after the Chinese New Year. We see lower NOx 

emissions in February 2020. 
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Figure 3.1.28: TROPOMI NO2 columns over East China after the Chinese New Year in 2019 (a) and 2020 (b). 

NOx emissions for the same period in 2019 (c) and 2020 (d) derived with DECSO.  

 

 

NOx emissions have been affected since the strict regulations started in China, especially in Hubei. 

We select three periods to quantify the impact of the COVID-19 regulations. The first period (P1) 

is three weeks before the implementation of the COVID-19 regulations, 3 to 23 January in 2020, 

which is also just before the Chinese New Year. The second period (P2) is 8 to 28 February, which 

is regarded as the regulation period. The third period (P3) is from 18 March to 7 April, when most 

regions in China resumed working. We calculated the average of NOx emissions derived with 

DECSO in each period and compare their differences. Figure 3.1.29 shows the relative changes of 

NOx emissions during the selected 3 periods over the grid cells with high anthropogenic (above 3kg 

N/km2/day) NOx emissions. We observe a strong decrease by at least 30% of NOx emissions over 

China in P2 compared to P1. In P3, NOx emissions increased compared to P2 but are still lower than 

in P1 because of the step-wise resumption of work and social life. In Figure 3.1.29, we see that the 

NOx emissions over sea also decrease. The emissions due to sea-transport from Shanghai to 

Guangzhou are less affected than the transport over land and are found to decrease by about 25% in 
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P2 and increase again with 18% in P3 in comparison to P2. A more significant emission decline was 

found in the Yellow Sea and Bohai area, where NOx emissions reduced by about 41% in P2 and 

continued decreasing by 6% in P3.  

 

 
Figure 3.1.29: The relative difference in NOx emissions between (a) P2 and P1; (b) P3 and P2 (c) P3 and P1. P1 

is 3-23 January. P2 is 8-28 February. P3 is 18 March to 7 April. The changes in emissions are shown in the figure 

for emissions higher than 3 kg(N)/km2/day in P1 to remove areas with dominating biogenic emissions or rural 

areas. 

 

At city level changes in NOx emissions started from January 2019. We infer a very strong NOx 

emission decrease of more than 50% during and after the 2020 Chinese New Year in Wuhan, where 

the COVID-19 outbreak was first recorded and very strict lockdown regulations were adopted. At 

the other five Chinese cities, we also observe a much stronger decrease after the Chinese New Year 

in 2020 than in 2019. In addition, the duration of the period with low emissions is much longer. We 

also calculate the average reduction of grid cells containing urban. The inferred emission reduction 

is about 35% in urban areas. Besides the urban emissions, we find strong reductions of NOx 

emissions from coal power plants. Figure 3.1.30 shows time series of NOx emissions from the 

Ningxia Province, where the main sources of NOx are fossil fuel power plants (van der A et al., 

2017). Our inversion results indicate that after the 2020 Chinese New Year, NOx emissions dropped 

about 40% in this province, 20% more than in 2019 New Year period. This shows the impact of the 

COVID-19 regulations on the energy production, especially in the industrial sector.  
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Figure 3.1.30: Time series (1 January 2019 to 28 April 2020) of daily NOx emissions in Ningxia Province.  

 

To study the impact of the COVID-19 regulations on NOx emissions (one of the key ingredients 

determining air pollution), we derived daily NOx emissions at a resolution of 0.25° × 0.25° over 

East Asia from 2019 to March 2020 by applying the inverse algorithm DECSO to observations from 

TROPOMI. By grouping the emission into three periods of before, during and after the COVID-19 

regulations, we quantified the emission changes on the small spatial scale of city level and from 

different emission sources such as sea-transport and the energy sector. The observations suggest 

emission reductions of 20% to 50% for cities. The emissions reduction of 40% in the Ningxia 

province reflects the impact of the lockdown measures on the energy sector. Maritime transport is 

also affected during the COVID-19 regulations, although its emissions reductions are dependent on 

the region. With the NOx emissions derived from DECSO using observations from TROPOMI, we 

are able to get detailed information about the impact on emission changes due to the COVID-19 

regulations by accounting for the influence of meteorology, lifetime and transport of the air 

pollutants. As the COVID-19 crisis progressively affects all continents, the public health regulations 

implemented by various countries may have different contributions to air quality. Applying our 

methodology to different regions can help to quantify the impact of the NOx emission reductions by 

the different regulations on not only the improvement of air quality from urban to local to regional 

scale. 

 

Yangtze River Delta (YRD) 
For the Yangtze River Delta (YRD) we have applied DECSO with a higher resolution of 0.1 x 0.1 

degree using TROPOMI data. The overall effect of the lockdown is clearly visible in Figure 3.1.31 

where the NOx emissions are shown for a day just before the lockdown and a day in the middle of 

the lockdown period of China. The calculated emission reductions for individual cities like 

Shanghai, Nanjing, Wuhan and Hefei are consistent with the earlier results on 0.25x0.25 degree 

resolution. 
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Figure 3.1.31: The NOx emissions in the YRD just before the lockdown, on 13 January (left) and during the 

lockdown on 28 February (right) 

  

To understand more details of emission reductions for the cities, we have chosen the City of Nanjing 

and analysed the emissions per grid cell of about 10 x10 km. The nine grid cells presented in Figure 

3.1.32 cover most of the city of Nanjing. For each part of the city a time series is made and the 

reduction calculated of P2 compared to P1. The reductions vary from 32% to 56%. The biggest 

reductions are seen in those parts of the city with dominating traffic, while more industrial regions 

(grid cell 1, 2, 3 in Figure 3.1.32) show slightly smaller reductions. 
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Figure 3.1.32: The top panel shows the city of Nanjing with the grid cells overlaid. For each grid cell a time series 

is plotted below in the same order as the blue grid cells. Blue line indicates 23 January 2020, just before the 

regulations and the blue line 28 February 2020 when strict regulations were enforced. 

 

3.1.4 NOx emission reductions and relation to NO2 concentration reductions in Europe 

(KNMI) 

The DECSO algorithm, described in section 3.1.3, has also been applied to derive the NOx 

emissions in Europe in the period 2019-2020. We have derived emissions for Europe on a 0.2 x 0.2 

degree grid and a separate run for Spain with resolution of 0.15 x 0.1 degree. Analysing emissions 
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has the advantage that the derived emission reductions are hardly affected by changes in 

meteorological conditions.  

For the same cities as analysed in section 3.1.2.2 we have plotted in Figure 3.1.33 the ratio of the 

NOx emission in 2020 and the emissions in 2019. We see that the emission reduction is rather large 

in some cities and this reduction is likely not only a result of COVID-19 regulation but also an effect 

of the general trend of reduced NOx emissions in the European cities. The left plot of  Figure 3.1.34 

gives the ratio of 2020 over 2019 of the average NOx emissions in the urban areas of Europe, 

showing a clear down-wards trend of emissions (of about 5-10%). A trend that was also reported by 

Georgoulias et al. (2019) and Zara et al. (2021). The right plot of Figure 3.1.34 shows that the trend 

varies a lot over the European cities. To minimise the effect of this trend we used as baseline the 

two and half month just before the COVID-19 period that started roughly half March in Europe. 

Plotting the emissions relative to this period, in Figure 3.1.35, shows us a different picture. The 

reductions still vary a lot from one city to another, but the reductions are in general much less, and 

in the cities Amsterdam, Berlin, Brussels and Budapest the reduction is not significantly higher than 

its annual trend. Note however that we make the assumption here that urban emissions are constant 

over the seasons, while in fact several cities show an increase in summer because of biogenic 

emissions from the green districts in the city. 

 

 
Figure 3.1.33: The NOx emission reduction by comparing the emissions in 2020 with the emissions in 2019 for 

the same day. 
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Figure 3.1.34: (left) Time series of the ratio of 2020 over 2019 of the average NOx emissions in European urban 

areas. The red line marks the start of the COVID-19 period on 15 March. (right) The emissions in the first months 

of 2019 and 2020 of the selected 10 European cities. 

 

 
Figure 3.1.35: The NOx emission reduction by comparing the emissions in 2020 with the average emissions in 

the period 1 January 2020 to 15 March 2020. 

 

Figure 3.1.36 shows the relationship of NOx emission fluxes with the corresponding NO2 

concentrations in cities, averaged in 14-day time intervals. As the COVID lockdown measures 

provoked a drop in NOx emissions causing lower NO2 concentrations, this allows us to study this 

relationship for a wider range of values.  
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Figure 3.1.36: The relation between NOx emission flux and NO2 concentrations in 10 European cities. The data 

is averaged in 14-day time intervals. 

 

There is not always a clear relation visible in the scatter plots. Part of the scatter is caused by 

fluctuating concentrations due to variability in meteorology (estimated in Section 3.1.2.2 to be 

21%). Cities like Amsterdam and Berlin show relatively high concentrations of NO2 while having 

low local NOx emission fluxes, indicating that the NO2 air pollution is largely affected by high 

background values (i.e. pollution being transported towards the city center).  

 

A linear regression line has been drawn for cities where the correlation was found larger than 0.4. 

Note that this regression line does not capture any non-linear effects, probably caused by different 

chemical regimes (e.g. VOC-limited chemistry). This effect is especially visible for Madrid and 

Milan.  

 

From the slope of the regression line, we can estimate for various cities by which fraction the local 

NOx emissions must be reduced to establish a reduction of NO2 concentrations of 1 μg/m3, based 

on 2019 levels. 

 
Table 4: Correlation between NOx emission flux and NO2 surface concentrations and linear regression results 

city n correlation slope=1/ΔE E2019 ΔE/E2019 x 100% 

Madrid 32 0.52 5.30 6.10 3.1% 

Barcelona 32 0.67 3.91 4.69 5.5% 

Rome 31 0.72 4.16 7.01 3.4% 

Milano 32 0.84 6.81 7.02 2.1% 

Paris 32 0.55 1.41 14.63 4.8% 

London 32 0.14 - 9.93 - 

Amsterdam 32 0.07 - 5.28 - 

Berlin 32 0.36 - 3.39 - 
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Brussels 32 0.63 4.97 5.10 3.9% 

Budapest 32 0.46 4.83 5.96 3.5% 

 

From Table 4, we can see that the impact of emission abatement policy will be largest in Milan, 

where a reduction of 1 μg/m3 in NO2 surface concentrations can be established by a reduction of 

2.1% in NOx emissions. For the same effect, emission must be reduced by 5.5% in Barcelona, and 

4.8% in Paris. For cities like Amsterdam and Berlin, NO2 concentration reduction can best be 

achieved by policy targetting the reduction of imported background concentrations. 

3.1.5 Conclusions on NO2 analyses. 

 

Significant reductions of NO2 measurements (columns or concentrations) have been observed and 

quantified in many locations worldwide in phase with the local lockdown measures. In Europe and 

China, an excellent consistency is found between relative 2020/2019 differences observed from 

space with TROPOMI and from available ground in situ data. For most cities, they agree within 5%. 

 

In Europe, the following conclusions can be drawn: 

 The strongest reductions of 40-50% are found in the first phase of the lockdown in Southern 

European and French cities. The period up to 1 July can be seen as a transition period with 

weaker reductions. In July-August we find evidence that the concentrations are still 10% to 

20% lower than pre-COVID levels. 

 The COVID-19 measures taken in Berlin led to NO2 reductions of the order of 20% in the first 

intense lockdown period, which remain similar in the months up to August 2020. This 

behavior is typical for cities in North-West Europe. 

 Also in Eastern Europe, the impact of the measures has been less drastic than in Southern 

Europe and France, with reductions of the order of 15-25%. 

 The contribution of meteorology on the NO2 amount variability is high and explains for 

example much lower NO2 concentrations in early 2020 compared to 2019 in Northern Europe, 

before any lockdown measure has been taken. Meteorological year-to-year variability is 

estimated to be 15% for NO2 columns, and 21% for in-situ concentrations. Although using the 

LOTOS-EUROS model to correct for the meteorological contribution helped to better 

interpret the observations in many locations, such a correction has not always been optimal: 

in particular the CAMS ensemble had major emission inventory updates preventing to 

compare the 2019 and 2020 modelled fields, and LOTOS-EUROS shows weather (season) 

dependent biases. A stronger modelling effort with a consistent “business-as-usual” emission 

inventory could improve the results. 

 In addition to meteorology, a downward trend of NOx emissions in many European cities also 

contribute to lower NO2 levels in 2020, which needs to be accounted for when trying to 

disentangle the different effects. When deriving NOx emissions with DECSO for Europe we 

find a strong annual trend in NOx emissions for many cities before the COVID regulations 

started, which can make the reduction look larger than they actually are. After correcting for 

this, we still find reductions of up to 40-50% in several Spanish, Italian and French cities. 

 The COVID lockdown measures provoked a wider range of values of NOx emissions and NO2 

concentrations. This enables an assessment of the impact of emission abatement policies in 

various cities. In Milan, it is estimated that a reduction of 1 μg/m3 in NO2 surface 

concentrations can be established by a reduction of 2.1% in NOx emissions. For the same 

effect, emission must be reduced by 5.5% in Barcelona, and 4.8% in Paris. For cities like 
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Amsterdam and Berlin, NO2 concentration reductions can best be achieved by policy 

targetting the reduction of imported background concentrations. 

 

In China, we found that: 

 Both satellite and in situ NO2 observations in the biggest cities of China show reductions of 

about 40% during the lockdown. Then they rebound quickly to the original levels after the 

lockdown period. In Wuhan, the observed NO2 reductions were larger (up to 60%) and last 

longer (until June). 

 Simulations with the CTM MAGRITTEv1.1 using an anthropogenic emission inventory 

optimized for the effect of the different lockdowns worldwide allowed to reproduce 

reasonably well the 2020/2019 NO2 column ratio as observed with TROPOMI in February 

when the reductions were the most important, but also later in May when local restrictions 

were much lighter.  

 NOx emission estimates with the DECSO algorithm show a reduction of 20-50% in the urban 

areas of China and of 40% in the energy sector. Reductions of emissions in the maritime sector 

are also seen, but these are smaller and strongly depend on the region.  

 When deriving 0.1 degree resolution emissions, we see that the various city quarters of 

Nanjing show similar reductions, but with slightly less reductions in the more industrial areas 

of the city as compared to the zones with only traffic. 

 

NOx emissions have also been estimated for 2019 and 2020 by exploiting the correlation between 

the TROPOMI NO2 column spatial variability and the wind conditions over a series of cities 

worldwide, considered as point sources. In Buenos Aires, NOx emissions in 2020 were 50-60% 

smaller in April 2020 than in 2019, while comparable in the first three months of the year. In New 

Delhi, derived NOx emissions were lower by 89% in April 2020 compared to April 2019 and 

remained significantly lower in May (70%) and June (47%). After the period July-September during 

which the analysis was not possible due to the limited amount of valid data, the NOx emissions 

derived in October/November were still lower in 2020 than in 2019. A similar analysis has been 

performed in New York, Riyadh, Kano and Madrid. Despite some variability in the data linked to 

sampling due to clouds and limitations in the analysis, lower NOx emissions have been found in 

2020 than in 2019, but with different seasonal patterns, which is related to the different timing of 

the Covid-19 infection waves and the differences in lockdown severity. 

 

 Other species 

3.2.1 Sulphur dioxide (SO2) (BIRA-IASB) 

 

In a first step, the TROPOMI offline operational SO2 column product has been used to detect 

changes in SO2 emissions related to the COVID-19 sanitary crisis, over China and India. However, 

it became soon evident that no robust conclusions could be drawn, because of biases in the product 

that are typically higher than the decrease in vertical column due to COVID-19 lockdown measures. 

Therefore, we have developed a new SO2 algorithm that efficiently reduced VCD offsets and that 

can be used to study “weak” changes (~0.05-0.1 DU)  in SO2 vertical column levels. The algorithm 

is named COBRA (Covariance-Based Retrieval Algorithm) and makes use of a set of SO2-free 

spectra to build a covariance matrix of the radiance in the 310.5-326 nm wavelength range to 

optimally represent the radiance background variability (except that of SO2). The SO2 SCD is 

retrieved as a single fit parameter (Theys et al., 2021) and the AMF needed to convert SCD into 
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VCD is taken ‘as is’ from the operational SO2 product. Compared to the (DOAS) operational 

product, the COBRA is improved both in terms of noise level and bias reduction (see Figure 3.2.1). 

One additional advantage of the COBRA scheme is its computational speed (an order of magnitude 

faster than DOAS-type algorithms), and we have taken advantage of this to reprocess the full 

TROPOMI data record. 

 
Figure 3.2.1: Monthly averaged TROPOMI SO2 columns over India for April 2019, from (left) DOAS operational 

product and (right) COBRA scientific product. The noise and offsets reduction is clear from the maps. The 

individual point sources (power plants) can be better discerned in the COBRA SO2 map. 

 

The effect of COVID-19 measures on SO2 columns has been investigated in details for China and 

India. The selection of pixels was performed based on strict cloud filtering and product quality 

indicators, and in an effort to align with other species, in particular NO2. Figure 3.2.2 and Figure 

3.2.3 presents the observed decrease of SO2 VCDs over India and China. 
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Figure 3.2.2: Monthly averaged TROPOMI SO2 columns over India for April 2019 and April 2020. 

 
Figure 3.2.3: Monthly averaged TROPOMI SO2 columns over China for February 2019 and February 2020. 
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Figure 3.2.4 gives a summary of the exercise. As can be seen, a clear COVID-19 related effect on 

SO2 is observed with a decrease up to -75% (second half of February) and -40 % (April), 

respectively over China and India. 

 

 

 

 
 

Figure 3.2.4: Time-series of bi-weekly mean SO2 vertical columns for 2018-2020 over (left) North China (34°N-

40°N; 110°E-120°E) and (right) India 59 largest power plants (0.5°x0.5° domain centered around each station, 

of which the coordinates are provided in Annex A).  

 

As a note, we find that observed SO2 VCD reduction is most often hard to separate from inter-annual 

variability and short-term variability (out of COVID-19 periods). Other regions in the world have 

been investigated (e.g., Turkey, South Africa) but no firm conclusions could be drawn on the 

possible link between observed variability and local lockdowns.  
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3.2.2 Carbon monoxide (CO)  

3.2.2.1 Analysis using the operational product algorithm (SRON) 

 

The operational TROPOMI CO dataset provides total column measurements of CO in the 

atmosphere with daily global coverage and a high spatial resolution of about 7x7 km2 (Veefkind et 

al. (2012)). The retrieval deploys the SCIOR algorithm that retrieves trace gas columns together 

with effective parameters describing the cloudiness of the observed scene (cloud altitude and optical 

thickness) from the SWIR measurements of the instrument (Landgraf et al. (2016, 2016a)). 

 

The TROPOMI CO dataset fulfils the mission requirements (precision < 10%, accuracy < 15%) 

(Borsdorff et al. (2018a, 2019)), has proven to be useful for the monitoring of CO enhancements 

above mid-sized cities, and even along main traffic roads (Borsdorff et al. (2018)). In combination 

with simulation of regional models like WRF-chem, the TROPOMI CO dataset has the potential to 

further improve emission inventories by distinguishing CO emissions on a fine spatial resolution 

e.g. emissions from different suburbs in Mexico City (Borsdorff et al. (2020)). 

 

In this study, we use the offline CO retrievals (version 01.01) under clear-sky and optical thick low 

altitude cloud conditions. This corresponds to filtering the data by (qa_value > 0.5). TROPOMI CO 

clear-sky retrievals show a very good sensitivity throughout the atmosphere. By validation with 

TCCON measurements it was shown that the retrievals under low altitude cloud conditions are 

comparable to clear-sky measurements in unpolluted scenes (Borsdorff et al. (2018a, 2019)), but 

can lead to an underestimation of CO enhancements above pollution hot-spots (Borsdorff et al. 

(2018)). This so called smoothing or null space error (Borsdorff et al. (2014)) can become even 

higher than 30% (Borsdorff et al. (2017)), but can be completely avoided when comparing with 

vertical profiles e.g. from models by considering the vertical sensitivity of the retrieval (averaging 

kernel) that is supplied by the dataset for each retrieval (Borsdorff et al 2018b). Even though this is 

an additional error contribution to this study, we need to use cloudy retrievals to get a better data 

coverage. 

 

We analysed the operational TROPOMI CO dataset from 2019 to 2020 to search for reductions in 

the CO concentration caused by COVID-19 lockdown measures. The regions considered are Italy, 

India, and China. For Italy, major cities like Milano, Turin, and Venice were studied and the Po 

valley as a whole. Figure 3.2.5 shows monthly means of TROPOMI CO from December 2019 to 

March 2020. CO enhancements over industrial areas near Venice can be sensed, but it is hardly 

possible to identify any isolated pollution hot spots like major cities in the area. One of the reasons 

for this is the satellite observation geometry at the time of the year with lower solar zenith angles 

leading to more noise in the data, but also the general high variability of CO over Europe. Figure 

3.2.6 shows a time series of TROPOMI CO daily means over the Po Valley as a whole in the lat/lon 

box [45.45, 8.20, 44.89, 12.15]. The 60-day running average indicates that the seasonality of CO 

over the region is highly variable from year to year. Furthermore, the scatter of the daily means is 

so high that no COVID-19 lockdown signals can be identified (see lower panel of Figure 3.2.6).   

 

For China, we analyzed different industrial regions (North, South, corridor between Beijing and 

Wuhan), the city of Wuhan, as well as power plants. Figure 3.2.7 compares the CO concentration 

over China in February 2019 with the one of February 2020. This clearly shows significantly 

reduced CO values in 2020. However, it seems that the variability of CO in the first months of each 

year is generally high over China as shown by Figure 3.2.8 presenting time series of CO over 

Northern China (lat lon box [41.42, 103.99, 34.63, 121.91]) and the corridor between Beijing and 
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Wuhan (lat lon box [42.33, 112.99, 29.64, 117.09]). For example, in January 2018, detected CO 

values are even lower than in 2020, apparently without any COVID-19 lockdown measures. The 

variability of CO could be driven by the meteorological situation and atmospheric transport. Hence, 

also for China, we find no significant COVID-19 lockdown signals in the TROPOMI CO data.  

 

We analyzed India as a whole, but with a deeper focus on the Northern part of the country. Time 

series of major cities like New Delhi, Mumbai, and Bangalore as well as the Indo-Gangetic plain 

were considered. Figure 3.2.9 shows the monthly averaged CO concentration over India in April 

2019 and 2020. For April 2020, we do not find reduced, but instead enhanced CO values over the 

southern part of India. The reason for this could be CO from biomass burning that accumulates in 

the atmosphere. This is possible due to the relatively long resistance time of CO that varies between 

weeks and months depending on the atmospheric OH concentration (Holloway et al. (2013)). Hence, 

the challenge to identify COVID-19 lockdown signals is to separate the background CO variability 

which is driven by pollution transport worldwide, from reduced local emissions. This is hardly 

possible without applying regional models like WRF-Chem. As can be seen in Figure 3.2.9 the 

Northern part of India is less affected by the CO enhancements observed in the South. However, the 

time series of CO over New Delhi and the Indo-Gangetic plain in Figure 3.2.10 still contain too 

much noise to detect a significant reduction of CO in April 2020 compared to former years. 

Furthermore, Figure 3.2.11 shows that most of the retrievals in April 2020 are cloud contaminated. 

This could also be a reason for reduced CO values during that time, since clouds in the observation 

geometry of the satellite are reducing the sensitivity for CO at the ground. Hence, again model 

calculations would be needed to better account for the sensitivity reduction of the retrieval. 

Consequently, for India we cannot conclude either on the presence of a possible COVID-19 

lockdown signal. 

 

We have developed a software framework to collocate the whole TROPOMI CO data product for 

2020 with the simulations of the ECMWF-IFS forecast product. This control run of ECMWF-IFS 

is not assimilating other satellite measurements that could possible detect COVID-19 lockdown 

signals. We tried to use the model calculation to estimate the background variability of CO and to 

facilitate the extraction of a possible COVID-19 lockdown signal in the TROPOMI CO data. 

However, the bias between TROPOMI and the simulation is much too high and even scaling the 

simulation to the TROPOMI data is not enough to bring them in agreement as is shown in Figure 

3.2.12. Furthermore, the bias between TROPOMI and ECMWF-IFS shows a significant dependency 

with latitude and time, which could exceed possible COVID-19 lockdown signals.  

 

In conclusion, we find that COVID-19 signals are not easy to detect in the TROPOMI CO data. The 

challenge is to separate such signals form the high background variability of CO that is driven by 

atmospheric transport of pollution worldwide and additionally to account for the vertical sensitivity 

of the TROPOMI CO retrieval that can be degraded due to cloud contamination of the 

measurements. In future, regional modeling e.g., with the WRF-Chem model could possibly help to 

detect COVID-19 lockdown signals in the TROPOMI CO data. Furthermore, a correlation of 

TROPOMI CO with trace gases like NO2, that are more sensitive to lockdowns, could give a better 

insight into the question whether COVID-19 lockdowns had an impact on the atmospheric CO 

concentrations.  
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Figure 3.2.5: Monthly averaged TROPOMI CO retrieval over Northern Italy. From top to bottom December 

2019 – March 2020. Vertical column densities in molecules/cm2 are shown. 
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Figure 3.2.6: Time series of TROPOMI CO retrievals from 2018-2020 over the Po Valley [45.45, 8.20, 44.89, 

12.15] (top panel). Daily means are shown with the standard deviation of the mean as error bars. The red line is 

a 60-day running mean. The lower panel shows the differences of the daily means and the 60-day running mean.  

Vertical column densities in molecules/cm2 are shown. 

 

 

  
Figure 3.2.7: Monthly averages of the TROPOMI CO retrievals over China. From the 11th-28th February 2019 

(left panel) and 8th-28th February 2020 (right panel). Vertical column densities in molecules/cm2 are shown. 
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Figure 3.2.8: Time series of TROPOMI CO retrievals from 2018-2020 over Northern China [41.42, 103.99, 34.63, 

121.91] (left panel) and the corridor between Beijing and Wuhan [42.33, 112.99, 29.64, 117.09] (right panel). 

 

  
Figure 3.2.9: Monthly averages of the TROPOMI CO retrievals for April 2019 (left panel) and April 2020 (right 

panel) over India. Vertical column densities in molecules/cm2 are shown. 

 

  
Figure 3.2.10: Time series of TROPOMI CO retrievals from 2018-2020 over the Indo-Gangetic plain plane (left 

panel) and in a radius of 50km around New Delhi (right panel).  The dotted line is the average of all years. 
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Figure 3.2.11: TROPOMI CO retrievals in a X by X lat/long box centred around New Delhi. From left to right 

and top to bottom the daily overpasses in April 2020 are shown. (left panel) CO retrieval under cloudy and clear-

sky conditions (qa_value>0.5), (right panel) only clear-sky retrievals (qa_value>0.7). We removed the 

background CO concentration for each overpass by subtracting the median of the retrievals. Vertical column 

densities in molecules/cm2 are shown. 

 

 

 

 

 
Figure 3.2.12: TROPOMI CO retrievals over India on the 1st of April 2020 (first column). Simulated CO columns 

of the CAMS IFS control run collated with the TROPOMI overpass (second column). Difference between 

TROPOMI CO and CAMS (third column). In the second row the CAMS simulation was scaled to have the same 

mean CO concentration as the TROPOMI measurements. We applied the averaging kernels of the TROPOMI 

retrieval to the CAMS model.  Vertical column densities in molecules/cm2 are shown. 
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3.2.2.2 Analysis using the WFMD scientific algorithm (IUP-Bremen) 

 

In order to find out if potential changes in atmospheric CO during the pandemic can be detected 

from space we have analysed Sentinel-5-Precursor (S5P) scientific WFMD algorithm XCO 

retrievals (Schneising et al., 2019, 2020a) during October 2017 to June 2020.  

 

We focussed on regional-scales and generated XCO maps (absolute XCO and XCO differences to 

the previous year) for South East Asia, Europe, and continental US (Figures 3.2.13-16). To better 

analyse the observed pattern we also performed an additional time series analysis for smaller source 

region (with substraction of background to remove seasonal cycle and potential global yearly 

changes) based on weekly data for different years. The time series analysis is performed for the 

following sub-regions: East China (Figure 3.2.13), Northern Italy (Figure 3.2.14), India (Figure 

3.2.15) and the US East Coast (Figure 3.2.16). The source region of interest and the corresponding 

background region are highlighted in the respective figures. 

 

The spatial maps of XCO differences between COVID-19 and a pre-pandemic period typically show 

a complex pattern of year 2020 reductions and enhancements and the time series analysis indicates 

that the differences of 2020 and 2019 are within normal year-to-year variability for all analysed 

regions.  

 

For example in the case of China, we find a reduction in 2020 relative to 2019 in the analysed source 

region in the spatial difference map for February and March (Figure 3.2.13). However, the time 

series analysis suggests that single difference maps are not sufficient to explicitly link such 

reductions to the COVID-19 lockdown: we find lower values (2020 relative to 2019) in the late 

lockdown period after about February 10 (2018 is in between), but the exact opposite during the 

first 2-3 weeks of the lockdown and there are also lower values relative to the year before from 

October to mid January in a time period without lockdown.  

 

The time series analysis also indicates that the 2019 values were exceptionally high in late February 

contributing to the reduction in the Chinese source region, which is visible in the XCO difference 

map (2020FM-2019FM). In the other regions there are no significant time series differences 

between the years.  

 

It is therefore concluded that there is no unambiguous signature in XCO during the COVID-19 

lockdown in 2020 in the analysed regions. 

 

  



 
 ICOVAC Final Report 57/89 

 

 

 

  

 
Figure 3.2.13: Top left: XCO over China and surrounding countries for February/March 2020 (2020FM). Top 

right: XCO difference 2020FM minus 2019FM, the large positive increment in South East Asia is due to wildfires 

in 2020. Also shown are two rectangular regions: the East China target (or source) region of interest (red) and 

the corresponding background region (green). Bottom: Time series (weekly resolution) of ΔXCO, which are 

target minus background (TmB) region differences of consecutive years. Also shown in light red is the Hubei 

lockdown period from end of January 2020 to end of March 2020. As can be seen from the blue curve, TmB 

ΔXCO is lower in 2020 compared to 2019 during the late part of the lockdown but there is also a reduction before 

the lockdown and at the start of the lockdown the TmB curve is even larger for 2020 in comparison to 2019. It is 

therefore concluded that the year-to-year differences of 2020 and 2019 are within normal variability.  
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Figure 3.2.14: Similar as Figure 3.2.13 but for Europe and March/April maps focussing on Northern Italy for 

the time series analysis. The elevated XCO in the Ukraine is due to wildfires in 2020. 

 

 

  

 
Figure 3.2.15: Similar as Figure 3.2.13 but for India and April/May maps focussing on Northern India for the 

time series analysis. 
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Figure 3.2.16: Similar as Figure 3.2.13 but for the US and a March/April difference map focussing on parts of 

the US East Coast for the time series analysis. 
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3.2.3 Formaldehyde (HCHO), glyoxal (CHOCHO) and PAN (BIRA-IASB) 

 

HCHO and CHOCHO are both short-lived indicators of NMVOC emissions as they are largely 

produced via the oxidation of other NMVOCs either emitted as a result of biogenic processes, large 

biomass burning events, or anthropogenic activities (Bauwens et al., 2016; Fu et al., 2008; Stavrakou 

et al., 2009). To a lesser extent, direct emissions of HCHO and CHOCHO from combustion and 

industrial processes may also occur. In particular, glyoxal is produced from oxidation of aromatics 

with a much higher yield than HCHO, providing a stronger response to anthropogenic activities 

(Cao et al., 2018). There are difficulties associated with the investigation of a possible lockdown 

signature in the satellite HCHO and CHOCHO data sets. Large uncertainties are associated with 

both of these column retrievals owing to their low optical depth. As mentioned before, HCHO and 

CHOCHO columns are dominated by biogenic emissions, which explains the observed seasonal 

pattern of HCHO and CHOCHO column values with a maximum during summertime. Variability 

in meteorology (temperature changes, winds, precipitations) may lead to changes in column 

amounts on the same order of magnitude as the expected lockdown-related reduction in 

anthropogenic emission changes. Working with large regions allows reducing the noise on the 

observations, but local effects are not well separated from natural variations and the spatial sampling 

should be verified to remain comparable for year-to-year, and month-to-month. Working at a finer 

city scale allows better isolating local effects and reducing sampling issues, but at the expense of a 

larger noise level, often preventing to conclude on the observed variations. 

3.2.3.1 HCHO  

Our analysis was primarily based on 3 years of TROPOMI measurements. Observations during the 

2020 lockdown period were compared with the values in 2018 and 2019. As will be explained in 

this section, for HCHO, we could observe a 40% decrease over Northern China during the second 

half of February, and a similar decrease over New Delhi during the first half of April. In Europe, 

US or South America, we could not isolate an unambiguous decrease in the atmospheric HCHO 

columns.  

Even for the Chinese and Indian regions, it was not easy to confirm the anthropogenic origin of the 

observed decrease. The column being at their minimum during the winter time periods, and their 

uncertainties being larger for large solar zenith angles, signal changes are much more difficult to 

confirm during winter time than during spring or summer time. Data and methods needed to be 

carefully adapted. The influence of the temperatures has been taken into account. In the larger 

Northern China region, the spatial sampling has been carefully checked. Finally, the OMI data 

records has been used to evaluate the observed changes relative to the HCHO variability.  

Data and Method 

We use the TROPOMI level-2 HCHO operational data product (RPRO+OFFL, product versions 

1.1.[5-8], http://www.tropomi.eu/data-products/formaldehyde; doi: 10.5270/S5P-tjlxfd2). HCHO 

retrieval algorithm has been fully described in the HCHO ATBD (De Smedt et al., 2018). It is based 

on the DOAS method, and is directly inherited from the OMI QA4ECV product 

(https://doi.org/10.18758/71021031). Considering that the bias between OMI and TROPOMI 

HCHO columns is lower than 10% in most regions (ROCVR http://mpc-vdaf.tropomi.eu/, De Smedt 

et al., 2021/), we have used the QA4ECV OMI dataset to construct a climatology based on the more 

recent years (2010-2018) and use it to assess the interannual and seasonal variability. Furthermore, 

we use the strong correlation between HCHO columns and surface temperatures (Zhu et al., 2017) 

to introduce a temperature correction based on data from 2005-2020 for OMI measurements, and 

2018-2020 for TROPOMI measurements. In brief, this correction consists of fitting a second-order 

http://www.tropomi.eu/data-products/formaldehyde
https://doi.org/10.18758/71021031
http://mpc-vdaf.tropomi.eu/
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polynomial through daily HCHO columns reported as a function of the temperature. This analysis 

is performed for each region and on the OMI and TROPOMI time series separately. On this basis, 

the temperature-induced variations in HCHO are subtracted from the time series using local daily 

temperatures specified by ERA5-Land 2m data meteorological sets (Copernicus C3S ERA5-Land 

reanalysis, 2019) up to December 2020. This mainly leaves HCHO anomalies, which are not related 

to temperature fluctuations. Finally, a polynomial obtained using a climatology of surface 

temperatures is added to the differential HCHO columns, in order to reintroduce the natural seasonal 

cycle, assuming the same temperature every year. Note that the difference with uncorrected HCHO 

columns is generally small (less than 10%), but can be significant when looking for small effects 

such as those induced by COVID-related emission changes. 

 
Figure 3.2.17: Example of temperature correction of the HCHO tropospheric columns in the Indogangetic Plain. 

The dashed line presents the HCHO columns after correction using climatological temperatures. The correlation 

between the local daily temperatures from ERA5 and the HCHO columns is shown inset.  

 

Results 

Figure 3.2.18 and Figure 3.2.19 present monthly maps of TROPOMI HCHO columns, respectively 

over Eastern China in February 2019 and 2020, and over Asia in April 2019 and 2020. On those 

maps, the most visible decrease is found over the Indo Gangetic plain in April.  

Figure 3.2.20 shows the seasonal cycles for tropospheric HCHO column amounts of TROPOMI in 

Northern China and New Delhi, but also over Milan, Barcelona, Paris and New York. The different 

coloured curves show the bi-weekly medians of the daily mean tropospheric columns. OMI data 

sets allow for comparison of TROPOMI observations to a climatological seasonal cycle built using 

OMI data from 2010 to 2018, as indicated by the black dashed curves. The associated error bars 

represent the interannual variability as estimated from OMI. For each region or city, the 

corresponding surface temperature and precipitations are presented below the HCHO columns. For 

the Northern China and New-Delhi cases (first line), the “surface-temperature-corrected” HCHO 

columns are also shown. 
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For Northern China, the temperatures and the amount of precipitation in February were close to 

normal values. The interannual variability as estimated from the OMI data sets is estimated to be in 

the range of 1.2x1015 molec.cm-2 (~12%). However, a minimum is visible in late February 2020, 

with columns significantly lower than 2019 and lower than the OMI climatology (about -40%). The 

differences are also larger than what can be explained by the typical interannual variability.  

In India, the temperatures in April and May 2020 were lower than average, and the precipitations 

were heavier. During the first part of April (coinciding with the phase 1 lockdown), a reduction in 

HCHO column concentrations is observed for the IGP and is even more pronounced over New Delhi 

(respectively -20% and -40 % compared to the OMI climatology). In both cases, the anomaly is 

larger than the interannual variations generally observed during this period. Neither a change in 

temperature nor the amount of precipitation can explain the observed column decrease during phase 

1. In addition, the effect appears even more pronounced over New Delhi than in the IGP, which 

gives confidence in the anthropogenic nature of the reduction. During the second part of April and 

May, the temperature correction reduces strongly the observed reduction and prevent to attribute 

the observed diminution only to a decrease of the pollution levels. 

The time series over Milan or Paris do not show a decrease in the HCHO columns during the lock 

down period. Only over Barcelona, a punctual decrease is observed during the second part of April 

and might be related to the lockdown, although the same effect is not observed in Madrid and is 

difficult to explain. Over New York, a decrease seems to be observed in May 2020, and later in 

September, outside the peak due to biogenic emissions in summer time. But this decrease is within 

the interannual variability.  

  

In Table 5, we provide the annual averages of the HCHO columns, corrected for the surface 

temperature variation, for certain cities or regions. New York and San Francisco present a significant 

decrease of the annual concentrations (more than 10%), despite the strong fire emissions in 

August/September 2020. This is particular to the US cities. In China or India, the decrease was of 

short duration and did not significantly impact the annual levels, while in Europe or South America, 

no decrease can be detected on the short or on the long term. 

 

 

 

 molec.cm-2 
Figure 3.2.18: TROPOMI HCHO tropospheric columns averaged over Eastern China in Feb. 2019 and Feb. 

2020. 
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  molec.cm-2 
Figure 3.2.19: TROPOMI HCHO tropospheric columns averaged over Asia in Apr. 2019 and Apr. 2020. 
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Figure 3.2.20: Biweekly averaged of HCHO tropospheric columns as retrieved from TROPOMI in 2018 (blue), 

2019 (black) and 2020 (red) in a selection of cities or regions. For each region, the corresponding diagram of 

surface temperature and precipitations is presented (lower plot). For the Northern China and New-Delhi cases 

(first line), the “surface-temperature-corrected” HCHO columns are also shown. In all figures, the OMI 

climatology is shown (dashed black line), and the error bars represent the interannual variability. 

 
Table 5: Annually averaged “surface-temperature-corrected” HCHO tropospheric columns as retrieved from 

TROPOMI in 2018, 2019 and 2020 in a selection of cities or regions.  

Annual Mean HCHO 

[x1015 molec.cm-2] 
2018 2019 2020 

New Delhi 13.9 14.4 14 

North China 9.9 10.0 9.3 

Center East China 9.5 9.6 9.1 

South China 9.5 10.0 10.1 

Roma 4.6 4.4 4.8 

Milan 6.1 5.5 5.7 

Barcelona 4.4 5.2 4.4 

Madrid 4.4 4.2 3.4 

Paris 4.9 4.0 4.0 

New York 4.2 4.1 3.7 

San Francisco 5.2 4.9 4.3 

Buenos Aires 5.7 6.2 6.1 

Sao Paulo 8.8 9.2 9.4 
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3.2.3.2 CHOCHO 

This analysis relies on the S5p TROPOMI glyoxal tropospheric column product that is being 

developed as part of the GLYRETRO project within the S5p+Innovation program (primary activity 

of this contract). Details on the algorithm and validation results are available in the GLYRETRO 

ATBD (Lerot et al., 2020) and Verification Report (Alvarado et al., 2020), available on the project 

website (https://glyretro.aeronomie.be/) and are also comprehensively described in Lerot et al. 

(2021). The methodology to search for possible lockdown signature is similar to that of HCHO, 

except that a temperature correction is not applicable to glyoxal since the glyoxal 

column/temperature correlation is weaker due to higher yields from other type of emissions than 

biogenic sources. We focused on the highly polluted area of China and Northern India where the 

glyoxal columns are large and originate to a significant part from anthropogenic sources. 

 

Figure 3.2.21 compares the monthly mean glyoxal fields from 2019 and 2020 in China and India 

during their respective strictest lockdown phases (i.e. February and April). A clear low bias is visible 

in those two countries in 2020 compared to 2019. In India, localized elevated glyoxal signals are 

also much less visible during the local lockdown. In February 2019, southern part of China has been 

poorly sampled from space because of persistent cloud contamination. For this reason, we restrain 

the analysis to the Northern part of China.  

 

 

 China (February) India (April) 
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Figure 3.2.21: Comparison of the 2019 and 2020 monthly mean TROPOMI CHOCHO tropospheric columns 

over Eastern China and India for the months of February and April, respectively. 

 

https://glyretro.aeronomie.be/
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Figure 3.2.22 and Figure 3.2.23compare the time series of biweekly medians of TROPOMI glyoxal 

columns in Northern China and Northern India for 2018, 2019 and 2020 separately. For comparison, 

OMI climatological columns based on the years 2010-2018 are also drawn along with estimates of 

the corresponding interannual variability. In China, the CHOCHO interannual variability is 

estimated to be in the range of 1x1014 molec.cm-2 (~30%). A clear minimum is visible in the 

CHOCHO 2020 time series in late February, with columns significantly lower than 2018 and 2019 

(~-50%). The discussion on meteorological parameters from section 3.2.3.1 is also valid for glyoxal, 

and no change in those parameters can explain the low bias in late February. Note that a small 

reduction of the column amounts starts already in late January but similar reductions are observed 

in other years in phase with the yearly Chinese New Year holidays during which anthropogenic 

emissions also drop. Interestingly while the columns usually rebound shortly after the holidays, they 

further decrease this year. Note however that compared to the OMI climatology, the differences are 

smaller and within the 2010-2018 inter-annual variability. Drawing firm conclusions based on the 

glyoxal observations alone is therefore difficult.  On the other hand, since reductions are also 

identified for other species during the same period and are also reproduced for glyoxal by model 

simulations based on a COVID-19-optimized inventory (see section 3.2.3.3), their  lockdown-

related origin is very likely. 

 

 
 

Figure 3.2.22: Biweekly mean CHOCHO tropospheric columns as retrieved from TROPOMI in 2018 (blue), 

2019 (black) and 2020 (red) in Northeastern China.  The dashed black curve shows climatological glyoxal 

columns as derived from the OMI data set using the period 2010-2018. The error bars give an estimate of the 

inter-annual variability (1-sigma standard deviation). The colored rectangles indicate the yearly Chinese New 

Year holidays, during which anthropogenic emissions typically drop. 

In the Indo-Gangetic Plains, glyoxal columns show a clear COVID-19 signal in late March/early 

April, which can’t be explained by change in temperature or precipitation. Note the temperatures 

have been lower in 2020 compared to 2019, but only from the second part of April. In addition, the 

number of fires has been lower in May 2020, which can explain partly the persistent low bias in the 

2020 glyoxal columns. The reduction of CHOCHO during the lockdown period over the IGP is 

slightly larger than the 1x1014 molec.cm-2 [or -25%] interannual variability as determined from the 

OMI CHOCHO climatology. When we zoom in over New Delhi (within a radius of 50km), the 

detected low bias is even more pronounced (-50%) and 2020/2019 differences are clearly larger than 
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the interannual variability there, which gives confidence in the anthropogenic nature of the 

reduction. 

 

 

 
 

Figure 3.2.23: Biweekly mean CHOCHO tropospheric columns as retrieved from TROPOMI in 2018 (blue), 

2019 (black) and 2020 (red) in the Indo-Gangetic Plains (left panel) and over New Delhi (right panel).  The 

dashed black curve shows climatological glyoxal columns as derived from the OMI data set using the period 

2010-2018. The error bars give an estimate of the inter-annual variability (1-sigma standard deviation). 

 

3.2.3.3 Comparison with VOC changes over China simulated with the CTM 

MAGRITTEv1.1 

 

Here we use satellite observations of HCHO, CHOCHO, and peroxyacetyl nitrate (PAN) in 

February 2019 and 2020 and analyze their distributions against model simulations. The first two 

compounds are measured by TROPOMI, while PAN is retrieved from the observations of the 

Infrared Atmospheric Sounding Interferometer (IASI, Clerbaux et al., 2009), carried on the Metop 

platforms. 

 

In contrast to NOx, which have strong direct emissions, HCHO, CHOCHO and PAN are 

predominantly secondary in origin. In Northern China, their wintertime columns are lower than in 

summer, due to reduced photochemical activity and biogenic NMVOC emissions (Fischer et al., 

2014; Stavrakou et al., 2016; Franco et al., 2018; Li et al., 2018). This explains the noisier and more 

uncertain columns in winter. Despite these limitations, a good agreement between observed and 

model distributions of the 2020-to-2019 column ratios is found in February Figure 3.2.24).  

  

The observed HCHO and CHOCHO ratio distributions are similar, with values lower than 1 in 

central-eastern China (between ~28° and 38°N), and values higher than 1 in the southern part 

(<25°N) as well as in northern China (between 40° and 43°N). This latitudinal gradient is 

reproduced by the model, with lower-than-one values, largely due to the drop in anthropogenic VOC 

emissions between 2020 and 2019, by 25% on average in eastern China, and by 33% in the YRD 

region. The stronger column reduction for CHOCHO than for HCHO is explained by the larger 

contribution of anthropogenic sources to the CHOCHO budget.  
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Due to secondary formation, both HCHO and CHOCHO are observed away from the emission 

source, a pattern well represented in the model (Figure 3.2.24). The higher biomass burning 

emission in 2020 over Myanmar (18-23°N, 96-102°E, Figure 3.1.10c) leads to HCHO and 

CHOCHO model columns enhanced by 12% and 23%, respectively, in fair agreement with the 

observed enhancement (15% for HCHO and 34% for CHOCHO). However, the data suggest an 

underestimation of biomass burning emissions over northern Vietnam, as well as an underestimation 

of CHOCHO formation in agricultural fires, which are a commonplace practice in this region for 

clearing the fields after harvesting (Biswas et al., 2015). In eastern China (Figure 3.1.13), the use of 

the CONFORM emissions in R1 leads to a decrease of 7% and to 18% in HCHO and CHOCHO 

column ratio, respectively, in comparison with the R2 experiment using baseline emissions for 2020. 

The stronger impact of emission reduction on CHOCHO than on HCHO is due to the larger 

contribution of anthropogenic VOCs to the abundance of CHOCHO (25% at global scale) compared 

to HCHO (7%).  

 

PAN is formed by oxidation of non-methane volatile organic compounds (NMVOCs) in the 

presence of NOx.  Since most NMVOCs can be PAN precursors, a diversity of NMVOC emissions 

sources are responsible for PAN formation. In Northern China, the anthropogenic sources are 

dominant outside the growing season. Note that modelling PAN chemistry is challenging since the 

formation of PAN implicates many stages of NMVOC oxidation and the yields can be very different 

from one NMVOC to another (Fischer, 2014). 

 
Similar to HCHO and CHOCHO, the observations of the PAN column ratios show a pronounced 

north-south gradient, which is qualitatively well represented in the model (Figure 3.2.24), although 

the observed changes are larger ( 

Table 6). In consistency with the model, the largest decrease is found in the NCP, in response to the 

anthropogenic emission decreases. The higher column ratios in southern China might be due to a 

combination of higher biomass burning over Myanmar and higher isoprene emission fluxes over 

South-eastern China in 2020 (Figure 3.1.10d).  Isoprene is a major precursor of PAN, responsible 

for ~37% of its formation on the global scale (Fischer et al., 2014). While the enhanced fires in 

Myanmar result in higher modeled PAN columns in February 2020 in this region, their effect is not 

visible over the source region according to IASI, suggesting that fire events might actually play little 

role in the PAN formation (Fischer et al., 2014).  
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Figure 3.2.24: (a, b) HCHO column ratio, February 2020 divided by February 2019, according to satellite data 

(left) and to MAGRITTEv1.1 (right). (c, d) Idem for CHOCHO. (e, f) Idem for PAN. Invalid data and areas with 

very low VOC emissions (less than 5×1010 molec.cm-2s-1) are left blank in panels a-d. 

 
 

Table 6: Percentage changes of monthly columns between 2020 and the same month in 2019 ((2020-2019)/2019), 

based on observed and modelled columns from simulations R1 (CONFORM emissions), R1H and R1L (high and 

low CONFORM emissions), and R2 (baseline emissions). All values are calculated for the eastern China region 

shown in Figure 3.1.13delimited by 22-42°N, 108-125°E. 

 

HCHO changes TROPOMI   R1  R1H  R1L  R2  

February -6.9 -20.3 -18.2 -22.5 -13.2 

CHOCHO 

changes 

TROPOMI   R1 R1H R1L R2  

February -13.2 -33.6 -28.4 -38.7 -15.0 

PAN changes IASI R1 R1H R1L R2  

February -17.9 -10.9 -7.0 -14.4 1.3 
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4 Impact of lockdown measures on climate gases 

 Carbon dioxide (CO2) (IUP-Bremen) 

 

The COVID-19 pandemic resulted in reduced anthropogenic carbon dioxide (CO2) emissions during 

2020 in large parts of the world. We report results from a first attempt to determine whether a 

regional-scale reduction of anthropogenic CO2 emissions during the COVID-19 pandemic can be 

detected using space-based observations of atmospheric CO2. For details the reader is referred to 

Buchwitz et al., 2021 (and references given therein), which is shortly summarized in this section.  

 

For this purpose, we have analysed a small ensemble of satellite retrievals of column-averaged dry-

air mole fractions of CO2, i.e. XCO2. We focus on East China because COVID-19 related CO2 

emission reductions are expected to be largest there early in the pandemic. We analysed four XCO2 

data products from the satellites Orbiting Carbon Observatory-2 (OCO-2) and Greenhouse gases 

Observing SATellite (GOSAT) (see Table 7).  

 

We use a data-driven approach that does not rely on a priori information about CO2 sources and 

sinks and ignores atmospheric transport. Our approach utilises the computation of XCO2 anomalies, 

ΔXCO2, from the satellite Level 2 data products using a method called DAM (Daily Anomalies via 

(latitude band) Medians) (Figure 4.1.1). DAM removes large-scale, daily XCO2 background 

variations, yielding XCO2 anomalies that correlate with the location of major CO2 source regions 

such as East China.  

 

We analysed satellite data between January 2015 and May 2020 and compared monthly XCO2 

anomalies in 2020 with corresponding monthly XCO2 anomalies of previous years. In order to link 

the XCO2 anomalies to East China fossil fuel (FF) emissions, we used XCO2 and corresponding FF 

emissions from NOAA’s (National Oceanic and Atmospheric Administration) CarbonTracker 

version CT2019 from 2015 to 2018. Using this CT2019 data set, we found that the relationship 

between target region ΔXCO2 and the FF emissions of the target region is approximately linear and 

we quantified slope and offset via a linear fit.  

 

We use the empirically obtained linear equation to compute ΔXCO2
FF, an estimate of the target 

region FF emissions, from the satellite-derived XCO2 anomalies, ΔXCO2. We focus on October to 

May periods to minimize contributions from biospheric carbon fluxes and quantified the error of 

our FF estimation method for this period by applying it to CT2019. We found that the relative 

difference of the retrieved FF emissions and the CT2019 FF emissions is approximately 5% (1-

sigma).  

 

We applied our method to NASA’s (National Aeronautics and Space Administration) OCO-2 XCO2 

data product (version 10r) and to three GOSAT products. We focus on estimates of the relative 

change of East China monthly emissions in 2020 relative to previous months.  

 

Our results (Figure 4.1.2) show considerable month-to-month variability (especially for the GOSAT 

products) and significant differences across the ensemble of satellite data products analysed. The 

ensemble mean indicates an emission reduction by approximately 10% ± 10% in March and April 

2020. However, our results show considerable month-to-month variability and significant 

differences across the ensemble of satellite data products analysed. For example, OCO-2 suggests a 

much smaller reduction (1%–2% ± 2 %).  
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The large uncertainty and the differences of the results obtained for the individual ensemble 

members indicates that it is challenging to reliably detect and to accurately quantify the emission 

reduction. There are several reasons for this including the weak signal (the expected regional XCO2 

reduction is only on the order of 0.1-0.2 ppm), the sparseness of the satellite data, remaining biases 

and limitations of our relatively simple data-driven analysis approach. Inferring COVID-19 related 

information on regional-scale CO2 emissions using current satellite XCO2 retrievals likely requires, 

if at all possible, a more sophisticated analysis method including detailed transport modelling and 

considering a priori information on anthropogenic and natural CO2 surface fluxes. 

 
Table 7: Overview of the satellite XCO2 Level 2 (L2) input data products. (#) These products are available via 

the Copernicus Climate Data Store (CDS) until end of 2019. Year 2020 data will be made available via the CDS 

in 2021. 

Satellite  Algorithm  Product 

version 

Product ID 

 

References Data provider and 

data access information 

OCO-2 ACOS v10r CO2_OC2_ACOS 

 

O’Dell et al., 

2018; Kiel et 

al., 2019; 

Osterman et 

al., 2020 

Product “OCO2_L2_Lite_FP 10r” obtained 

from NASA’s Earthdata GES DISC website: 

https://disc.gsfc.nasa.gov/datasets?keywords=

OCO-2%20v10r&page=1  

GOSAT UoL-FP v7.3 CO2_GOS_OCFP 

 

Cogan et al., 

2012; 

Boesch et 

al., 2019 

Generated by Univ. Leicester (#) 

GOSAT RemoTeC v2.3.8 CO2_GOS_SRFP 

 

Butz et al., 

2011; Wu et 

al., 2019 

Generated by SRON (#) 

GOSAT FOCAL v1.0 CO2_GOS_FOCA 

 

Noël et al., 

2020 

Generated by IUP, Univ. Bremen 

 

 

  

https://disc.gsfc.nasa.gov/datasets?keywords=OCO-2%20v10r&page=1
https://disc.gsfc.nasa.gov/datasets?keywords=OCO-2%20v10r&page=1
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Figure 4.1.1: DAM XCO2 anomaly map at 1o x 1o resolution generated from OCO-2 Level 2 XCO2 (v10r, land) 

for 2015 to 2019. 

 

 
 

Figure 4.1.2: Overview of the ensemble-based CO2 emission reduction results for January-May 2020 relative to 

October-December 2019 and previous years via reddish colours for each of the four analysed satellite XCO2 data 

products (see Table 7). The corresponding ensemble mean value and its uncertainty is shown in dark blue. The 

uncertainty has been computed as standard deviation of the ensemble members. 

 

 

 Methane (CH4) (IUP-Bremen) 

 

In order to find out if potential changes in atmospheric methane during the pandemic can be detected 

from space we have analysed Sentinel-5-Precursor (S5P) scientific WFMD algorithm XCH4 

retrievals (Schneising et al., 2019, 2020b) during October 2017 to June 2020.  



 
 ICOVAC Final Report 73/89 

 

 

 

We focussed on regional-scales and generated XCH4 maps (absolute XCH4 and XCH4 differences 

to the previous year) for South East Asia, Europe, and continental US (Figures 4.2.1-4). To better 

analyse the observed pattern we also performed an additional  time series analysis for  smaller source 

region (with substraction of background to remove seasonal cycle and global yearly increase) based 

on weekly data for different years. The time series analysis is performed for the following sub-

regions: East China (Figure 4.2.1), Northern Italy (Figure 4.2.2), India (Figure 4.2.3) and the US 

East Coast (Figure 4.2.4). The source region of interest and the corresponding background region 

are highlighted in the respective figures. 

 

 

The spatial maps of XCH4 differences between COVID-19 and a pre-pandemic period typically 

show a complex pattern of year 2020 reductions and enhancements and the time series analysis 

indicates that the differences of 2020 and 2019 are within normal year-to-year variability for all 

analysed regions.  

 

For example, in the case of the source region time series for East China, we find lower values (2020 

relative to 2019) in the lockdown period before March (2018 is in between), but the reduction 

already starts before lockdown. For all regions the magnitude of differences during the lockdown 

period is comparable to differences in other periods, , e.g. in the case of the US East Coast source 

region, we find a reduction in 2020 relative to 2019 between March and May, which is also reflected 

in the spatial difference map (Figure 4.2.4), but there is a similar reduction between December and 

February, which cannot be linked to COVID-19 limitations.  

 

It is therefore concluded that there is no unambiguous signature in XCH4 during the COVID-19 

lockdown in 2020 in the analysed regions. 
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Figure 4.2.1: Top left: XCH4 over China and surrounding countries for February/March 2020 (2020FM). Top 

right: XCH4 difference 2020FM minus 2019FM. Also shows are two rectangular regions: the East China target 

(or source) region of interest (red) and the corresponding background region (green). Bottom: Time series 

(weekly resolution) of ΔXCH4, which are target minus background (TmB) region differences of consecutive 

years. Also shown in light red is the Hubei lockdown period from end of January 2020 to end of March 2020. As 

can be seen from the blue curve, TmB ΔXCH4 is lower in 2020 compared to 2019 in the lockdown period before 

March but the reduction starts already before the lockdown. Furthermore, the magnitude is similar to other 

periods. It is therefore concluded that the year 2020 to 2019 difference is within normal variability.  
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Figure 4.2.2: Similar as Figure 4.2.1 but for Europe and March/April maps focussing on Northern Italy for the 

time series analysis. 

 

  

 

  

 
Figure 4.2.3: Similar as Figure 4.2.1 but for India and April/May maps focussing on Northern India for the time 

series analysis. 
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Figure 4.2.4: Similar as Figure 4.2.1 but for the US and a March/April difference map focussing on 

parts of the US East Coast for the time series analysis.  

 

5 Dissemination and outreach 

 
A large effort from the ICOVAC team has been devoted to contributing to outreach. A large number 

of interviews, web stories and press releases have been prepared by the consortium before and 

during the project. The various press releases led to many article in the international press (e.g. in 

Belgium, Italy, India) Those articles have been published in various international media, including: 

 
o Physics Today (https://physicstoday.scitation.org/do/10.1063/PT.6.2.20200501a/full/). 

o Tagesschau (https://www.tagesschau.de/investigativ/ndr/stickoxid-corona-101.html) 

o Four BIRA-IASB press releases (https://aeronomie.be/en/news/2020/tropomi-observes-impact-

corona-virus-air-quality-china, https://aeronomie.be/en/news/2020/corona-does-not-necessarily-

imply-less-pollution, https://aeronomie.be/en/news/2020/satellites-see-worldwide-decrease-

nitrogen-dioxide-pollution-result-covid-19-crisis-china, 

https://aeronomie.be/en/news/2020/covid-19-air-pollution-returns-lockdowns-are-lifted)  

o AGU press release (https://news.agu.org/press-release/covid-19-lockdowns-significantly-

impacting-global-air-quality/) 

o ESA eo4society press release (https://eo4society.esa.int/2020/05/14/is-the-global-covid-19-

related-drop-in-NO2-pollution-coming-to-an-end/) 

https://physicstoday.scitation.org/do/10.1063/PT.6.2.20200501a/full/
https://www.tagesschau.de/investigativ/ndr/stickoxid-corona-101.html
https://aeronomie.be/en/news/2020/tropomi-observes-impact-corona-virus-air-quality-china
https://aeronomie.be/en/news/2020/tropomi-observes-impact-corona-virus-air-quality-china
https://aeronomie.be/en/news/2020/corona-does-not-necessarily-imply-less-pollution
https://aeronomie.be/en/news/2020/corona-does-not-necessarily-imply-less-pollution
https://aeronomie.be/en/news/2020/satellites-see-worldwide-decrease-nitrogen-dioxide-pollution-result-covid-19-crisis-china
https://aeronomie.be/en/news/2020/satellites-see-worldwide-decrease-nitrogen-dioxide-pollution-result-covid-19-crisis-china
https://aeronomie.be/en/news/2020/covid-19-air-pollution-returns-lockdowns-are-lifted
https://news.agu.org/press-release/covid-19-lockdowns-significantly-impacting-global-air-quality/
https://news.agu.org/press-release/covid-19-lockdowns-significantly-impacting-global-air-quality/
https://eo4society.esa.int/2020/05/14/is-the-global-covid-19-related-drop-in-no2-pollution-coming-to-an-end/
https://eo4society.esa.int/2020/05/14/is-the-global-covid-19-related-drop-in-no2-pollution-coming-to-an-end/
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o ESA web story (ESA web story 

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-

5P/Sulphur_dioxide_concentrations_drop_over_India_during_COVID-19) 

o Nature News: Why pollution is plummeting in some cities — but not others, 

https://www.nature.com/articles/d41586-020-01049-6 

o Dutch news items, e.g. https://nos.nl/artikel/2328537-lucht-flink-schoner-door-

coronamaatregelen.html; https://www.nemokennislink.nl/publicaties/corona-klaart-de-lucht/  

o KNMI web stories: https://www.knmi.nl/kennis-en-datacentrum/achtergrond/afname-

luchtvervuiling-tijdens-coronacrisis; https://www.knmi.nl/over-het-knmi/nieuws/afname-

luchtvervuiling-boven-nederland; https://www.knmi.nl/kennis-en-datacentrum/uitleg/tropomi-

metingen-van-stikstofdioxide-NO2 ; https://www.knmi.nl/over-het-knmi/nieuws/toename-

luchtvervuiling-na-opheffen-lockdown 

o “Dados de satélite apontam piora da poluição em SP em período de menor isolamento“, 

https://g1.globo.com/bemestar/coronavirus/noticia/2020/04/30/dados-de-satelite-apontam-piora-

da-poluicao-em-sp-em-periodo-de-menor-isolamento.ghtml 

o ESA web story: “Global air pollution maps now available”, 

https://www.esa.int/ESA_Multimedia/Images/2020/06/Global_air_pollution_maps_now_availa

ble#.XuIOZllucSw.link 

o ESA Web story: “Air pollution in a post-COVID-19 world” 

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-

5P/Air_pollution_in_a_post-COVID-19_world 

o Popular science web story at Scientias.nl (in Dutch): “Minder luchtvervuiling na de 

Coronacrisis, maar voor hoelang nog?”, https://www.scientias.nl/minder-luchtvervuiling-

na-de-coronacrisis-maar-voor-hoelang-nog/ 

o Daily Science, La qualité de l’air, impactée pas la crise du COVID-19 

(https://dailyscience.be/11/05/2020/la-qualite-de-lair-impactee-par-la-crise-du-covid-19-2) 

o Medical News Today, The dual effects of COVID-19 lockdown on air quality 

(https://www.medicalnewstoday.com/articles/the-dual-effects-of-covid-19-lockdowns-

on-air-quality) 

o Science News, Emissions dropped during the COVID-19 pandemic. The climate impact won’t 

last (https://www.sciencenews.org/article/covid-19-coronavirus-greenhouse-gas-emissions-

climate-change) 

o Green Report, Con il lockdown da COVID-19 calo ‘senza precedente’ per l’inquinamento del 

mondo (https://www.greenreport.it/news/economia-ecologica/con-il-lockdown-da-covid-

19-calo-senza-precedenti-per-linquinamento-nel-mondo) 

o BBC Science Studios, T. Stavrakou interviewed by Greta Thunberg about the effects of COVID-

19 on air quality in the frame of a BBC One docuseries ‘Greta Thunberg : A Year to Change the 

World’ (broadcast in May in US/UK, in June/July in Belgium). 

o Several members of the consortium contributed to the preparation of a MOOC module on the 

impact of the COVID-19 lockdowns on the air quality and climate produced by Imperative Space. 

 

The study activities realized so far are summarized in the following peer-reviewed papers published 

or in preparation: 

 

Published articles: 
 

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/Sulphur_dioxide_concentrations_drop_over_India_during_COVID-19
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/Sulphur_dioxide_concentrations_drop_over_India_during_COVID-19
https://nos.nl/artikel/2328537-lucht-flink-schoner-door-coronamaatregelen.html
https://nos.nl/artikel/2328537-lucht-flink-schoner-door-coronamaatregelen.html
https://www.nemokennislink.nl/publicaties/corona-klaart-de-lucht/
https://www.knmi.nl/kennis-en-datacentrum/achtergrond/afname-luchtvervuiling-tijdens-coronacrisis
https://www.knmi.nl/kennis-en-datacentrum/achtergrond/afname-luchtvervuiling-tijdens-coronacrisis
https://www.knmi.nl/over-het-knmi/nieuws/afname-luchtvervuiling-boven-nederland
https://www.knmi.nl/over-het-knmi/nieuws/afname-luchtvervuiling-boven-nederland
https://www.knmi.nl/kennis-en-datacentrum/uitleg/tropomi-metingen-van-stikstofdioxide-no2
https://www.knmi.nl/kennis-en-datacentrum/uitleg/tropomi-metingen-van-stikstofdioxide-no2
https://www.knmi.nl/over-het-knmi/nieuws/toename-luchtvervuiling-na-opheffen-lockdown
https://www.knmi.nl/over-het-knmi/nieuws/toename-luchtvervuiling-na-opheffen-lockdown
https://www.esa.int/ESA_Multimedia/Images/2020/06/Global_air_pollution_maps_now_available#.XuIOZllucSw.link
https://www.esa.int/ESA_Multimedia/Images/2020/06/Global_air_pollution_maps_now_available#.XuIOZllucSw.link
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/Air_pollution_in_a_post-COVID-19_world
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/Air_pollution_in_a_post-COVID-19_world
https://www.scientias.nl/minder-luchtvervuiling-na-de-coronacrisis-maar-voor-hoelang-nog/
https://www.scientias.nl/minder-luchtvervuiling-na-de-coronacrisis-maar-voor-hoelang-nog/
https://dailyscience.be/11/05/2020/la-qualite-de-lair-impactee-par-la-crise-du-covid-19-2/
https://www.medicalnewstoday.com/articles/the-dual-effects-of-covid-19-lockdowns-on-air-quality
https://www.medicalnewstoday.com/articles/the-dual-effects-of-covid-19-lockdowns-on-air-quality
https://www.sciencenews.org/article/covid-19-coronavirus-greenhouse-gas-emissions-climate-change
https://www.sciencenews.org/article/covid-19-coronavirus-greenhouse-gas-emissions-climate-change
https://www.greenreport.it/news/economia-ecologica/con-il-lockdown-da-covid-19-calo-senza-precedenti-per-linquinamento-nel-mondo
https://www.greenreport.it/news/economia-ecologica/con-il-lockdown-da-covid-19-calo-senza-precedenti-per-linquinamento-nel-mondo
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o Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J. ‐F., Gent, J., Eskes, H., Levelt, P. 

F., A, R., Veefkind, J. P., Vlietinck, J., Yu, H. and Zehner, C.: Impact of Coronavirus 

Outbreak on NO2 Pollution Assessed Using TROPOMI and OMI Observations, Geophys. 

Res. Lett., 47(11), doi:10.1029/2020GL087978, 2020. 

o Buchwitz, M., Reuter, M., Noël, S., Bramstedt, K., Schneising, O., Hilker, M., Fuentes 

Andrade, B., Bovensmann, H., Burrows, J. P., Di Noia, A., Boesch, H., Wu, L., Landgraf, 

J., Aben, I., Retscher, C., O'Dell, C. W., and Crisp, D.: Can a regional-scale reduction of 

atmospheric CO2 during the COVID-19 pandemic be detected from space? A case study for 

East China using satellite XCO2 retrievals, Atmos. Meas. Tech., 14, 2141–2166, 

https://doi.org/10.5194/amt-14-2141-2021, 2021. 

o J. Ding, R.J. van der A, H.J. Eskes, B. Mijling, T. Stavrakou, J.H.G.M. van Geffen, J.P. 

Veefkind, Chinese NOx emission reductions and rebound as a result of the COVID-19 

crisis quantified through inversion of TROPOMI NO2 observations, Geophysical Research 

Letters, 46, e2020GL089912, doi:10/1029/2020GL089912, 2020. 

o Gaubert, B., Bouarar, I., Doumbia, T., Liu, Y., Stavrakou, T., Deroubaix, A., et al., Global 

changes in secondary atmospheric pollutants during the 2020 COVID-19 pandemic. 

Journal of Geophysical Research: Atmospheres, 126, e2020JD034213, 

https://doi.org/10.1029/2020JD034213, 2021. 

o Gkatzelis, G.I., Gilman, J.B., Brown, S.S., Eskes, H., Gomes, A.R., Lange, A.C., 

McDonald, B.C., Peischl, J., Petzold, A., Thompson, C.R., Kiendler-Scharr, A. 2021. The 

global impacts of COVID-19 lockdowns on urban air quality: A critical review and 

recommendations. Elementa: Science of the Anthropocene 9(1). DOI: 

https://doi.org/10.1525/elementa.2021.00176 

o Griffin, D., McLinden, C. A., Racine, J., Moran, M. D., Fioletov, V., Pavlovic, R., 

Mashayekhi, R., Zhao, X. and Eskes, H.: Assessing the Impact of Corona-Virus-19 on 

Nitrogen Dioxide Levels over Southern Ontario, Canada, Remote Sens., 12(24), 4112, 

doi:10.3390/rs12244112, 2020. 

o Koukouli, M.-E., Skoulidou, I., Karavias, A., Parcharidis, I., Balis, D., Manders, A., 

Segers, A., Eskes, H. and van Geffen, J.: Sudden changes in nitrogen dioxide emissions 

over Greece due to lockdown after the outbreak of COVID-19, Atmos. Chem. Phys., 21(3), 

1759–1774, doi:10.5194/acp-21-1759-2021, 2021. 

o Liu, F., Page, A., Strode, S. A., Yoshida, Y., Choi, S., Zheng, B., Lamsal, L. N., Li, C., 

Krotkov, N. A., Eskes, H., van der A, R., Veefkind, P., Levelt, P. F., Hauser, O. P. and Joiner, 

J.: Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-

19, Sci. Adv., 6(28), eabc2992, doi:10.1126/sciadv.abc2992, 2020. 

o Liu, Y., Wang, T., Stavrakou, T., Elguindi, N., Doumbia, T., Granier, C., Bouarar, 

I., Gaubert, B. and Brasseur, G. P.: Diverse response of surface ozone to COVID-19 

lockdown in China, Sci. Total Environ., 147739, 

doi:10.1016/j.scitotenv.2021.147739, 2021. 
o Miyazaki, K., Bowman, K., Sekiya, T., Jiang, Z., Chen, X., Eskes, H., et al. (2020). Air 

quality response in China linked to the 2019 novel coronavirus (COVID-19) lockdown. 

Geophysical Research Letters, 47, e2020GL089252. 

https://doi.org/10.1029/2020GL089252. 
o Miyazaki, Kazuyuki, Kevin Bowman, Takashi Sekiya, Masayuki Takigawa, Jessica L. Neu, 

Kengo Sudo, Greg Osterman, Henk Eskes, Global tropospheric ozone responses to reduced 

NOx emissions linked to the COVID-19 world-wide lockdowns, Accepted for publication 

in Science Advances, April 2021. 
o Stavrakou, J. and Bauwens, M.: What can COVID-19 shutdowns teach us about 

reducing air pollution?, Research Outreach, 121, https://doi.org/10.32907/RO-121-

1140323852, 2021. 
o Wang, W., van der A, R., Ding, J., van Weele, M., and Cheng, T.: Spatial and 

temporal changes of the ozone sensitivity in China based on satellite and ground-

https://doi.org/10.1029/2020GL089252
https://doi.org/10.32907/RO-121-1140323852
https://doi.org/10.32907/RO-121-1140323852
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based observations, Atmos. Chem. Phys., 21, 7253–7269, 

https://doi.org/10.5194/acp-21-7253-2021, 2021. 
o Bo Zheng, Guannan Geng, Philippe Ciais, Steven J. Davis, Randall V. Martin, Jun Meng, 

Nana Wu, Frederic Chevallier, Gregoire Broquet, Folkert Boersma, Ronald van der A, Jintai 

Lin, Dabo Guan, Yu Lei, Kebin He, Qiang Zhang, Satellite-based estimates of decline and 

rebound in China's CO2 emissions during COVID-19 pandemic, Sci. Adv. 2020, Vol. 6, no. 

49, DOI: 10.1126/sciadv.abd4998 

 

Articles in preparation or in review: 
 

o Bouarar, I., B. Gaubert, G. P. Brasseur, W. Steinbrecht, T. Doumbia, S. Tilmes, Y. 

Liu, T. Stavrakou, A. M. Deroubaix, S. Darras, C. Granier, F. G. Lacey, J.-F. Müller, 

X. Shi, N. Elguindi, and T. Wang: Ozone Anomalies in the Free Troposphere during 

the COVID-19 Pandemic, Geophys. Res. Lett., in review. 
o Doumbia, T., C. Granier, N. Elguindi, I. Bouarar, S. Darras, G. Brasseur, B. Gaubert, Y. Liu, 

X. Shi, T. Stavrakou, S. Tilmes, F. Lacey, A. Deroubaix, and T. Wang: Changes in global 

air pollutant emissions during the Covid-19 pandemic: a dataset for atmospheric chemistry 

modelling, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-348, in review, 

2021. 

o Levelt, P.F., Deborah C. Stein Zweers, Ilse Aben, Maite Bauwens, Tobias Borsdorff, Isabelle 

De Smedt, Henk J. Eskes, Christophe Lerot, Diego G. Loyola, Fabian Romahn, Trissevgeni 

Stavrakou, Nicolas Theys, Michel Van Roozendael, J. Pepijn Veefkind, Tijl Verhoelst, 

 Air Quality Impacts of COVID-19 Lockdown Measures using high-resolution 

observations of multiple trace gases from S5P/TROPOMI, to be submitted. 

o Lange, K., Richter, A., and Burrows, J. P.: Variability of nitrogen oxide emission fluxes 

and lifetimes estimated from Sentinel-5P TROPOMI observations, Atmos. Chem. Phys. 

Discuss. [preprint], https://doi.org/10.5194/acp-2021-273, in review, 2021. 

o Stavrakou, T., J.-F. Müller, M. Bauwens, T. Doumbia, N. Elguindi, S. Darras, C. Granier, 

I. De Smedt, C. Lerot, B. Franco et al.: Atmospheric Impacts of COVID-19 on NOx and 

VOC levels over China based on TROPOMI and IASI satellite data and modeling, 

submitted. 

 

Project activities and findings have also been communicated at conferences and meetings: 

o Buchwitz M. et al.: Can a COVID-19 related regional-scale CO2 emission reduction be 

detected from space using satellite XCO2 retrievals?: A case study for East China, AGU 

Fall Meeting 2020. 

o Ding J. et al.: COVID-effects on China NOx emissions OMI/TROPOMI workshop 2020. 

o Ding J. et al.: NOx Emissions Reduction and Rebound in China Due to the COVID-19 

Crisis, IGAC/AMIGO workshop: Changes in Atmospheric Composition During the 

COVID-19 Lockdowns, 3 November 2020. 

o Eskes H. et al.: TROPOMI NO2 Algorithm Overview & updates, OMI/TROPOMI 

workshop 2020. 

o Eskes H. et al.: The Impacts of COVID-19 Lockdowns on NO2 as Measured by Sentinel-

5P TROPOMI: impacts of Weather and Implications for Emissions and Chemistry, AGU 

Fall Meeting 2020. 

o Eskes H. et al.: The Impacts of COVID-19 Lockdowns on NO2 as Measured by Sentinel-

5P TROPOMI, AMS, 11-15 January 2021. 

https://doi.org/10.5194/essd-2020-348
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o Eskes, H., Levelt, P., Stein, D., DeSmedt, I., Aben, I., van Roozendael, M., Stavrakou, 

J., Bauwens, M., Lerot, C., Veefkind, P., Borsdorff, T., Verhoelst, T., Loyola, D., and 

Romahn, F.: Air Quality Impacts of COVID-19 Lockdown Measures using high-

resolution observations of multiple trace gases from S5P/TROPOMI, EGU General 

Assembly 2021, online, 19–30 Apr 2021, EGU21-13216, 

https://doi.org/10.5194/egusphere-egu21-13216, 2021. 

o Eskes, H., P. Veefkind, J. van Geffen, B. Mijling, R. van der A, J. Ding, P. Levelt, K. 

Miyazaki, C. Lerot, Reductions of NO2 Air Pollution during Covid-19 lockdowns, as 

Observed by Sentinel-5P TROPOMI, GAW Symposium 2021, 28 June - 2 July. 

o Lange K. et al.: Variability of nitrogen oxide emission fluxes and lifetimes estimated by 

Sentinel-5P TROPOMI observations, AGU Fall Meeting 2020. 

o Lerot C. et al.: The ICOVAC project: an ESA initiative to study the impacts of COVID-

19 lockdown measures on Air quality and Climate, AGU Fall Meeting 2020. 

o Levelt P. et al.: Impact of COVID-19 Lockdown Measures on Air Quality as Observed 

by the TROPOMI/S5p Instrument, AGU Fall Meeting 2020. 

o Mijling B. et al.: COVID-19 impact on NO2 in European cities, OMI/TROPOMI 

workshop 2020. 

o Stavrakou T. et al.: Covid-19 Shutdowns as an Unplanned Atmospheric Composition 

Experiment, AGU Fall Meeting 2020, invited. 

o Stavrakou, T., Müller, J.-F., Bauwens, M., Doumbia, T., Elguindi, N., Darras, S., Claire 

Granier, C. G., Yiming Liu, Y. L., Shi, X., Bouarar, I., Brasseur, G., Wang, T., Eskes, 

H., De Smedt, I., Clarisse, L., Coheur, P. F., and Franco, B.: Covid-19-related air 

composition changes over China based on TROPOMI and IASI observations, in situ data 

and model simulations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-

12942, https://doi.org/10.5194/egusphere-egu21-12942, 2021. 

o Theys N. et al.: Improved TROPOMI SO2 columns using a Covariance-Based Retrieval 

Algorithm (COBRA), OMI/TROPOMI workshop 2020. 
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Annex A 
 

Coordinates of the 59 Indian powerplants used to analyze the SO2 column reduction during the local COVID-

19 lockdown. 

Longitude (degree) Latitude (degree) Power plant name 

82.6719 24.0983 VINDH_CHAL S 

69.5532 22.8230 MUNDRA TPP 

69.5281 22.8158 MUNDRA UMPP 

82.6275 23.9784 SASAN UMPP 

79.9671 21.4129 TIRORA TPP 

82.7915 24.0270 RIHAND 

85.0740 21.0966 TALCHER STPS 

82.2930 22.1300 SIPAT STPS 

79.2900 20.0063 CHANDRAPUR_C 

82.7891 24.2010 ANPARA 

82.6858 22.3881 KORBA STPS 

79.4560 18.7572 R_GUNDEM STP 

79.0960 21.2414 KORADI 

83.4513 22.0987 TAMNAR TPP 

79.3978 21.1797 MOUDA STPS 

87.8940 24.7720 FARAKKA STPS 

82.7068 24.1033 SINGRAULI ST 

75.2372 29.9240 TALWANDI SAB 

77.6078 28.6030 DADRI (NCTPP 

82.4091 21.9603 AKALTARA TPP 

77.3422 16.3532 RAICHUR 

76.7195 15.1932 BELLARY TPS 

77.0357 24.6217 CHHABRA TPS 

88.1046 24.3696 SAGARDIGHI T 

77.3568 16.2949 YERMARUS TPP 

79.4417 11.5576 NEYVELI ST I 

81.8525 21.4499 RAIKHEDA 

82.6888 22.4118 KORBA-WEST 

79.1160 21.2818 K_KHEDA II 

87.1311 23.4639 MEJIA 

81.0668 23.3026 SANJAY GANDH 

81.9045 24.1500 NIGRI 

87.8713 22.4157 KOLAGHAT 

75.8425 21.0483 BHUSAWAL 

82.8000 24.2007 ANAPARA "C" 

81.7865 23.0655 ANUPUR TPP 

83.1889 21.9114 BARADARHA TP 

84.9843 21.1238 DERANG 

79.7515 11.5214 ITPCL TPP 

86.6610 23.6220 RAGHUNATHPUR 

79.5748 18.8372 SINGARENI TP 

76.5317 22.0971 Shri Singaji 

82.9803 24.4448 OBRA-A 

73.5574 21.2093 UKAI_Coal 

79.8265 18.3835 KAKATIYA TPP 

83.1215 21.8858 UCHPINDA TPP 
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87.4513 23.8285 BAKRESWAR 

85.2671 20.8700 KAMALANGA 

86.7600 23.8209 MAITHON RB T 

87.2043 23.5800 DURGAPUR STE 

80.6936 17.6219 K_GUDEM NEW 

82.6022 22.0708 MARWA TPP 

87.1311 23.4639 MEJIA TPS EX 

83.2331 21.9846 RAIGARH TPP 

76.8763 29.3975 PANIPAT 

82.7188 22.3828 KORBA-EAST 

77.8138 11.7696 METTUR 

83.4573 21.7570 LARA 

88.1400 22.4673 BUDGE BUDGE 

 


